| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mdetdiag.d |  | 
						
							| 2 |  | mdetdiag.a |  | 
						
							| 3 |  | mdetdiag.b |  | 
						
							| 4 |  | mdetdiag.g |  | 
						
							| 5 |  | mdetdiag.0 |  | 
						
							| 6 |  | mdetdiaglem.g |  | 
						
							| 7 |  | mdetdiaglem.z |  | 
						
							| 8 |  | mdetdiaglem.s |  | 
						
							| 9 |  | mdetdiaglem.t |  | 
						
							| 10 | 7 | a1i |  | 
						
							| 11 | 8 | a1i |  | 
						
							| 12 | 10 11 | coeq12d |  | 
						
							| 13 | 12 | fveq1d |  | 
						
							| 14 |  | eqid |  | 
						
							| 15 | 14 6 | symgbasf1o |  | 
						
							| 16 |  | f1ofn |  | 
						
							| 17 | 15 16 | syl |  | 
						
							| 18 |  | fnnfpeq0 |  | 
						
							| 19 | 17 18 | syl |  | 
						
							| 20 | 19 | adantl |  | 
						
							| 21 | 20 | bicomd |  | 
						
							| 22 | 21 | necon3bid |  | 
						
							| 23 |  | n0 |  | 
						
							| 24 |  | eqid |  | 
						
							| 25 |  | eqid |  | 
						
							| 26 | 4 25 | mgpplusg |  | 
						
							| 27 | 4 | crngmgp |  | 
						
							| 28 | 27 | 3ad2ant1 |  | 
						
							| 29 | 28 | ad2antrr |  | 
						
							| 30 |  | simpll2 |  | 
						
							| 31 |  | eqid |  | 
						
							| 32 | 2 31 3 | matbas2i |  | 
						
							| 33 | 32 | 3ad2ant3 |  | 
						
							| 34 |  | elmapi |  | 
						
							| 35 | 33 34 | syl |  | 
						
							| 36 | 4 31 | mgpbas |  | 
						
							| 37 | 36 | eqcomi |  | 
						
							| 38 | 37 | a1i |  | 
						
							| 39 | 38 | feq3d |  | 
						
							| 40 | 35 39 | mpbird |  | 
						
							| 41 | 40 | ad3antrrr |  | 
						
							| 42 | 14 6 | symgbasf |  | 
						
							| 43 | 42 | ad2antrl |  | 
						
							| 44 | 43 | ffvelcdmda |  | 
						
							| 45 |  | simpr |  | 
						
							| 46 | 41 44 45 | fovcdmd |  | 
						
							| 47 |  | disjdif |  | 
						
							| 48 | 47 | a1i |  | 
						
							| 49 |  | difss |  | 
						
							| 50 |  | dmss |  | 
						
							| 51 | 49 50 | ax-mp |  | 
						
							| 52 | 42 | adantl |  | 
						
							| 53 | 51 52 | fssdm |  | 
						
							| 54 | 53 | sseld |  | 
						
							| 55 | 54 | impr |  | 
						
							| 56 | 55 | snssd |  | 
						
							| 57 |  | undif |  | 
						
							| 58 | 56 57 | sylib |  | 
						
							| 59 | 58 | eqcomd |  | 
						
							| 60 | 24 26 29 30 46 48 59 | gsummptfidmsplit |  | 
						
							| 61 |  | crngring |  | 
						
							| 62 | 61 | adantr |  | 
						
							| 63 | 4 | ringmgp |  | 
						
							| 64 | 62 63 | syl |  | 
						
							| 65 | 64 | 3adant3 |  | 
						
							| 66 | 65 | ad2antrr |  | 
						
							| 67 |  | vex |  | 
						
							| 68 | 67 | a1i |  | 
						
							| 69 | 35 | ad2antrr |  | 
						
							| 70 | 43 55 | ffvelcdmd |  | 
						
							| 71 | 69 70 55 | fovcdmd |  | 
						
							| 72 |  | fveq2 |  | 
						
							| 73 |  | id |  | 
						
							| 74 | 72 73 | oveq12d |  | 
						
							| 75 | 36 74 | gsumsn |  | 
						
							| 76 | 66 68 71 75 | syl3anc |  | 
						
							| 77 |  | simprr |  | 
						
							| 78 | 17 | ad2antrl |  | 
						
							| 79 |  | fnelnfp |  | 
						
							| 80 | 78 55 79 | syl2anc |  | 
						
							| 81 | 77 80 | mpbid |  | 
						
							| 82 | 42 | ad2antrl |  | 
						
							| 83 | 42 | adantl |  | 
						
							| 84 | 51 83 | fssdm |  | 
						
							| 85 | 84 | sseld |  | 
						
							| 86 | 85 | impr |  | 
						
							| 87 | 82 86 | ffvelcdmd |  | 
						
							| 88 |  | neeq1 |  | 
						
							| 89 |  | oveq1 |  | 
						
							| 90 | 89 | eqeq1d |  | 
						
							| 91 | 88 90 | imbi12d |  | 
						
							| 92 |  | neeq2 |  | 
						
							| 93 |  | oveq2 |  | 
						
							| 94 | 93 | eqeq1d |  | 
						
							| 95 | 92 94 | imbi12d |  | 
						
							| 96 | 91 95 | rspc2v |  | 
						
							| 97 | 87 86 96 | syl2anc |  | 
						
							| 98 | 97 | impancom |  | 
						
							| 99 | 98 | imp |  | 
						
							| 100 | 81 99 | mpd |  | 
						
							| 101 | 76 100 | eqtrd |  | 
						
							| 102 | 101 | oveq1d |  | 
						
							| 103 | 61 | 3ad2ant1 |  | 
						
							| 104 | 103 | ad2antrr |  | 
						
							| 105 | 28 | adantr |  | 
						
							| 106 |  | simpl2 |  | 
						
							| 107 |  | difss |  | 
						
							| 108 |  | ssfi |  | 
						
							| 109 | 106 107 108 | sylancl |  | 
						
							| 110 | 35 | ad2antrr |  | 
						
							| 111 | 83 | adantr |  | 
						
							| 112 |  | eldifi |  | 
						
							| 113 | 112 | adantl |  | 
						
							| 114 | 111 113 | ffvelcdmd |  | 
						
							| 115 | 110 114 113 | fovcdmd |  | 
						
							| 116 | 115 | ralrimiva |  | 
						
							| 117 | 36 105 109 116 | gsummptcl |  | 
						
							| 118 | 117 | ad2ant2r |  | 
						
							| 119 | 31 25 5 | ringlz |  | 
						
							| 120 | 104 118 119 | syl2anc |  | 
						
							| 121 | 60 102 120 | 3eqtrd |  | 
						
							| 122 | 121 | expr |  | 
						
							| 123 | 122 | exlimdv |  | 
						
							| 124 | 23 123 | biimtrid |  | 
						
							| 125 | 22 124 | sylbid |  | 
						
							| 126 | 125 | expimpd |  | 
						
							| 127 | 126 | 3impia |  | 
						
							| 128 | 13 127 | oveq12d |  | 
						
							| 129 |  | 3simpa |  | 
						
							| 130 |  | simpl |  | 
						
							| 131 | 61 | ad2antrr |  | 
						
							| 132 |  | zrhpsgnmhm |  | 
						
							| 133 | 61 132 | sylan |  | 
						
							| 134 |  | eqid |  | 
						
							| 135 | 6 134 | mhmf |  | 
						
							| 136 | 133 135 | syl |  | 
						
							| 137 | 136 | ffvelcdmda |  | 
						
							| 138 |  | eqid |  | 
						
							| 139 | 138 31 | mgpbas |  | 
						
							| 140 | 139 | eqcomi |  | 
						
							| 141 | 140 9 5 | ringrz |  | 
						
							| 142 | 131 137 141 | syl2anc |  | 
						
							| 143 | 129 130 142 | syl2an |  | 
						
							| 144 | 143 | 3adant2 |  | 
						
							| 145 | 128 144 | eqtrd |  |