Metamath Proof Explorer


Theorem mdetdiaglem

Description: Lemma for mdetdiag . Previously part of proof for mdet1 . (Contributed by SO, 10-Jul-2018) (Revised by AV, 17-Aug-2019)

Ref Expression
Hypotheses mdetdiag.d D=NmaDetR
mdetdiag.a A=NMatR
mdetdiag.b B=BaseA
mdetdiag.g G=mulGrpR
mdetdiag.0 0˙=0R
mdetdiaglem.g H=BaseSymGrpN
mdetdiaglem.z Z=ℤRHomR
mdetdiaglem.s S=pmSgnN
mdetdiaglem.t ·˙=R
Assertion mdetdiaglem RCRingNFinMBiNjNijiMj=0˙PHPINZSP·˙GkNPkMk=0˙

Proof

Step Hyp Ref Expression
1 mdetdiag.d D=NmaDetR
2 mdetdiag.a A=NMatR
3 mdetdiag.b B=BaseA
4 mdetdiag.g G=mulGrpR
5 mdetdiag.0 0˙=0R
6 mdetdiaglem.g H=BaseSymGrpN
7 mdetdiaglem.z Z=ℤRHomR
8 mdetdiaglem.s S=pmSgnN
9 mdetdiaglem.t ·˙=R
10 7 a1i RCRingNFinMBiNjNijiMj=0˙PHPINZ=ℤRHomR
11 8 a1i RCRingNFinMBiNjNijiMj=0˙PHPINS=pmSgnN
12 10 11 coeq12d RCRingNFinMBiNjNijiMj=0˙PHPINZS=ℤRHomRpmSgnN
13 12 fveq1d RCRingNFinMBiNjNijiMj=0˙PHPINZSP=ℤRHomRpmSgnNP
14 eqid SymGrpN=SymGrpN
15 14 6 symgbasf1o PHP:N1-1 ontoN
16 f1ofn P:N1-1 ontoNPFnN
17 15 16 syl PHPFnN
18 fnnfpeq0 PFnNdomPI=P=IN
19 17 18 syl PHdomPI=P=IN
20 19 adantl RCRingNFinMBiNjNijiMj=0˙PHdomPI=P=IN
21 20 bicomd RCRingNFinMBiNjNijiMj=0˙PHP=INdomPI=
22 21 necon3bid RCRingNFinMBiNjNijiMj=0˙PHPINdomPI
23 n0 domPIssdomPI
24 eqid BaseG=BaseG
25 eqid R=R
26 4 25 mgpplusg R=+G
27 4 crngmgp RCRingGCMnd
28 27 3ad2ant1 RCRingNFinMBGCMnd
29 28 ad2antrr RCRingNFinMBiNjNijiMj=0˙PHsdomPIGCMnd
30 simpll2 RCRingNFinMBiNjNijiMj=0˙PHsdomPINFin
31 eqid BaseR=BaseR
32 2 31 3 matbas2i MBMBaseRN×N
33 32 3ad2ant3 RCRingNFinMBMBaseRN×N
34 elmapi MBaseRN×NM:N×NBaseR
35 33 34 syl RCRingNFinMBM:N×NBaseR
36 4 31 mgpbas BaseR=BaseG
37 36 eqcomi BaseG=BaseR
38 37 a1i RCRingNFinMBBaseG=BaseR
39 38 feq3d RCRingNFinMBM:N×NBaseGM:N×NBaseR
40 35 39 mpbird RCRingNFinMBM:N×NBaseG
41 40 ad3antrrr RCRingNFinMBiNjNijiMj=0˙PHsdomPIkNM:N×NBaseG
42 14 6 symgbasf PHP:NN
43 42 ad2antrl RCRingNFinMBiNjNijiMj=0˙PHsdomPIP:NN
44 43 ffvelcdmda RCRingNFinMBiNjNijiMj=0˙PHsdomPIkNPkN
45 simpr RCRingNFinMBiNjNijiMj=0˙PHsdomPIkNkN
46 41 44 45 fovcdmd RCRingNFinMBiNjNijiMj=0˙PHsdomPIkNPkMkBaseG
47 disjdif sNs=
48 47 a1i RCRingNFinMBiNjNijiMj=0˙PHsdomPIsNs=
49 difss PIP
50 dmss PIPdomPIdomP
51 49 50 ax-mp domPIdomP
52 42 adantl RCRingNFinMBiNjNijiMj=0˙PHP:NN
53 51 52 fssdm RCRingNFinMBiNjNijiMj=0˙PHdomPIN
54 53 sseld RCRingNFinMBiNjNijiMj=0˙PHsdomPIsN
55 54 impr RCRingNFinMBiNjNijiMj=0˙PHsdomPIsN
56 55 snssd RCRingNFinMBiNjNijiMj=0˙PHsdomPIsN
57 undif sNsNs=N
58 56 57 sylib RCRingNFinMBiNjNijiMj=0˙PHsdomPIsNs=N
59 58 eqcomd RCRingNFinMBiNjNijiMj=0˙PHsdomPIN=sNs
60 24 26 29 30 46 48 59 gsummptfidmsplit RCRingNFinMBiNjNijiMj=0˙PHsdomPIGkNPkMk=GksPkMkRGkNsPkMk
61 crngring RCRingRRing
62 61 adantr RCRingNFinRRing
63 4 ringmgp RRingGMnd
64 62 63 syl RCRingNFinGMnd
65 64 3adant3 RCRingNFinMBGMnd
66 65 ad2antrr RCRingNFinMBiNjNijiMj=0˙PHsdomPIGMnd
67 vex sV
68 67 a1i RCRingNFinMBiNjNijiMj=0˙PHsdomPIsV
69 35 ad2antrr RCRingNFinMBiNjNijiMj=0˙PHsdomPIM:N×NBaseR
70 43 55 ffvelcdmd RCRingNFinMBiNjNijiMj=0˙PHsdomPIPsN
71 69 70 55 fovcdmd RCRingNFinMBiNjNijiMj=0˙PHsdomPIPsMsBaseR
72 fveq2 k=sPk=Ps
73 id k=sk=s
74 72 73 oveq12d k=sPkMk=PsMs
75 36 74 gsumsn GMndsVPsMsBaseRGksPkMk=PsMs
76 66 68 71 75 syl3anc RCRingNFinMBiNjNijiMj=0˙PHsdomPIGksPkMk=PsMs
77 simprr RCRingNFinMBiNjNijiMj=0˙PHsdomPIsdomPI
78 17 ad2antrl RCRingNFinMBiNjNijiMj=0˙PHsdomPIPFnN
79 fnelnfp PFnNsNsdomPIPss
80 78 55 79 syl2anc RCRingNFinMBiNjNijiMj=0˙PHsdomPIsdomPIPss
81 77 80 mpbid RCRingNFinMBiNjNijiMj=0˙PHsdomPIPss
82 42 ad2antrl RCRingNFinMBPHsdomPIP:NN
83 42 adantl RCRingNFinMBPHP:NN
84 51 83 fssdm RCRingNFinMBPHdomPIN
85 84 sseld RCRingNFinMBPHsdomPIsN
86 85 impr RCRingNFinMBPHsdomPIsN
87 82 86 ffvelcdmd RCRingNFinMBPHsdomPIPsN
88 neeq1 i=PsijPsj
89 oveq1 i=PsiMj=PsMj
90 89 eqeq1d i=PsiMj=0˙PsMj=0˙
91 88 90 imbi12d i=PsijiMj=0˙PsjPsMj=0˙
92 neeq2 j=sPsjPss
93 oveq2 j=sPsMj=PsMs
94 93 eqeq1d j=sPsMj=0˙PsMs=0˙
95 92 94 imbi12d j=sPsjPsMj=0˙PssPsMs=0˙
96 91 95 rspc2v PsNsNiNjNijiMj=0˙PssPsMs=0˙
97 87 86 96 syl2anc RCRingNFinMBPHsdomPIiNjNijiMj=0˙PssPsMs=0˙
98 97 impancom RCRingNFinMBiNjNijiMj=0˙PHsdomPIPssPsMs=0˙
99 98 imp RCRingNFinMBiNjNijiMj=0˙PHsdomPIPssPsMs=0˙
100 81 99 mpd RCRingNFinMBiNjNijiMj=0˙PHsdomPIPsMs=0˙
101 76 100 eqtrd RCRingNFinMBiNjNijiMj=0˙PHsdomPIGksPkMk=0˙
102 101 oveq1d RCRingNFinMBiNjNijiMj=0˙PHsdomPIGksPkMkRGkNsPkMk=0˙RGkNsPkMk
103 61 3ad2ant1 RCRingNFinMBRRing
104 103 ad2antrr RCRingNFinMBiNjNijiMj=0˙PHsdomPIRRing
105 28 adantr RCRingNFinMBPHGCMnd
106 simpl2 RCRingNFinMBPHNFin
107 difss NsN
108 ssfi NFinNsNNsFin
109 106 107 108 sylancl RCRingNFinMBPHNsFin
110 35 ad2antrr RCRingNFinMBPHkNsM:N×NBaseR
111 83 adantr RCRingNFinMBPHkNsP:NN
112 eldifi kNskN
113 112 adantl RCRingNFinMBPHkNskN
114 111 113 ffvelcdmd RCRingNFinMBPHkNsPkN
115 110 114 113 fovcdmd RCRingNFinMBPHkNsPkMkBaseR
116 115 ralrimiva RCRingNFinMBPHkNsPkMkBaseR
117 36 105 109 116 gsummptcl RCRingNFinMBPHGkNsPkMkBaseR
118 117 ad2ant2r RCRingNFinMBiNjNijiMj=0˙PHsdomPIGkNsPkMkBaseR
119 31 25 5 ringlz RRingGkNsPkMkBaseR0˙RGkNsPkMk=0˙
120 104 118 119 syl2anc RCRingNFinMBiNjNijiMj=0˙PHsdomPI0˙RGkNsPkMk=0˙
121 60 102 120 3eqtrd RCRingNFinMBiNjNijiMj=0˙PHsdomPIGkNPkMk=0˙
122 121 expr RCRingNFinMBiNjNijiMj=0˙PHsdomPIGkNPkMk=0˙
123 122 exlimdv RCRingNFinMBiNjNijiMj=0˙PHssdomPIGkNPkMk=0˙
124 23 123 biimtrid RCRingNFinMBiNjNijiMj=0˙PHdomPIGkNPkMk=0˙
125 22 124 sylbid RCRingNFinMBiNjNijiMj=0˙PHPINGkNPkMk=0˙
126 125 expimpd RCRingNFinMBiNjNijiMj=0˙PHPINGkNPkMk=0˙
127 126 3impia RCRingNFinMBiNjNijiMj=0˙PHPINGkNPkMk=0˙
128 13 127 oveq12d RCRingNFinMBiNjNijiMj=0˙PHPINZSP·˙GkNPkMk=ℤRHomRpmSgnNP·˙0˙
129 3simpa RCRingNFinMBRCRingNFin
130 simpl PHPINPH
131 61 ad2antrr RCRingNFinPHRRing
132 zrhpsgnmhm RRingNFinℤRHomRpmSgnNSymGrpNMndHommulGrpR
133 61 132 sylan RCRingNFinℤRHomRpmSgnNSymGrpNMndHommulGrpR
134 eqid BasemulGrpR=BasemulGrpR
135 6 134 mhmf ℤRHomRpmSgnNSymGrpNMndHommulGrpRℤRHomRpmSgnN:HBasemulGrpR
136 133 135 syl RCRingNFinℤRHomRpmSgnN:HBasemulGrpR
137 136 ffvelcdmda RCRingNFinPHℤRHomRpmSgnNPBasemulGrpR
138 eqid mulGrpR=mulGrpR
139 138 31 mgpbas BaseR=BasemulGrpR
140 139 eqcomi BasemulGrpR=BaseR
141 140 9 5 ringrz RRingℤRHomRpmSgnNPBasemulGrpRℤRHomRpmSgnNP·˙0˙=0˙
142 131 137 141 syl2anc RCRingNFinPHℤRHomRpmSgnNP·˙0˙=0˙
143 129 130 142 syl2an RCRingNFinMBPHPINℤRHomRpmSgnNP·˙0˙=0˙
144 143 3adant2 RCRingNFinMBiNjNijiMj=0˙PHPINℤRHomRpmSgnNP·˙0˙=0˙
145 128 144 eqtrd RCRingNFinMBiNjNijiMj=0˙PHPINZSP·˙GkNPkMk=0˙