Metamath Proof Explorer


Theorem mpfind

Description: Prove a property of polynomials by "structural" induction, under a simplified model of structure which loses the sum of products structure. (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Hypotheses mpfind.cb B=BaseS
mpfind.cp +˙=+S
mpfind.ct ·˙=S
mpfind.cq Q=ranIevalSubSR
mpfind.ad φfQτgQηζ
mpfind.mu φfQτgQησ
mpfind.wa x=BI×fψχ
mpfind.wb x=gBIgfψθ
mpfind.wc x=fψτ
mpfind.wd x=gψη
mpfind.we x=f+˙fgψζ
mpfind.wf x=f·˙fgψσ
mpfind.wg x=Aψρ
mpfind.co φfRχ
mpfind.pr φfIθ
mpfind.a φAQ
Assertion mpfind φρ

Proof

Step Hyp Ref Expression
1 mpfind.cb B=BaseS
2 mpfind.cp +˙=+S
3 mpfind.ct ·˙=S
4 mpfind.cq Q=ranIevalSubSR
5 mpfind.ad φfQτgQηζ
6 mpfind.mu φfQτgQησ
7 mpfind.wa x=BI×fψχ
8 mpfind.wb x=gBIgfψθ
9 mpfind.wc x=fψτ
10 mpfind.wd x=gψη
11 mpfind.we x=f+˙fgψζ
12 mpfind.wf x=f·˙fgψσ
13 mpfind.wg x=Aψρ
14 mpfind.co φfRχ
15 mpfind.pr φfIθ
16 mpfind.a φAQ
17 16 4 eleqtrdi φAranIevalSubSR
18 4 mpfrcl AQIVSCRingRSubRingS
19 16 18 syl φIVSCRingRSubRingS
20 eqid IevalSubSR=IevalSubSR
21 eqid ImPolyS𝑠R=ImPolyS𝑠R
22 eqid S𝑠R=S𝑠R
23 eqid S𝑠BI=S𝑠BI
24 20 21 22 23 1 evlsrhm IVSCRingRSubRingSIevalSubSRImPolyS𝑠RRingHomS𝑠BI
25 eqid BaseImPolyS𝑠R=BaseImPolyS𝑠R
26 eqid BaseS𝑠BI=BaseS𝑠BI
27 25 26 rhmf IevalSubSRImPolyS𝑠RRingHomS𝑠BIIevalSubSR:BaseImPolyS𝑠RBaseS𝑠BI
28 19 24 27 3syl φIevalSubSR:BaseImPolyS𝑠RBaseS𝑠BI
29 28 ffnd φIevalSubSRFnBaseImPolyS𝑠R
30 fvelrnb IevalSubSRFnBaseImPolyS𝑠RAranIevalSubSRyBaseImPolyS𝑠RIevalSubSRy=A
31 29 30 syl φAranIevalSubSRyBaseImPolyS𝑠RIevalSubSRy=A
32 17 31 mpbid φyBaseImPolyS𝑠RIevalSubSRy=A
33 28 ffund φFunIevalSubSR
34 eqid BaseS𝑠R=BaseS𝑠R
35 eqid ImVarS𝑠R=ImVarS𝑠R
36 eqid +ImPolyS𝑠R=+ImPolyS𝑠R
37 eqid ImPolyS𝑠R=ImPolyS𝑠R
38 eqid algScImPolyS𝑠R=algScImPolyS𝑠R
39 19 simp1d φIV
40 19 simp2d φSCRing
41 19 simp3d φRSubRingS
42 22 subrgcrng SCRingRSubRingSS𝑠RCRing
43 40 41 42 syl2anc φS𝑠RCRing
44 crngring S𝑠RCRingS𝑠RRing
45 43 44 syl φS𝑠RRing
46 21 mplring IVS𝑠RRingImPolyS𝑠RRing
47 39 45 46 syl2anc φImPolyS𝑠RRing
48 47 adantr φiIevalSubSR-1x|ψjIevalSubSR-1x|ψImPolyS𝑠RRing
49 simprl φiIevalSubSR-1x|ψjIevalSubSR-1x|ψiIevalSubSR-1x|ψ
50 elpreima IevalSubSRFnBaseImPolyS𝑠RiIevalSubSR-1x|ψiBaseImPolyS𝑠RIevalSubSRix|ψ
51 29 50 syl φiIevalSubSR-1x|ψiBaseImPolyS𝑠RIevalSubSRix|ψ
52 51 adantr φiIevalSubSR-1x|ψjIevalSubSR-1x|ψiIevalSubSR-1x|ψiBaseImPolyS𝑠RIevalSubSRix|ψ
53 49 52 mpbid φiIevalSubSR-1x|ψjIevalSubSR-1x|ψiBaseImPolyS𝑠RIevalSubSRix|ψ
54 53 simpld φiIevalSubSR-1x|ψjIevalSubSR-1x|ψiBaseImPolyS𝑠R
55 simprr φiIevalSubSR-1x|ψjIevalSubSR-1x|ψjIevalSubSR-1x|ψ
56 elpreima IevalSubSRFnBaseImPolyS𝑠RjIevalSubSR-1x|ψjBaseImPolyS𝑠RIevalSubSRjx|ψ
57 29 56 syl φjIevalSubSR-1x|ψjBaseImPolyS𝑠RIevalSubSRjx|ψ
58 57 adantr φiIevalSubSR-1x|ψjIevalSubSR-1x|ψjIevalSubSR-1x|ψjBaseImPolyS𝑠RIevalSubSRjx|ψ
59 55 58 mpbid φiIevalSubSR-1x|ψjIevalSubSR-1x|ψjBaseImPolyS𝑠RIevalSubSRjx|ψ
60 59 simpld φiIevalSubSR-1x|ψjIevalSubSR-1x|ψjBaseImPolyS𝑠R
61 25 36 ringacl ImPolyS𝑠RRingiBaseImPolyS𝑠RjBaseImPolyS𝑠Ri+ImPolyS𝑠RjBaseImPolyS𝑠R
62 48 54 60 61 syl3anc φiIevalSubSR-1x|ψjIevalSubSR-1x|ψi+ImPolyS𝑠RjBaseImPolyS𝑠R
63 rhmghm IevalSubSRImPolyS𝑠RRingHomS𝑠BIIevalSubSRImPolyS𝑠RGrpHomS𝑠BI
64 19 24 63 3syl φIevalSubSRImPolyS𝑠RGrpHomS𝑠BI
65 64 adantr φiIevalSubSR-1x|ψjIevalSubSR-1x|ψIevalSubSRImPolyS𝑠RGrpHomS𝑠BI
66 eqid +S𝑠BI=+S𝑠BI
67 25 36 66 ghmlin IevalSubSRImPolyS𝑠RGrpHomS𝑠BIiBaseImPolyS𝑠RjBaseImPolyS𝑠RIevalSubSRi+ImPolyS𝑠Rj=IevalSubSRi+S𝑠BIIevalSubSRj
68 65 54 60 67 syl3anc φiIevalSubSR-1x|ψjIevalSubSR-1x|ψIevalSubSRi+ImPolyS𝑠Rj=IevalSubSRi+S𝑠BIIevalSubSRj
69 40 adantr φiIevalSubSR-1x|ψjIevalSubSR-1x|ψSCRing
70 ovexd φiIevalSubSR-1x|ψjIevalSubSR-1x|ψBIV
71 28 adantr φiIevalSubSR-1x|ψjIevalSubSR-1x|ψIevalSubSR:BaseImPolyS𝑠RBaseS𝑠BI
72 71 54 ffvelcdmd φiIevalSubSR-1x|ψjIevalSubSR-1x|ψIevalSubSRiBaseS𝑠BI
73 71 60 ffvelcdmd φiIevalSubSR-1x|ψjIevalSubSR-1x|ψIevalSubSRjBaseS𝑠BI
74 23 26 69 70 72 73 2 66 pwsplusgval φiIevalSubSR-1x|ψjIevalSubSR-1x|ψIevalSubSRi+S𝑠BIIevalSubSRj=IevalSubSRi+˙fIevalSubSRj
75 68 74 eqtrd φiIevalSubSR-1x|ψjIevalSubSR-1x|ψIevalSubSRi+ImPolyS𝑠Rj=IevalSubSRi+˙fIevalSubSRj
76 simpl φiIevalSubSR-1x|ψjIevalSubSR-1x|ψφ
77 fnfvelrn IevalSubSRFnBaseImPolyS𝑠RiBaseImPolyS𝑠RIevalSubSRiranIevalSubSR
78 29 54 77 syl2an2r φiIevalSubSR-1x|ψjIevalSubSR-1x|ψIevalSubSRiranIevalSubSR
79 78 4 eleqtrrdi φiIevalSubSR-1x|ψjIevalSubSR-1x|ψIevalSubSRiQ
80 fvimacnvi FunIevalSubSRiIevalSubSR-1x|ψIevalSubSRix|ψ
81 33 49 80 syl2an2r φiIevalSubSR-1x|ψjIevalSubSR-1x|ψIevalSubSRix|ψ
82 79 81 jca φiIevalSubSR-1x|ψjIevalSubSR-1x|ψIevalSubSRiQIevalSubSRix|ψ
83 fnfvelrn IevalSubSRFnBaseImPolyS𝑠RjBaseImPolyS𝑠RIevalSubSRjranIevalSubSR
84 29 60 83 syl2an2r φiIevalSubSR-1x|ψjIevalSubSR-1x|ψIevalSubSRjranIevalSubSR
85 84 4 eleqtrrdi φiIevalSubSR-1x|ψjIevalSubSR-1x|ψIevalSubSRjQ
86 fvimacnvi FunIevalSubSRjIevalSubSR-1x|ψIevalSubSRjx|ψ
87 33 55 86 syl2an2r φiIevalSubSR-1x|ψjIevalSubSR-1x|ψIevalSubSRjx|ψ
88 85 87 jca φiIevalSubSR-1x|ψjIevalSubSR-1x|ψIevalSubSRjQIevalSubSRjx|ψ
89 fvex IevalSubSRiV
90 fvex IevalSubSRjV
91 eleq1 f=IevalSubSRifQIevalSubSRiQ
92 vex fV
93 92 9 elab fx|ψτ
94 eleq1 f=IevalSubSRifx|ψIevalSubSRix|ψ
95 93 94 bitr3id f=IevalSubSRiτIevalSubSRix|ψ
96 91 95 anbi12d f=IevalSubSRifQτIevalSubSRiQIevalSubSRix|ψ
97 eleq1 g=IevalSubSRjgQIevalSubSRjQ
98 vex gV
99 98 10 elab gx|ψη
100 eleq1 g=IevalSubSRjgx|ψIevalSubSRjx|ψ
101 99 100 bitr3id g=IevalSubSRjηIevalSubSRjx|ψ
102 97 101 anbi12d g=IevalSubSRjgQηIevalSubSRjQIevalSubSRjx|ψ
103 96 102 bi2anan9 f=IevalSubSRig=IevalSubSRjfQτgQηIevalSubSRiQIevalSubSRix|ψIevalSubSRjQIevalSubSRjx|ψ
104 103 anbi2d f=IevalSubSRig=IevalSubSRjφfQτgQηφIevalSubSRiQIevalSubSRix|ψIevalSubSRjQIevalSubSRjx|ψ
105 ovex f+˙fgV
106 105 11 elab f+˙fgx|ψζ
107 oveq12 f=IevalSubSRig=IevalSubSRjf+˙fg=IevalSubSRi+˙fIevalSubSRj
108 107 eleq1d f=IevalSubSRig=IevalSubSRjf+˙fgx|ψIevalSubSRi+˙fIevalSubSRjx|ψ
109 106 108 bitr3id f=IevalSubSRig=IevalSubSRjζIevalSubSRi+˙fIevalSubSRjx|ψ
110 104 109 imbi12d f=IevalSubSRig=IevalSubSRjφfQτgQηζφIevalSubSRiQIevalSubSRix|ψIevalSubSRjQIevalSubSRjx|ψIevalSubSRi+˙fIevalSubSRjx|ψ
111 89 90 110 5 vtocl2 φIevalSubSRiQIevalSubSRix|ψIevalSubSRjQIevalSubSRjx|ψIevalSubSRi+˙fIevalSubSRjx|ψ
112 76 82 88 111 syl12anc φiIevalSubSR-1x|ψjIevalSubSR-1x|ψIevalSubSRi+˙fIevalSubSRjx|ψ
113 75 112 eqeltrd φiIevalSubSR-1x|ψjIevalSubSR-1x|ψIevalSubSRi+ImPolyS𝑠Rjx|ψ
114 elpreima IevalSubSRFnBaseImPolyS𝑠Ri+ImPolyS𝑠RjIevalSubSR-1x|ψi+ImPolyS𝑠RjBaseImPolyS𝑠RIevalSubSRi+ImPolyS𝑠Rjx|ψ
115 29 114 syl φi+ImPolyS𝑠RjIevalSubSR-1x|ψi+ImPolyS𝑠RjBaseImPolyS𝑠RIevalSubSRi+ImPolyS𝑠Rjx|ψ
116 115 adantr φiIevalSubSR-1x|ψjIevalSubSR-1x|ψi+ImPolyS𝑠RjIevalSubSR-1x|ψi+ImPolyS𝑠RjBaseImPolyS𝑠RIevalSubSRi+ImPolyS𝑠Rjx|ψ
117 62 113 116 mpbir2and φiIevalSubSR-1x|ψjIevalSubSR-1x|ψi+ImPolyS𝑠RjIevalSubSR-1x|ψ
118 117 adantlr φyBaseImPolyS𝑠RiIevalSubSR-1x|ψjIevalSubSR-1x|ψi+ImPolyS𝑠RjIevalSubSR-1x|ψ
119 25 37 ringcl ImPolyS𝑠RRingiBaseImPolyS𝑠RjBaseImPolyS𝑠RiImPolyS𝑠RjBaseImPolyS𝑠R
120 48 54 60 119 syl3anc φiIevalSubSR-1x|ψjIevalSubSR-1x|ψiImPolyS𝑠RjBaseImPolyS𝑠R
121 eqid mulGrpImPolyS𝑠R=mulGrpImPolyS𝑠R
122 eqid mulGrpS𝑠BI=mulGrpS𝑠BI
123 121 122 rhmmhm IevalSubSRImPolyS𝑠RRingHomS𝑠BIIevalSubSRmulGrpImPolyS𝑠RMndHommulGrpS𝑠BI
124 19 24 123 3syl φIevalSubSRmulGrpImPolyS𝑠RMndHommulGrpS𝑠BI
125 124 adantr φiIevalSubSR-1x|ψjIevalSubSR-1x|ψIevalSubSRmulGrpImPolyS𝑠RMndHommulGrpS𝑠BI
126 121 25 mgpbas BaseImPolyS𝑠R=BasemulGrpImPolyS𝑠R
127 121 37 mgpplusg ImPolyS𝑠R=+mulGrpImPolyS𝑠R
128 eqid S𝑠BI=S𝑠BI
129 122 128 mgpplusg S𝑠BI=+mulGrpS𝑠BI
130 126 127 129 mhmlin IevalSubSRmulGrpImPolyS𝑠RMndHommulGrpS𝑠BIiBaseImPolyS𝑠RjBaseImPolyS𝑠RIevalSubSRiImPolyS𝑠Rj=IevalSubSRiS𝑠BIIevalSubSRj
131 125 54 60 130 syl3anc φiIevalSubSR-1x|ψjIevalSubSR-1x|ψIevalSubSRiImPolyS𝑠Rj=IevalSubSRiS𝑠BIIevalSubSRj
132 23 26 69 70 72 73 3 128 pwsmulrval φiIevalSubSR-1x|ψjIevalSubSR-1x|ψIevalSubSRiS𝑠BIIevalSubSRj=IevalSubSRi·˙fIevalSubSRj
133 131 132 eqtrd φiIevalSubSR-1x|ψjIevalSubSR-1x|ψIevalSubSRiImPolyS𝑠Rj=IevalSubSRi·˙fIevalSubSRj
134 ovex f·˙fgV
135 134 12 elab f·˙fgx|ψσ
136 oveq12 f=IevalSubSRig=IevalSubSRjf·˙fg=IevalSubSRi·˙fIevalSubSRj
137 136 eleq1d f=IevalSubSRig=IevalSubSRjf·˙fgx|ψIevalSubSRi·˙fIevalSubSRjx|ψ
138 135 137 bitr3id f=IevalSubSRig=IevalSubSRjσIevalSubSRi·˙fIevalSubSRjx|ψ
139 104 138 imbi12d f=IevalSubSRig=IevalSubSRjφfQτgQησφIevalSubSRiQIevalSubSRix|ψIevalSubSRjQIevalSubSRjx|ψIevalSubSRi·˙fIevalSubSRjx|ψ
140 89 90 139 6 vtocl2 φIevalSubSRiQIevalSubSRix|ψIevalSubSRjQIevalSubSRjx|ψIevalSubSRi·˙fIevalSubSRjx|ψ
141 76 82 88 140 syl12anc φiIevalSubSR-1x|ψjIevalSubSR-1x|ψIevalSubSRi·˙fIevalSubSRjx|ψ
142 133 141 eqeltrd φiIevalSubSR-1x|ψjIevalSubSR-1x|ψIevalSubSRiImPolyS𝑠Rjx|ψ
143 elpreima IevalSubSRFnBaseImPolyS𝑠RiImPolyS𝑠RjIevalSubSR-1x|ψiImPolyS𝑠RjBaseImPolyS𝑠RIevalSubSRiImPolyS𝑠Rjx|ψ
144 29 143 syl φiImPolyS𝑠RjIevalSubSR-1x|ψiImPolyS𝑠RjBaseImPolyS𝑠RIevalSubSRiImPolyS𝑠Rjx|ψ
145 144 adantr φiIevalSubSR-1x|ψjIevalSubSR-1x|ψiImPolyS𝑠RjIevalSubSR-1x|ψiImPolyS𝑠RjBaseImPolyS𝑠RIevalSubSRiImPolyS𝑠Rjx|ψ
146 120 142 145 mpbir2and φiIevalSubSR-1x|ψjIevalSubSR-1x|ψiImPolyS𝑠RjIevalSubSR-1x|ψ
147 146 adantlr φyBaseImPolyS𝑠RiIevalSubSR-1x|ψjIevalSubSR-1x|ψiImPolyS𝑠RjIevalSubSR-1x|ψ
148 21 mplassa IVS𝑠RCRingImPolyS𝑠RAssAlg
149 39 43 148 syl2anc φImPolyS𝑠RAssAlg
150 eqid ScalarImPolyS𝑠R=ScalarImPolyS𝑠R
151 38 150 asclrhm ImPolyS𝑠RAssAlgalgScImPolyS𝑠RScalarImPolyS𝑠RRingHomImPolyS𝑠R
152 eqid BaseScalarImPolyS𝑠R=BaseScalarImPolyS𝑠R
153 152 25 rhmf algScImPolyS𝑠RScalarImPolyS𝑠RRingHomImPolyS𝑠RalgScImPolyS𝑠R:BaseScalarImPolyS𝑠RBaseImPolyS𝑠R
154 149 151 153 3syl φalgScImPolyS𝑠R:BaseScalarImPolyS𝑠RBaseImPolyS𝑠R
155 154 adantr φiBaseS𝑠RalgScImPolyS𝑠R:BaseScalarImPolyS𝑠RBaseImPolyS𝑠R
156 21 39 43 mplsca φS𝑠R=ScalarImPolyS𝑠R
157 156 fveq2d φBaseS𝑠R=BaseScalarImPolyS𝑠R
158 157 eleq2d φiBaseS𝑠RiBaseScalarImPolyS𝑠R
159 158 biimpa φiBaseS𝑠RiBaseScalarImPolyS𝑠R
160 155 159 ffvelcdmd φiBaseS𝑠RalgScImPolyS𝑠RiBaseImPolyS𝑠R
161 39 adantr φiBaseS𝑠RIV
162 40 adantr φiBaseS𝑠RSCRing
163 41 adantr φiBaseS𝑠RRSubRingS
164 1 subrgss RSubRingSRB
165 22 1 ressbas2 RBR=BaseS𝑠R
166 41 164 165 3syl φR=BaseS𝑠R
167 166 eleq2d φiRiBaseS𝑠R
168 167 biimpar φiBaseS𝑠RiR
169 20 21 22 1 38 161 162 163 168 evlssca φiBaseS𝑠RIevalSubSRalgScImPolyS𝑠Ri=BI×i
170 14 ralrimiva φfRχ
171 ovex BIV
172 vsnex fV
173 171 172 xpex BI×fV
174 173 7 elab BI×fx|ψχ
175 sneq f=if=i
176 175 xpeq2d f=iBI×f=BI×i
177 176 eleq1d f=iBI×fx|ψBI×ix|ψ
178 174 177 bitr3id f=iχBI×ix|ψ
179 178 cbvralvw fRχiRBI×ix|ψ
180 170 179 sylib φiRBI×ix|ψ
181 180 r19.21bi φiRBI×ix|ψ
182 168 181 syldan φiBaseS𝑠RBI×ix|ψ
183 169 182 eqeltrd φiBaseS𝑠RIevalSubSRalgScImPolyS𝑠Rix|ψ
184 elpreima IevalSubSRFnBaseImPolyS𝑠RalgScImPolyS𝑠RiIevalSubSR-1x|ψalgScImPolyS𝑠RiBaseImPolyS𝑠RIevalSubSRalgScImPolyS𝑠Rix|ψ
185 29 184 syl φalgScImPolyS𝑠RiIevalSubSR-1x|ψalgScImPolyS𝑠RiBaseImPolyS𝑠RIevalSubSRalgScImPolyS𝑠Rix|ψ
186 185 adantr φiBaseS𝑠RalgScImPolyS𝑠RiIevalSubSR-1x|ψalgScImPolyS𝑠RiBaseImPolyS𝑠RIevalSubSRalgScImPolyS𝑠Rix|ψ
187 160 183 186 mpbir2and φiBaseS𝑠RalgScImPolyS𝑠RiIevalSubSR-1x|ψ
188 187 adantlr φyBaseImPolyS𝑠RiBaseS𝑠RalgScImPolyS𝑠RiIevalSubSR-1x|ψ
189 39 adantr φiIIV
190 45 adantr φiIS𝑠RRing
191 simpr φiIiI
192 21 35 25 189 190 191 mvrcl φiIImVarS𝑠RiBaseImPolyS𝑠R
193 40 adantr φiISCRing
194 41 adantr φiIRSubRingS
195 20 35 22 1 189 193 194 191 evlsvar φiIIevalSubSRImVarS𝑠Ri=gBIgi
196 171 mptex gBIgfV
197 196 8 elab gBIgfx|ψθ
198 15 197 sylibr φfIgBIgfx|ψ
199 198 ralrimiva φfIgBIgfx|ψ
200 fveq2 f=igf=gi
201 200 mpteq2dv f=igBIgf=gBIgi
202 201 eleq1d f=igBIgfx|ψgBIgix|ψ
203 202 cbvralvw fIgBIgfx|ψiIgBIgix|ψ
204 199 203 sylib φiIgBIgix|ψ
205 204 r19.21bi φiIgBIgix|ψ
206 195 205 eqeltrd φiIIevalSubSRImVarS𝑠Rix|ψ
207 elpreima IevalSubSRFnBaseImPolyS𝑠RImVarS𝑠RiIevalSubSR-1x|ψImVarS𝑠RiBaseImPolyS𝑠RIevalSubSRImVarS𝑠Rix|ψ
208 29 207 syl φImVarS𝑠RiIevalSubSR-1x|ψImVarS𝑠RiBaseImPolyS𝑠RIevalSubSRImVarS𝑠Rix|ψ
209 208 adantr φiIImVarS𝑠RiIevalSubSR-1x|ψImVarS𝑠RiBaseImPolyS𝑠RIevalSubSRImVarS𝑠Rix|ψ
210 192 206 209 mpbir2and φiIImVarS𝑠RiIevalSubSR-1x|ψ
211 210 adantlr φyBaseImPolyS𝑠RiIImVarS𝑠RiIevalSubSR-1x|ψ
212 simpr φyBaseImPolyS𝑠RyBaseImPolyS𝑠R
213 39 adantr φyBaseImPolyS𝑠RIV
214 43 adantr φyBaseImPolyS𝑠RS𝑠RCRing
215 34 35 21 36 37 38 25 118 147 188 211 212 213 214 mplind φyBaseImPolyS𝑠RyIevalSubSR-1x|ψ
216 fvimacnvi FunIevalSubSRyIevalSubSR-1x|ψIevalSubSRyx|ψ
217 33 215 216 syl2an2r φyBaseImPolyS𝑠RIevalSubSRyx|ψ
218 eleq1 IevalSubSRy=AIevalSubSRyx|ψAx|ψ
219 217 218 syl5ibcom φyBaseImPolyS𝑠RIevalSubSRy=AAx|ψ
220 219 rexlimdva φyBaseImPolyS𝑠RIevalSubSRy=AAx|ψ
221 32 220 mpd φAx|ψ
222 13 elabg AQAx|ψρ
223 16 222 syl φAx|ψρ
224 221 223 mpbid φρ