Metamath Proof Explorer


Theorem nnsum4primesevenALTV

Description: If the (strong) ternary Goldbach conjecture is valid, then every even integer greater than 10 is the sum of 4 primes. (Contributed by AV, 27-Jul-2020)

Ref Expression
Assertion nnsum4primesevenALTV mOdd7<mmGoldbachOddN12NEvenf14N=k=14fk

Proof

Step Hyp Ref Expression
1 simplll mOdd7<mmGoldbachOddN12NEvenoGoldbachOddN=o+3mOdd7<mmGoldbachOdd
2 8nn 8
3 2 nnzi 8
4 3 a1i N128
5 3z 3
6 5 a1i N123
7 4 6 zaddcld N128+3
8 eluzelz N12N
9 eluz2 N1212N12N
10 8p4e12 8+4=12
11 10 breq1i 8+4N12N
12 1nn0 10
13 2nn 2
14 1lt2 1<2
15 12 12 13 14 declt 11<12
16 8p3e11 8+3=11
17 15 16 10 3brtr4i 8+3<8+4
18 8re 8
19 18 a1i N8
20 3re 3
21 20 a1i N3
22 19 21 readdcld N8+3
23 4re 4
24 23 a1i N4
25 19 24 readdcld N8+4
26 zre NN
27 ltleletr 8+38+4N8+3<8+48+4N8+3N
28 22 25 26 27 syl3anc N8+3<8+48+4N8+3N
29 17 28 mpani N8+4N8+3N
30 11 29 biimtrrid N12N8+3N
31 30 imp N12N8+3N
32 31 3adant1 12N12N8+3N
33 9 32 sylbi N128+3N
34 eluz2 N8+38+3N8+3N
35 7 8 33 34 syl3anbrc N12N8+3
36 eluzsub 83N8+3N38
37 4 6 35 36 syl3anc N12N38
38 37 adantr N12NEvenN38
39 38 ad3antlr mOdd7<mmGoldbachOddN12NEvenoGoldbachOddN=o+3N38
40 3odd 3Odd
41 40 a1i N123Odd
42 41 anim1i N12NEven3OddNEven
43 42 adantl mOdd7<mmGoldbachOddN12NEven3OddNEven
44 43 ancomd mOdd7<mmGoldbachOddN12NEvenNEven3Odd
45 44 adantr mOdd7<mmGoldbachOddN12NEvenoGoldbachOddNEven3Odd
46 45 adantr mOdd7<mmGoldbachOddN12NEvenoGoldbachOddN=o+3NEven3Odd
47 emoo NEven3OddN3Odd
48 46 47 syl mOdd7<mmGoldbachOddN12NEvenoGoldbachOddN=o+3N3Odd
49 nnsum4primesoddALTV mOdd7<mmGoldbachOddN38N3Oddg13N3=k=13gk
50 49 imp mOdd7<mmGoldbachOddN38N3Oddg13N3=k=13gk
51 1 39 48 50 syl12anc mOdd7<mmGoldbachOddN12NEvenoGoldbachOddN=o+3g13N3=k=13gk
52 simpr N12g:13g:13
53 4z 4
54 fzonel ¬41..^4
55 fzoval 41..^4=141
56 53 55 ax-mp 1..^4=141
57 4cn 4
58 ax-1cn 1
59 3cn 3
60 3p1e4 3+1=4
61 subadd2 41341=33+1=4
62 60 61 mpbiri 41341=3
63 57 58 59 62 mp3an 41=3
64 63 oveq2i 141=13
65 56 64 eqtri 1..^4=13
66 65 eqcomi 13=1..^4
67 66 eleq2i 41341..^4
68 54 67 mtbir ¬413
69 53 68 pm3.2i 4¬413
70 69 a1i N12g:134¬413
71 3prm 3
72 71 a1i N12g:133
73 fsnunf g:134¬4133g43:134
74 52 70 72 73 syl3anc N12g:13g43:134
75 fzval3 414=1..^4+1
76 53 75 ax-mp 14=1..^4+1
77 1z 1
78 1re 1
79 1lt4 1<4
80 78 23 79 ltleii 14
81 eluz2 411414
82 77 53 80 81 mpbir3an 41
83 fzosplitsn 411..^4+1=1..^44
84 82 83 ax-mp 1..^4+1=1..^44
85 65 uneq1i 1..^44=134
86 76 84 85 3eqtri 14=134
87 86 feq2i g43:14g43:134
88 74 87 sylibr N12g:13g43:14
89 prmex V
90 ovex 14V
91 89 90 pm3.2i V14V
92 elmapg V14Vg4314g43:14
93 91 92 mp1i N12g:13g4314g43:14
94 88 93 mpbird N12g:13g4314
95 94 adantr N12g:13N3=k=13gkg4314
96 fveq1 f=g43fk=g43k
97 96 sumeq2sdv f=g43k=14fk=k=14g43k
98 97 eqeq2d f=g43N=k=14fkN=k=14g43k
99 98 adantl N12g:13N3=k=13gkf=g43N=k=14fkN=k=14g43k
100 82 a1i N12g:1341
101 86 eleq2i k14k134
102 elun k134k13k4
103 velsn k4k=4
104 103 orbi2i k13k4k13k=4
105 101 102 104 3bitri k14k13k=4
106 elfz2 k1313k1kk3
107 20 23 pm3.2i 34
108 3lt4 3<4
109 ltnle 343<4¬43
110 108 109 mpbii 34¬43
111 107 110 ax-mp ¬43
112 breq1 k=4k343
113 112 eqcoms 4=kk343
114 111 113 mtbiri 4=k¬k3
115 114 a1i k4=k¬k3
116 115 necon2ad kk34k
117 116 adantld k1kk34k
118 117 3ad2ant3 13k1kk34k
119 118 imp 13k1kk34k
120 106 119 sylbi k134k
121 120 adantr k13g:134k
122 fvunsn 4kg43k=gk
123 121 122 syl k13g:13g43k=gk
124 ffvelcdm g:13k13gk
125 124 ancoms k13g:13gk
126 prmz gkgk
127 125 126 syl k13g:13gk
128 127 zcnd k13g:13gk
129 123 128 eqeltrd k13g:13g43k
130 129 ex k13g:13g43k
131 130 adantld k13N12g:13g43k
132 fveq2 k=4g43k=g434
133 53 a1i g:134
134 5 a1i g:133
135 fdm g:13domg=13
136 eleq2 domg=134domg413
137 68 136 mtbiri domg=13¬4domg
138 135 137 syl g:13¬4domg
139 fsnunfv 43¬4domgg434=3
140 133 134 138 139 syl3anc g:13g434=3
141 140 adantl N12g:13g434=3
142 132 141 sylan9eq k=4N12g:13g43k=3
143 142 59 eqeltrdi k=4N12g:13g43k
144 143 ex k=4N12g:13g43k
145 131 144 jaoi k13k=4N12g:13g43k
146 145 com12 N12g:13k13k=4g43k
147 105 146 biimtrid N12g:13k14g43k
148 147 imp N12g:13k14g43k
149 100 148 132 fsumm1 N12g:13k=14g43k=k=141g43k+g434
150 149 adantr N12g:13N3=k=13gkk=14g43k=k=141g43k+g434
151 63 eqcomi 3=41
152 151 oveq2i 13=141
153 152 a1i N12g:1313=141
154 120 adantl N12g:13k134k
155 154 122 syl N12g:13k13g43k=gk
156 155 eqcomd N12g:13k13gk=g43k
157 153 156 sumeq12dv N12g:13k=13gk=k=141g43k
158 157 eqeq2d N12g:13N3=k=13gkN3=k=141g43k
159 158 biimpa N12g:13N3=k=13gkN3=k=141g43k
160 159 eqcomd N12g:13N3=k=13gkk=141g43k=N3
161 160 oveq1d N12g:13N3=k=13gkk=141g43k+g434=N-3+g434
162 53 a1i N12g:134
163 5 a1i N12g:133
164 138 adantl N12g:13¬4domg
165 162 163 164 139 syl3anc N12g:13g434=3
166 165 oveq2d N12g:13N-3+g434=N-3+3
167 eluzelcn N12N
168 59 a1i N123
169 167 168 npcand N12N-3+3=N
170 169 adantr N12g:13N-3+3=N
171 166 170 eqtrd N12g:13N-3+g434=N
172 171 adantr N12g:13N3=k=13gkN-3+g434=N
173 150 161 172 3eqtrrd N12g:13N3=k=13gkN=k=14g43k
174 95 99 173 rspcedvd N12g:13N3=k=13gkf14N=k=14fk
175 174 ex N12g:13N3=k=13gkf14N=k=14fk
176 175 expcom g:13N12N3=k=13gkf14N=k=14fk
177 elmapi g13g:13
178 176 177 syl11 N12g13N3=k=13gkf14N=k=14fk
179 178 rexlimdv N12g13N3=k=13gkf14N=k=14fk
180 179 adantr N12NEveng13N3=k=13gkf14N=k=14fk
181 180 ad3antlr mOdd7<mmGoldbachOddN12NEvenoGoldbachOddN=o+3g13N3=k=13gkf14N=k=14fk
182 51 181 mpd mOdd7<mmGoldbachOddN12NEvenoGoldbachOddN=o+3f14N=k=14fk
183 evengpoap3 mOdd7<mmGoldbachOddN12NEvenoGoldbachOddN=o+3
184 183 imp mOdd7<mmGoldbachOddN12NEvenoGoldbachOddN=o+3
185 182 184 r19.29a mOdd7<mmGoldbachOddN12NEvenf14N=k=14fk
186 185 ex mOdd7<mmGoldbachOddN12NEvenf14N=k=14fk