Metamath Proof Explorer


Theorem pgpfac1lem2

Description: Lemma for pgpfac1 . (Contributed by Mario Carneiro, 27-Apr-2016)

Ref Expression
Hypotheses pgpfac1.k K=mrClsSubGrpG
pgpfac1.s S=KA
pgpfac1.b B=BaseG
pgpfac1.o O=odG
pgpfac1.e E=gExG
pgpfac1.z 0˙=0G
pgpfac1.l ˙=LSSumG
pgpfac1.p φPpGrpG
pgpfac1.g φGAbel
pgpfac1.n φBFin
pgpfac1.oe φOA=E
pgpfac1.u φUSubGrpG
pgpfac1.au φAU
pgpfac1.w φWSubGrpG
pgpfac1.i φSW=0˙
pgpfac1.ss φS˙WU
pgpfac1.2 φwSubGrpGwUAw¬S˙Ww
pgpfac1.c φCUS˙W
pgpfac1.mg ·˙=G
Assertion pgpfac1lem2 φP·˙CS˙W

Proof

Step Hyp Ref Expression
1 pgpfac1.k K=mrClsSubGrpG
2 pgpfac1.s S=KA
3 pgpfac1.b B=BaseG
4 pgpfac1.o O=odG
5 pgpfac1.e E=gExG
6 pgpfac1.z 0˙=0G
7 pgpfac1.l ˙=LSSumG
8 pgpfac1.p φPpGrpG
9 pgpfac1.g φGAbel
10 pgpfac1.n φBFin
11 pgpfac1.oe φOA=E
12 pgpfac1.u φUSubGrpG
13 pgpfac1.au φAU
14 pgpfac1.w φWSubGrpG
15 pgpfac1.i φSW=0˙
16 pgpfac1.ss φS˙WU
17 pgpfac1.2 φwSubGrpGwUAw¬S˙Ww
18 pgpfac1.c φCUS˙W
19 pgpfac1.mg ·˙=G
20 18 eldifbd φ¬CS˙W
21 18 eldifad φCU
22 21 adantr φ¬P·˙CS˙WCU
23 pgpprm PpGrpGP
24 8 23 syl φP
25 prmz PP
26 24 25 syl φP
27 19 subgmulgcl USubGrpGPCUP·˙CU
28 12 26 21 27 syl3anc φP·˙CU
29 28 adantr φ¬P·˙CS˙WP·˙CU
30 simpr φ¬P·˙CS˙W¬P·˙CS˙W
31 29 30 eldifd φ¬P·˙CS˙WP·˙CUS˙W
32 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 pgpfac1lem1 φP·˙CUS˙WS˙W˙KP·˙C=U
33 31 32 syldan φ¬P·˙CS˙WS˙W˙KP·˙C=U
34 22 33 eleqtrrd φ¬P·˙CS˙WCS˙W˙KP·˙C
35 34 ex φ¬P·˙CS˙WCS˙W˙KP·˙C
36 eqid -G=-G
37 ablgrp GAbelGGrp
38 9 37 syl φGGrp
39 3 subgacs GGrpSubGrpGACSB
40 38 39 syl φSubGrpGACSB
41 40 acsmred φSubGrpGMooreB
42 3 subgss USubGrpGUB
43 12 42 syl φUB
44 43 13 sseldd φAB
45 1 mrcsncl SubGrpGMooreBABKASubGrpG
46 41 44 45 syl2anc φKASubGrpG
47 2 46 eqeltrid φSSubGrpG
48 7 lsmsubg2 GAbelSSubGrpGWSubGrpGS˙WSubGrpG
49 9 47 14 48 syl3anc φS˙WSubGrpG
50 43 28 sseldd φP·˙CB
51 1 mrcsncl SubGrpGMooreBP·˙CBKP·˙CSubGrpG
52 41 50 51 syl2anc φKP·˙CSubGrpG
53 36 7 49 52 lsmelvalm φCS˙W˙KP·˙CsS˙WtKP·˙CC=s-Gt
54 eqid kk·˙P·˙C=kk·˙P·˙C
55 3 19 54 1 cycsubg2 GGrpP·˙CBKP·˙C=rankk·˙P·˙C
56 38 50 55 syl2anc φKP·˙C=rankk·˙P·˙C
57 56 rexeqdv φtKP·˙CC=s-Gttrankk·˙P·˙CC=s-Gt
58 ovex k·˙P·˙CV
59 58 rgenw kk·˙P·˙CV
60 oveq2 t=k·˙P·˙Cs-Gt=s-Gk·˙P·˙C
61 60 eqeq2d t=k·˙P·˙CC=s-GtC=s-Gk·˙P·˙C
62 54 61 rexrnmptw kk·˙P·˙CVtrankk·˙P·˙CC=s-GtkC=s-Gk·˙P·˙C
63 59 62 mp1i φtrankk·˙P·˙CC=s-GtkC=s-Gk·˙P·˙C
64 57 63 bitrd φtKP·˙CC=s-GtkC=s-Gk·˙P·˙C
65 64 rexbidv φsS˙WtKP·˙CC=s-GtsS˙WkC=s-Gk·˙P·˙C
66 rexcom sS˙WkC=s-Gk·˙P·˙CksS˙WC=s-Gk·˙P·˙C
67 38 ad2antrr φksS˙WGGrp
68 16 43 sstrd φS˙WB
69 68 adantr φkS˙WB
70 69 sselda φksS˙WsB
71 simplr φksS˙Wk
72 50 ad2antrr φksS˙WP·˙CB
73 3 19 mulgcl GGrpkP·˙CBk·˙P·˙CB
74 67 71 72 73 syl3anc φksS˙Wk·˙P·˙CB
75 43 21 sseldd φCB
76 75 ad2antrr φksS˙WCB
77 eqid +G=+G
78 3 77 36 grpsubadd GGrpsBk·˙P·˙CBCBs-Gk·˙P·˙C=CC+Gk·˙P·˙C=s
79 67 70 74 76 78 syl13anc φksS˙Ws-Gk·˙P·˙C=CC+Gk·˙P·˙C=s
80 1zzd φksS˙W1
81 26 ad2antrr φksS˙WP
82 71 81 zmulcld φksS˙WkP
83 3 19 77 mulgdir GGrp1kPCB1+kP·˙C=1·˙C+GkP·˙C
84 67 80 82 76 83 syl13anc φksS˙W1+kP·˙C=1·˙C+GkP·˙C
85 3 19 mulg1 CB1·˙C=C
86 76 85 syl φksS˙W1·˙C=C
87 3 19 mulgass GGrpkPCBkP·˙C=k·˙P·˙C
88 67 71 81 76 87 syl13anc φksS˙WkP·˙C=k·˙P·˙C
89 86 88 oveq12d φksS˙W1·˙C+GkP·˙C=C+Gk·˙P·˙C
90 84 89 eqtrd φksS˙W1+kP·˙C=C+Gk·˙P·˙C
91 90 eqeq1d φksS˙W1+kP·˙C=sC+Gk·˙P·˙C=s
92 79 91 bitr4d φksS˙Ws-Gk·˙P·˙C=C1+kP·˙C=s
93 eqcom C=s-Gk·˙P·˙Cs-Gk·˙P·˙C=C
94 eqcom s=1+kP·˙C1+kP·˙C=s
95 92 93 94 3bitr4g φksS˙WC=s-Gk·˙P·˙Cs=1+kP·˙C
96 95 rexbidva φksS˙WC=s-Gk·˙P·˙CsS˙Ws=1+kP·˙C
97 risset 1+kP·˙CS˙WsS˙Ws=1+kP·˙C
98 96 97 bitr4di φksS˙WC=s-Gk·˙P·˙C1+kP·˙CS˙W
99 98 rexbidva φksS˙WC=s-Gk·˙P·˙Ck1+kP·˙CS˙W
100 66 99 bitrid φsS˙WkC=s-Gk·˙P·˙Ck1+kP·˙CS˙W
101 53 65 100 3bitrd φCS˙W˙KP·˙Ck1+kP·˙CS˙W
102 35 101 sylibd φ¬P·˙CS˙Wk1+kP·˙CS˙W
103 38 adantr φkGGrp
104 75 adantr φkCB
105 1z 1
106 id kk
107 zmulcl kPkP
108 106 26 107 syl2anr φkkP
109 zaddcl 1kP1+kP
110 105 108 109 sylancr φk1+kP
111 3 4 odcl CBOC0
112 104 111 syl φkOC0
113 112 nn0zd φkOC
114 hashcl BFinB0
115 10 114 syl φB0
116 115 nn0zd φB
117 116 adantr φkB
118 110 117 gcdcomd φk1+kPgcdB=Bgcd1+kP
119 3 pgphash PpGrpGBFinB=PPpCntB
120 8 10 119 syl2anc φB=PPpCntB
121 120 adantr φkB=PPpCntB
122 121 oveq1d φkBgcd1+kP=PPpCntBgcd1+kP
123 simpr φkk
124 26 adantr φkP
125 1zzd φk1
126 gcdaddm kP1Pgcd1=Pgcd1+kP
127 123 124 125 126 syl3anc φkPgcd1=Pgcd1+kP
128 gcd1 PPgcd1=1
129 124 128 syl φkPgcd1=1
130 127 129 eqtr3d φkPgcd1+kP=1
131 3 grpbn0 GGrpB
132 38 131 syl φB
133 hashnncl BFinBB
134 10 133 syl φBB
135 132 134 mpbird φB
136 24 135 pccld φPpCntB0
137 136 adantr φkPpCntB0
138 rpexp1i P1+kPPpCntB0Pgcd1+kP=1PPpCntBgcd1+kP=1
139 124 110 137 138 syl3anc φkPgcd1+kP=1PPpCntBgcd1+kP=1
140 130 139 mpd φkPPpCntBgcd1+kP=1
141 118 122 140 3eqtrd φk1+kPgcdB=1
142 3 4 oddvds2 GGrpBFinCBOCB
143 38 10 75 142 syl3anc φOCB
144 143 adantr φkOCB
145 rpdvds 1+kPOCB1+kPgcdB=1OCB1+kPgcdOC=1
146 110 113 117 141 144 145 syl32anc φk1+kPgcdOC=1
147 3 4 19 odbezout GGrpCB1+kP1+kPgcdOC=1aa·˙1+kP·˙C=C
148 103 104 110 146 147 syl31anc φkaa·˙1+kP·˙C=C
149 49 ad2antrr φkaS˙WSubGrpG
150 simpr φkaa
151 19 subgmulgcl S˙WSubGrpGa1+kP·˙CS˙Wa·˙1+kP·˙CS˙W
152 151 3expia S˙WSubGrpGa1+kP·˙CS˙Wa·˙1+kP·˙CS˙W
153 149 150 152 syl2anc φka1+kP·˙CS˙Wa·˙1+kP·˙CS˙W
154 eleq1 a·˙1+kP·˙C=Ca·˙1+kP·˙CS˙WCS˙W
155 154 imbi2d a·˙1+kP·˙C=C1+kP·˙CS˙Wa·˙1+kP·˙CS˙W1+kP·˙CS˙WCS˙W
156 153 155 syl5ibcom φkaa·˙1+kP·˙C=C1+kP·˙CS˙WCS˙W
157 156 rexlimdva φkaa·˙1+kP·˙C=C1+kP·˙CS˙WCS˙W
158 148 157 mpd φk1+kP·˙CS˙WCS˙W
159 158 rexlimdva φk1+kP·˙CS˙WCS˙W
160 102 159 syld φ¬P·˙CS˙WCS˙W
161 20 160 mt3d φP·˙CS˙W