Metamath Proof Explorer


Theorem ply1remlem

Description: A term of the form x - N is linear, monic, and has exactly one zero. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses ply1rem.p P=Poly1R
ply1rem.b B=BaseP
ply1rem.k K=BaseR
ply1rem.x X=var1R
ply1rem.m -˙=-P
ply1rem.a A=algScP
ply1rem.g G=X-˙AN
ply1rem.o O=eval1R
ply1rem.1 φRNzRing
ply1rem.2 φRCRing
ply1rem.3 φNK
ply1rem.u U=Monic1pR
ply1rem.d D=deg1R
ply1rem.z 0˙=0R
Assertion ply1remlem φGUDG=1OG-10˙=N

Proof

Step Hyp Ref Expression
1 ply1rem.p P=Poly1R
2 ply1rem.b B=BaseP
3 ply1rem.k K=BaseR
4 ply1rem.x X=var1R
5 ply1rem.m -˙=-P
6 ply1rem.a A=algScP
7 ply1rem.g G=X-˙AN
8 ply1rem.o O=eval1R
9 ply1rem.1 φRNzRing
10 ply1rem.2 φRCRing
11 ply1rem.3 φNK
12 ply1rem.u U=Monic1pR
13 ply1rem.d D=deg1R
14 ply1rem.z 0˙=0R
15 nzrring RNzRingRRing
16 9 15 syl φRRing
17 1 ply1ring RRingPRing
18 16 17 syl φPRing
19 ringgrp PRingPGrp
20 18 19 syl φPGrp
21 4 1 2 vr1cl RRingXB
22 16 21 syl φXB
23 1 6 3 2 ply1sclf RRingA:KB
24 16 23 syl φA:KB
25 24 11 ffvelcdmd φANB
26 2 5 grpsubcl PGrpXBANBX-˙ANB
27 20 22 25 26 syl3anc φX-˙ANB
28 7 27 eqeltrid φGB
29 7 fveq2i DG=DX-˙AN
30 13 1 2 deg1xrcl ANBDAN*
31 25 30 syl φDAN*
32 0xr 0*
33 32 a1i φ0*
34 1re 1
35 rexr 11*
36 34 35 mp1i φ1*
37 13 1 3 6 deg1sclle RRingNKDAN0
38 16 11 37 syl2anc φDAN0
39 0lt1 0<1
40 39 a1i φ0<1
41 31 33 36 38 40 xrlelttrd φDAN<1
42 eqid mulGrpP=mulGrpP
43 42 2 mgpbas B=BasemulGrpP
44 eqid mulGrpP=mulGrpP
45 43 44 mulg1 XB1mulGrpPX=X
46 22 45 syl φ1mulGrpPX=X
47 46 fveq2d φD1mulGrpPX=DX
48 1nn0 10
49 13 1 4 42 44 deg1pw RNzRing10D1mulGrpPX=1
50 9 48 49 sylancl φD1mulGrpPX=1
51 47 50 eqtr3d φDX=1
52 41 51 breqtrrd φDAN<DX
53 1 13 16 2 5 22 25 52 deg1sub φDX-˙AN=DX
54 29 53 eqtrid φDG=DX
55 54 51 eqtrd φDG=1
56 55 48 eqeltrdi φDG0
57 eqid 0P=0P
58 13 1 57 2 deg1nn0clb RRingGBG0PDG0
59 16 28 58 syl2anc φG0PDG0
60 56 59 mpbird φG0P
61 55 fveq2d φcoe1GDG=coe1G1
62 7 fveq2i coe1G=coe1X-˙AN
63 62 fveq1i coe1G1=coe1X-˙AN1
64 48 a1i φ10
65 eqid -R=-R
66 1 2 5 65 coe1subfv RRingXBANB10coe1X-˙AN1=coe1X1-Rcoe1AN1
67 16 22 25 64 66 syl31anc φcoe1X-˙AN1=coe1X1-Rcoe1AN1
68 63 67 eqtrid φcoe1G1=coe1X1-Rcoe1AN1
69 46 oveq2d φ1RP1mulGrpPX=1RPX
70 1 ply1sca RNzRingR=ScalarP
71 9 70 syl φR=ScalarP
72 71 fveq2d φ1R=1ScalarP
73 72 oveq1d φ1RPX=1ScalarPPX
74 1 ply1lmod RRingPLMod
75 16 74 syl φPLMod
76 eqid ScalarP=ScalarP
77 eqid P=P
78 eqid 1ScalarP=1ScalarP
79 2 76 77 78 lmodvs1 PLModXB1ScalarPPX=X
80 75 22 79 syl2anc φ1ScalarPPX=X
81 69 73 80 3eqtrd φ1RP1mulGrpPX=X
82 81 fveq2d φcoe11RP1mulGrpPX=coe1X
83 82 fveq1d φcoe11RP1mulGrpPX1=coe1X1
84 eqid 1R=1R
85 3 84 ringidcl RRing1RK
86 16 85 syl φ1RK
87 14 3 1 4 77 42 44 coe1tmfv1 RRing1RK10coe11RP1mulGrpPX1=1R
88 16 86 64 87 syl3anc φcoe11RP1mulGrpPX1=1R
89 83 88 eqtr3d φcoe1X1=1R
90 eqid 0R=0R
91 1 6 3 90 coe1scl RRingNKcoe1AN=x0ifx=0N0R
92 16 11 91 syl2anc φcoe1AN=x0ifx=0N0R
93 92 fveq1d φcoe1AN1=x0ifx=0N0R1
94 ax-1ne0 10
95 neeq1 x=1x010
96 94 95 mpbiri x=1x0
97 ifnefalse x0ifx=0N0R=0R
98 96 97 syl x=1ifx=0N0R=0R
99 eqid x0ifx=0N0R=x0ifx=0N0R
100 fvex 0RV
101 98 99 100 fvmpt 10x0ifx=0N0R1=0R
102 48 101 ax-mp x0ifx=0N0R1=0R
103 93 102 eqtrdi φcoe1AN1=0R
104 89 103 oveq12d φcoe1X1-Rcoe1AN1=1R-R0R
105 ringgrp RRingRGrp
106 16 105 syl φRGrp
107 3 90 65 grpsubid1 RGrp1RK1R-R0R=1R
108 106 86 107 syl2anc φ1R-R0R=1R
109 104 108 eqtrd φcoe1X1-Rcoe1AN1=1R
110 61 68 109 3eqtrd φcoe1GDG=1R
111 1 2 57 13 12 84 ismon1p GUGBG0Pcoe1GDG=1R
112 28 60 110 111 syl3anbrc φGU
113 7 fveq2i OG=OX-˙AN
114 113 fveq1i OGx=OX-˙ANx
115 10 adantr φxKRCRing
116 simpr φxKxK
117 8 4 3 1 2 115 116 evl1vard φxKXBOXx=x
118 11 adantr φxKNK
119 8 1 3 6 2 115 118 116 evl1scad φxKANBOANx=N
120 8 1 3 2 115 116 117 119 5 65 evl1subd φxKX-˙ANBOX-˙ANx=x-RN
121 120 simprd φxKOX-˙ANx=x-RN
122 114 121 eqtrid φxKOGx=x-RN
123 122 eqeq1d φxKOGx=0˙x-RN=0˙
124 106 adantr φxKRGrp
125 3 14 65 grpsubeq0 RGrpxKNKx-RN=0˙x=N
126 124 116 118 125 syl3anc φxKx-RN=0˙x=N
127 123 126 bitrd φxKOGx=0˙x=N
128 velsn xNx=N
129 127 128 bitr4di φxKOGx=0˙xN
130 129 pm5.32da φxKOGx=0˙xKxN
131 eqid R𝑠K=R𝑠K
132 eqid BaseR𝑠K=BaseR𝑠K
133 3 fvexi KV
134 133 a1i φKV
135 8 1 131 3 evl1rhm RCRingOPRingHomR𝑠K
136 10 135 syl φOPRingHomR𝑠K
137 2 132 rhmf OPRingHomR𝑠KO:BBaseR𝑠K
138 136 137 syl φO:BBaseR𝑠K
139 138 28 ffvelcdmd φOGBaseR𝑠K
140 131 3 132 9 134 139 pwselbas φOG:KK
141 140 ffnd φOGFnK
142 fniniseg OGFnKxOG-10˙xKOGx=0˙
143 141 142 syl φxOG-10˙xKOGx=0˙
144 11 snssd φNK
145 144 sseld φxNxK
146 145 pm4.71rd φxNxKxN
147 130 143 146 3bitr4d φxOG-10˙xN
148 147 eqrdv φOG-10˙=N
149 112 55 148 3jca φGUDG=1OG-10˙=N