Metamath Proof Explorer


Theorem psrass1lem

Description: A group sum commutation used by psrass1 . (Contributed by Mario Carneiro, 5-Jan-2015) Remove a sethood hypothesis. (Revised by SN, 7-Aug-2024)

Ref Expression
Hypotheses gsumbagdiag.d D=f0I|f-1Fin
gsumbagdiag.s S=yD|yfF
gsumbagdiag.f φFD
gsumbagdiag.b B=BaseG
gsumbagdiag.g φGCMnd
gsumbagdiag.x φjSkxD|xfFfjXB
psrass1lem.y k=nfjX=Y
Assertion psrass1lem φGnSGjxD|xfnY=GjSGkxD|xfFfjX

Proof

Step Hyp Ref Expression
1 gsumbagdiag.d D=f0I|f-1Fin
2 gsumbagdiag.s S=yD|yfF
3 gsumbagdiag.f φFD
4 gsumbagdiag.b B=BaseG
5 gsumbagdiag.g φGCMnd
6 gsumbagdiag.x φjSkxD|xfFfjXB
7 psrass1lem.y k=nfjX=Y
8 1 2 3 gsumbagdiaglem φmSjxD|xfFfmjSmxD|xfFfj
9 6 anassrs φjSkxD|xfFfjXB
10 9 fmpttd φjSkxD|xfFfjX:xD|xfFfjB
11 2 ssrab3 SD
12 1 2 psrbagconcl FDjSFfjS
13 3 12 sylan φjSFfjS
14 11 13 sselid φjSFfjD
15 eqid xD|xfFfj=xD|xfFfj
16 1 15 psrbagconf1o FfjDmxD|xfFfjFfjfm:xD|xfFfj1-1 ontoxD|xfFfj
17 14 16 syl φjSmxD|xfFfjFfjfm:xD|xfFfj1-1 ontoxD|xfFfj
18 f1of mxD|xfFfjFfjfm:xD|xfFfj1-1 ontoxD|xfFfjmxD|xfFfjFfjfm:xD|xfFfjxD|xfFfj
19 17 18 syl φjSmxD|xfFfjFfjfm:xD|xfFfjxD|xfFfj
20 10 19 fcod φjSkxD|xfFfjXmxD|xfFfjFfjfm:xD|xfFfjB
21 3 adantr φjSFD
22 21 adantr φjSmxD|xfFfjFD
23 1 psrbagf FDF:I0
24 22 23 syl φjSmxD|xfFfjF:I0
25 24 ffvelcdmda φjSmxD|xfFfjzIFz0
26 simplr φjSmxD|xfFfjjS
27 11 26 sselid φjSmxD|xfFfjjD
28 1 psrbagf jDj:I0
29 27 28 syl φjSmxD|xfFfjj:I0
30 29 ffvelcdmda φjSmxD|xfFfjzIjz0
31 ssrab2 xD|xfFfjD
32 simpr φjSmxD|xfFfjmxD|xfFfj
33 31 32 sselid φjSmxD|xfFfjmD
34 1 psrbagf mDm:I0
35 33 34 syl φjSmxD|xfFfjm:I0
36 35 ffvelcdmda φjSmxD|xfFfjzImz0
37 nn0cn Fz0Fz
38 nn0cn jz0jz
39 nn0cn mz0mz
40 sub32 FzjzmzFz-jz-mz=Fz-mz-jz
41 37 38 39 40 syl3an Fz0jz0mz0Fz-jz-mz=Fz-mz-jz
42 25 30 36 41 syl3anc φjSmxD|xfFfjzIFz-jz-mz=Fz-mz-jz
43 42 mpteq2dva φjSmxD|xfFfjzIFz-jz-mz=zIFz-mz-jz
44 35 ffnd φjSmxD|xfFfjmFnI
45 32 44 fndmexd φjSmxD|xfFfjIV
46 ovexd φjSmxD|xfFfjzIFzjzV
47 24 feqmptd φjSmxD|xfFfjF=zIFz
48 29 feqmptd φjSmxD|xfFfjj=zIjz
49 45 25 30 47 48 offval2 φjSmxD|xfFfjFfj=zIFzjz
50 35 feqmptd φjSmxD|xfFfjm=zImz
51 45 46 36 49 50 offval2 φjSmxD|xfFfjFfjfm=zIFz-jz-mz
52 ovexd φjSmxD|xfFfjzIFzmzV
53 45 25 36 47 50 offval2 φjSmxD|xfFfjFfm=zIFzmz
54 45 52 30 53 48 offval2 φjSmxD|xfFfjFfmfj=zIFz-mz-jz
55 43 51 54 3eqtr4d φjSmxD|xfFfjFfjfm=Ffmfj
56 1 15 psrbagconcl FfjDmxD|xfFfjFfjfmxD|xfFfj
57 14 56 sylan φjSmxD|xfFfjFfjfmxD|xfFfj
58 55 57 eqeltrrd φjSmxD|xfFfjFfmfjxD|xfFfj
59 55 mpteq2dva φjSmxD|xfFfjFfjfm=mxD|xfFfjFfmfj
60 nfcv _nX
61 nfcsb1v _kn/kX
62 csbeq1a k=nX=n/kX
63 60 61 62 cbvmpt kxD|xfFfjX=nxD|xfFfjn/kX
64 63 a1i φjSkxD|xfFfjX=nxD|xfFfjn/kX
65 csbeq1 n=Ffmfjn/kX=Ffmfj/kX
66 58 59 64 65 fmptco φjSkxD|xfFfjXmxD|xfFfjFfjfm=mxD|xfFfjFfmfj/kX
67 66 feq1d φjSkxD|xfFfjXmxD|xfFfjFfjfm:xD|xfFfjBmxD|xfFfjFfmfj/kX:xD|xfFfjB
68 20 67 mpbid φjSmxD|xfFfjFfmfj/kX:xD|xfFfjB
69 68 fvmptelcdm φjSmxD|xfFfjFfmfj/kXB
70 69 anasss φjSmxD|xfFfjFfmfj/kXB
71 8 70 syldan φmSjxD|xfFfmFfmfj/kXB
72 1 2 3 4 5 71 gsumbagdiag φGmS,jxD|xfFfmFfmfj/kX=GjS,mxD|xfFfjFfmfj/kX
73 eqid 0G=0G
74 1 psrbaglefi FDyD|yfFFin
75 3 74 syl φyD|yfFFin
76 2 75 eqeltrid φSFin
77 1 2 psrbagconcl FDmSFfmS
78 3 77 sylan φmSFfmS
79 11 78 sselid φmSFfmD
80 1 psrbaglefi FfmDxD|xfFfmFin
81 79 80 syl φmSxD|xfFfmFin
82 xpfi SFinSFinS×SFin
83 76 76 82 syl2anc φS×SFin
84 simprl φmSjxD|xfFfmmS
85 8 simpld φmSjxD|xfFfmjS
86 brxp mS×SjmSjS
87 84 85 86 sylanbrc φmSjxD|xfFfmmS×Sj
88 87 pm2.24d φmSjxD|xfFfm¬mS×SjFfmfj/kX=0G
89 88 impr φmSjxD|xfFfm¬mS×SjFfmfj/kX=0G
90 4 73 5 76 81 71 83 89 gsum2d2 φGmS,jxD|xfFfmFfmfj/kX=GmSGjxD|xfFfmFfmfj/kX
91 1 psrbaglefi FfjDxD|xfFfjFin
92 14 91 syl φjSxD|xfFfjFin
93 simprl φjSmxD|xfFfjjS
94 1 2 3 gsumbagdiaglem φjSmxD|xfFfjmSjxD|xfFfm
95 94 simpld φjSmxD|xfFfjmS
96 brxp jS×SmjSmS
97 93 95 96 sylanbrc φjSmxD|xfFfjjS×Sm
98 97 pm2.24d φjSmxD|xfFfj¬jS×SmFfmfj/kX=0G
99 98 impr φjSmxD|xfFfj¬jS×SmFfmfj/kX=0G
100 4 73 5 76 92 70 83 99 gsum2d2 φGjS,mxD|xfFfjFfmfj/kX=GjSGmxD|xfFfjFfmfj/kX
101 72 90 100 3eqtr3d φGmSGjxD|xfFfmFfmfj/kX=GjSGmxD|xfFfjFfmfj/kX
102 5 adantr φmSGCMnd
103 71 anassrs φmSjxD|xfFfmFfmfj/kXB
104 103 fmpttd φmSjxD|xfFfmFfmfj/kX:xD|xfFfmB
105 ovex 0IV
106 1 105 rabex2 DV
107 106 a1i φmSDV
108 rabexg DVxD|xfFfmV
109 mptexg xD|xfFfmVjxD|xfFfmFfmfj/kXV
110 107 108 109 3syl φmSjxD|xfFfmFfmfj/kXV
111 funmpt FunjxD|xfFfmFfmfj/kX
112 111 a1i φmSFunjxD|xfFfmFfmfj/kX
113 fvexd φmS0GV
114 suppssdm jxD|xfFfmFfmfj/kXsupp0GdomjxD|xfFfmFfmfj/kX
115 eqid jxD|xfFfmFfmfj/kX=jxD|xfFfmFfmfj/kX
116 115 dmmptss domjxD|xfFfmFfmfj/kXxD|xfFfm
117 114 116 sstri jxD|xfFfmFfmfj/kXsupp0GxD|xfFfm
118 117 a1i φmSjxD|xfFfmFfmfj/kXsupp0GxD|xfFfm
119 suppssfifsupp jxD|xfFfmFfmfj/kXVFunjxD|xfFfmFfmfj/kX0GVxD|xfFfmFinjxD|xfFfmFfmfj/kXsupp0GxD|xfFfmfinSupp0GjxD|xfFfmFfmfj/kX
120 110 112 113 81 118 119 syl32anc φmSfinSupp0GjxD|xfFfmFfmfj/kX
121 4 73 102 81 104 120 gsumcl φmSGjxD|xfFfmFfmfj/kXB
122 121 fmpttd φmSGjxD|xfFfmFfmfj/kX:SB
123 1 2 psrbagconf1o FDmSFfm:S1-1 ontoS
124 3 123 syl φmSFfm:S1-1 ontoS
125 f1ocnv mSFfm:S1-1 ontoSmSFfm-1:S1-1 ontoS
126 f1of mSFfm-1:S1-1 ontoSmSFfm-1:SS
127 124 125 126 3syl φmSFfm-1:SS
128 122 127 fcod φmSGjxD|xfFfmFfmfj/kXmSFfm-1:SB
129 coass nSGjxD|xfnYmSFfmmSFfm-1=nSGjxD|xfnYmSFfmmSFfm-1
130 f1ococnv2 mSFfm:S1-1 ontoSmSFfmmSFfm-1=IS
131 124 130 syl φmSFfmmSFfm-1=IS
132 131 coeq2d φnSGjxD|xfnYmSFfmmSFfm-1=nSGjxD|xfnYIS
133 129 132 eqtrid φnSGjxD|xfnYmSFfmmSFfm-1=nSGjxD|xfnYIS
134 eqidd φmSFfm=mSFfm
135 eqidd φnSGjxD|xfnY=nSGjxD|xfnY
136 breq2 n=FfmxfnxfFfm
137 136 rabbidv n=FfmxD|xfn=xD|xfFfm
138 ovex nfjV
139 138 7 csbie nfj/kX=Y
140 oveq1 n=Ffmnfj=Ffmfj
141 140 csbeq1d n=Ffmnfj/kX=Ffmfj/kX
142 139 141 eqtr3id n=FfmY=Ffmfj/kX
143 137 142 mpteq12dv n=FfmjxD|xfnY=jxD|xfFfmFfmfj/kX
144 143 oveq2d n=FfmGjxD|xfnY=GjxD|xfFfmFfmfj/kX
145 78 134 135 144 fmptco φnSGjxD|xfnYmSFfm=mSGjxD|xfFfmFfmfj/kX
146 145 coeq1d φnSGjxD|xfnYmSFfmmSFfm-1=mSGjxD|xfFfmFfmfj/kXmSFfm-1
147 coires1 nSGjxD|xfnYIS=nSGjxD|xfnYS
148 ssid SS
149 resmpt SSnSGjxD|xfnYS=nSGjxD|xfnY
150 148 149 ax-mp nSGjxD|xfnYS=nSGjxD|xfnY
151 147 150 eqtri nSGjxD|xfnYIS=nSGjxD|xfnY
152 151 a1i φnSGjxD|xfnYIS=nSGjxD|xfnY
153 133 146 152 3eqtr3d φmSGjxD|xfFfmFfmfj/kXmSFfm-1=nSGjxD|xfnY
154 153 feq1d φmSGjxD|xfFfmFfmfj/kXmSFfm-1:SBnSGjxD|xfnY:SB
155 128 154 mpbid φnSGjxD|xfnY:SB
156 rabexg DVyD|yfFV
157 106 156 mp1i φyD|yfFV
158 2 157 eqeltrid φSV
159 158 mptexd φnSGjxD|xfnYV
160 funmpt FunnSGjxD|xfnY
161 160 a1i φFunnSGjxD|xfnY
162 fvexd φ0GV
163 suppssdm nSGjxD|xfnYsupp0GdomnSGjxD|xfnY
164 eqid nSGjxD|xfnY=nSGjxD|xfnY
165 164 dmmptss domnSGjxD|xfnYS
166 163 165 sstri nSGjxD|xfnYsupp0GS
167 166 a1i φnSGjxD|xfnYsupp0GS
168 suppssfifsupp nSGjxD|xfnYVFunnSGjxD|xfnY0GVSFinnSGjxD|xfnYsupp0GSfinSupp0GnSGjxD|xfnY
169 159 161 162 76 167 168 syl32anc φfinSupp0GnSGjxD|xfnY
170 4 73 5 76 155 169 124 gsumf1o φGnSGjxD|xfnY=GnSGjxD|xfnYmSFfm
171 145 oveq2d φGnSGjxD|xfnYmSFfm=GmSGjxD|xfFfmFfmfj/kX
172 170 171 eqtrd φGnSGjxD|xfnY=GmSGjxD|xfFfmFfmfj/kX
173 5 adantr φjSGCMnd
174 106 a1i φjSDV
175 rabexg DVxD|xfFfjV
176 mptexg xD|xfFfjVkxD|xfFfjXV
177 174 175 176 3syl φjSkxD|xfFfjXV
178 funmpt FunkxD|xfFfjX
179 178 a1i φjSFunkxD|xfFfjX
180 fvexd φjS0GV
181 suppssdm kxD|xfFfjXsupp0GdomkxD|xfFfjX
182 eqid kxD|xfFfjX=kxD|xfFfjX
183 182 dmmptss domkxD|xfFfjXxD|xfFfj
184 181 183 sstri kxD|xfFfjXsupp0GxD|xfFfj
185 184 a1i φjSkxD|xfFfjXsupp0GxD|xfFfj
186 suppssfifsupp kxD|xfFfjXVFunkxD|xfFfjX0GVxD|xfFfjFinkxD|xfFfjXsupp0GxD|xfFfjfinSupp0GkxD|xfFfjX
187 177 179 180 92 185 186 syl32anc φjSfinSupp0GkxD|xfFfjX
188 4 73 173 92 10 187 17 gsumf1o φjSGkxD|xfFfjX=GkxD|xfFfjXmxD|xfFfjFfjfm
189 66 oveq2d φjSGkxD|xfFfjXmxD|xfFfjFfjfm=GmxD|xfFfjFfmfj/kX
190 188 189 eqtrd φjSGkxD|xfFfjX=GmxD|xfFfjFfmfj/kX
191 190 mpteq2dva φjSGkxD|xfFfjX=jSGmxD|xfFfjFfmfj/kX
192 191 oveq2d φGjSGkxD|xfFfjX=GjSGmxD|xfFfjFfmfj/kX
193 101 172 192 3eqtr4d φGnSGjxD|xfnY=GjSGkxD|xfFfjX