Metamath Proof Explorer


Theorem rrnequiv

Description: The supremum metric on RR ^ I is equivalent to the Rn metric. (Contributed by Jeff Madsen, 15-Sep-2015)

Ref Expression
Hypotheses rrnequiv.y Y=fld𝑠𝑠I
rrnequiv.d D=distY
rrnequiv.1 X=I
rrnequiv.i φIFin
Assertion rrnequiv φFXGXFDGFnIGFnIGIFDG

Proof

Step Hyp Ref Expression
1 rrnequiv.y Y=fld𝑠𝑠I
2 rrnequiv.d D=distY
3 rrnequiv.1 X=I
4 rrnequiv.i φIFin
5 ovex fld𝑠V
6 4 adantr φFXGXIFin
7 reex V
8 eqid fld𝑠=fld𝑠
9 eqid Scalarfld=Scalarfld
10 8 9 resssca VScalarfld=Scalarfld𝑠
11 7 10 ax-mp Scalarfld=Scalarfld𝑠
12 1 11 pwsval fld𝑠VIFinY=Scalarfld𝑠I×fld𝑠
13 5 6 12 sylancr φFXGXY=Scalarfld𝑠I×fld𝑠
14 13 fveq2d φFXGXdistY=distScalarfld𝑠I×fld𝑠
15 2 14 eqtrid φFXGXD=distScalarfld𝑠I×fld𝑠
16 15 oveqd φFXGXFDG=FdistScalarfld𝑠I×fld𝑠G
17 fconstmpt I×fld𝑠=kIfld𝑠
18 17 oveq2i Scalarfld𝑠I×fld𝑠=Scalarfld𝑠kIfld𝑠
19 eqid BaseScalarfld𝑠I×fld𝑠=BaseScalarfld𝑠I×fld𝑠
20 fvexd φFXGXScalarfldV
21 5 a1i φFXGXkIfld𝑠V
22 21 ralrimiva φFXGXkIfld𝑠V
23 simprl φFXGXFX
24 ax-resscn
25 cnfldbas =Basefld
26 8 25 ressbas2 =Basefld𝑠
27 24 26 ax-mp =Basefld𝑠
28 1 27 pwsbas fld𝑠VIFinI=BaseY
29 5 6 28 sylancr φFXGXI=BaseY
30 13 fveq2d φFXGXBaseY=BaseScalarfld𝑠I×fld𝑠
31 29 30 eqtrd φFXGXI=BaseScalarfld𝑠I×fld𝑠
32 3 31 eqtrid φFXGXX=BaseScalarfld𝑠I×fld𝑠
33 23 32 eleqtrd φFXGXFBaseScalarfld𝑠I×fld𝑠
34 simprr φFXGXGX
35 34 32 eleqtrd φFXGXGBaseScalarfld𝑠I×fld𝑠
36 cnfldds abs=distfld
37 8 36 ressds Vabs=distfld𝑠
38 7 37 ax-mp abs=distfld𝑠
39 38 reseq1i abs2=distfld𝑠2
40 eqid distScalarfld𝑠I×fld𝑠=distScalarfld𝑠I×fld𝑠
41 18 19 20 6 22 33 35 27 39 40 prdsdsval3 φFXGXFdistScalarfld𝑠I×fld𝑠G=suprankIFkabs2Gk0*<
42 16 41 eqtrd φFXGXFDG=suprankIFkabs2Gk0*<
43 eqid abs2=abs2
44 3 43 rrndstprj1 IFinkIFXGXFkabs2GkFnIG
45 44 an32s IFinFXGXkIFkabs2GkFnIG
46 4 45 sylanl1 φFXGXkIFkabs2GkFnIG
47 46 ralrimiva φFXGXkIFkabs2GkFnIG
48 ovex Fkabs2GkV
49 48 rgenw kIFkabs2GkV
50 eqid kIFkabs2Gk=kIFkabs2Gk
51 breq1 z=Fkabs2GkzFnIGFkabs2GkFnIG
52 50 51 ralrnmptw kIFkabs2GkVzrankIFkabs2GkzFnIGkIFkabs2GkFnIG
53 49 52 ax-mp zrankIFkabs2GkzFnIGkIFkabs2GkFnIG
54 47 53 sylibr φFXGXzrankIFkabs2GkzFnIG
55 3 rrnmet IFinnIMetX
56 6 55 syl φFXGXnIMetX
57 metge0 nIMetXFXGX0FnIG
58 56 23 34 57 syl3anc φFXGX0FnIG
59 elsni z0z=0
60 59 breq1d z0zFnIG0FnIG
61 58 60 syl5ibrcom φFXGXz0zFnIG
62 61 ralrimiv φFXGXz0zFnIG
63 ralunb zrankIFkabs2Gk0zFnIGzrankIFkabs2GkzFnIGz0zFnIG
64 54 62 63 sylanbrc φFXGXzrankIFkabs2Gk0zFnIG
65 18 19 20 6 22 27 33 prdsbascl φFXGXkIFk
66 65 r19.21bi φFXGXkIFk
67 18 19 20 6 22 27 35 prdsbascl φFXGXkIGk
68 67 r19.21bi φFXGXkIGk
69 43 remet abs2Met
70 metcl abs2MetFkGkFkabs2Gk
71 69 70 mp3an1 FkGkFkabs2Gk
72 66 68 71 syl2anc φFXGXkIFkabs2Gk
73 72 fmpttd φFXGXkIFkabs2Gk:I
74 73 frnd φFXGXrankIFkabs2Gk
75 ressxr *
76 74 75 sstrdi φFXGXrankIFkabs2Gk*
77 0xr 0*
78 77 a1i φFXGX0*
79 78 snssd φFXGX0*
80 76 79 unssd φFXGXrankIFkabs2Gk0*
81 metcl nIMetXFXGXFnIG
82 56 23 34 81 syl3anc φFXGXFnIG
83 75 82 sselid φFXGXFnIG*
84 supxrleub rankIFkabs2Gk0*FnIG*suprankIFkabs2Gk0*<FnIGzrankIFkabs2Gk0zFnIG
85 80 83 84 syl2anc φFXGXsuprankIFkabs2Gk0*<FnIGzrankIFkabs2Gk0zFnIG
86 64 85 mpbird φFXGXsuprankIFkabs2Gk0*<FnIG
87 42 86 eqbrtrd φFXGXFDGFnIG
88 rzal I=kIFk=Gk
89 23 3 eleqtrdi φFXGXFI
90 elmapi FIF:I
91 ffn F:IFFnI
92 89 90 91 3syl φFXGXFFnI
93 34 3 eleqtrdi φFXGXGI
94 elmapi GIG:I
95 ffn G:IGFnI
96 93 94 95 3syl φFXGXGFnI
97 eqfnfv FFnIGFnIF=GkIFk=Gk
98 92 96 97 syl2anc φFXGXF=GkIFk=Gk
99 88 98 imbitrrid φFXGXI=F=G
100 99 imp φFXGXI=F=G
101 100 oveq1d φFXGXI=FnIG=GnIG
102 met0 nIMetXGXGnIG=0
103 56 34 102 syl2anc φFXGXGnIG=0
104 hashcl IFinI0
105 6 104 syl φFXGXI0
106 105 nn0red φFXGXI
107 105 nn0ge0d φFXGX0I
108 106 107 resqrtcld φFXGXI
109 1 2 3 repwsmet IFinDMetX
110 6 109 syl φFXGXDMetX
111 metcl DMetXFXGXFDG
112 110 23 34 111 syl3anc φFXGXFDG
113 106 107 sqrtge0d φFXGX0I
114 metge0 DMetXFXGX0FDG
115 110 23 34 114 syl3anc φFXGX0FDG
116 108 112 113 115 mulge0d φFXGX0IFDG
117 103 116 eqbrtrd φFXGXGnIGIFDG
118 117 adantr φFXGXI=GnIGIFDG
119 101 118 eqbrtrd φFXGXI=FnIGIFDG
120 82 adantr φFXGXIr+FnIG
121 108 112 remulcld φFXGXIFDG
122 121 adantr φFXGXIr+IFDG
123 rpre r+r
124 123 ad2antll φFXGXIr+r
125 122 124 readdcld φFXGXIr+IFDG+r
126 6 adantr φFXGXIr+IFin
127 simprl φFXGXIr+I
128 eldifsn IFinIFinI
129 126 127 128 sylanbrc φFXGXIr+IFin
130 23 adantr φFXGXIr+FX
131 34 adantr φFXGXIr+GX
132 112 adantr φFXGXIr+FDG
133 simprr φFXGXIr+r+
134 hashnncl IFinII
135 126 134 syl φFXGXIr+II
136 127 135 mpbird φFXGXIr+I
137 136 nnrpd φFXGXIr+I+
138 137 rpsqrtcld φFXGXIr+I+
139 133 138 rpdivcld φFXGXIr+rI+
140 139 rpred φFXGXIr+rI
141 132 140 readdcld φFXGXIr+FDG+rI
142 0red φFXGXIr+0
143 115 adantr φFXGXIr+0FDG
144 132 139 ltaddrpd φFXGXIr+FDG<FDG+rI
145 142 132 141 143 144 lelttrd φFXGXIr+0<FDG+rI
146 141 145 elrpd φFXGXIr+FDG+rI+
147 72 adantlr φFXGXIr+kIFkabs2Gk
148 132 adantr φFXGXIr+kIFDG
149 141 adantr φFXGXIr+kIFDG+rI
150 80 ad2antrr φFXGXIr+kIrankIFkabs2Gk0*
151 ssun1 rankIFkabs2GkrankIFkabs2Gk0
152 simpr φFXGXIr+kIkI
153 50 elrnmpt1 kIFkabs2GkVFkabs2GkrankIFkabs2Gk
154 152 48 153 sylancl φFXGXIr+kIFkabs2GkrankIFkabs2Gk
155 151 154 sselid φFXGXIr+kIFkabs2GkrankIFkabs2Gk0
156 supxrub rankIFkabs2Gk0*Fkabs2GkrankIFkabs2Gk0Fkabs2GksuprankIFkabs2Gk0*<
157 150 155 156 syl2anc φFXGXIr+kIFkabs2GksuprankIFkabs2Gk0*<
158 42 ad2antrr φFXGXIr+kIFDG=suprankIFkabs2Gk0*<
159 157 158 breqtrrd φFXGXIr+kIFkabs2GkFDG
160 144 adantr φFXGXIr+kIFDG<FDG+rI
161 147 148 149 159 160 lelttrd φFXGXIr+kIFkabs2Gk<FDG+rI
162 161 ralrimiva φFXGXIr+kIFkabs2Gk<FDG+rI
163 3 43 rrndstprj2 IFinFXGXFDG+rI+kIFkabs2Gk<FDG+rIFnIG<FDG+rII
164 129 130 131 146 162 163 syl32anc φFXGXIr+FnIG<FDG+rII
165 132 recnd φFXGXIr+FDG
166 140 recnd φFXGXIr+rI
167 108 adantr φFXGXIr+I
168 167 recnd φFXGXIr+I
169 165 166 168 adddird φFXGXIr+FDG+rII=FDGI+rII
170 165 168 mulcomd φFXGXIr+FDGI=IFDG
171 124 recnd φFXGXIr+r
172 138 rpne0d φFXGXIr+I0
173 171 168 172 divcan1d φFXGXIr+rII=r
174 170 173 oveq12d φFXGXIr+FDGI+rII=IFDG+r
175 169 174 eqtrd φFXGXIr+FDG+rII=IFDG+r
176 164 175 breqtrd φFXGXIr+FnIG<IFDG+r
177 120 125 176 ltled φFXGXIr+FnIGIFDG+r
178 177 anassrs φFXGXIr+FnIGIFDG+r
179 178 ralrimiva φFXGXIr+FnIGIFDG+r
180 alrple FnIGIFDGFnIGIFDGr+FnIGIFDG+r
181 82 121 180 syl2anc φFXGXFnIGIFDGr+FnIGIFDG+r
182 181 adantr φFXGXIFnIGIFDGr+FnIGIFDG+r
183 179 182 mpbird φFXGXIFnIGIFDG
184 119 183 pm2.61dane φFXGXFnIGIFDG
185 87 184 jca φFXGXFDGFnIGFnIGIFDG