Metamath Proof Explorer


Theorem sdclem1

Description: Lemma for sdc . (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypotheses sdc.1 Z=M
sdc.2 g=fMnψχ
sdc.3 n=Mψτ
sdc.4 n=kψθ
sdc.5 g=hn=k+1ψσ
sdc.6 φAV
sdc.7 φM
sdc.8 φgg:MAτ
sdc.9 φkZg:MkAθhh:Mk+1Ag=hMkσ
sdc.10 J=g|nZg:MnAψ
sdc.11 F=wZ,xJh|kZh:Mk+1Ax=hMkσ
Assertion sdclem1 φff:ZAnZχ

Proof

Step Hyp Ref Expression
1 sdc.1 Z=M
2 sdc.2 g=fMnψχ
3 sdc.3 n=Mψτ
4 sdc.4 n=kψθ
5 sdc.5 g=hn=k+1ψσ
6 sdc.6 φAV
7 sdc.7 φM
8 sdc.8 φgg:MAτ
9 sdc.9 φkZg:MkAθhh:Mk+1Ag=hMkσ
10 sdc.10 J=g|nZg:MnAψ
11 sdc.11 F=wZ,xJh|kZh:Mk+1Ax=hMkσ
12 1 fvexi ZV
13 simpl g:MnAψg:MnA
14 ovex MnV
15 elmapg AVMnVgAMng:MnA
16 6 14 15 sylancl φgAMng:MnA
17 13 16 imbitrrid φg:MnAψgAMn
18 17 abssdv φg|g:MnAψAMn
19 ovex AMnV
20 ssexg g|g:MnAψAMnAMnVg|g:MnAψV
21 18 19 20 sylancl φg|g:MnAψV
22 21 ralrimivw φnZg|g:MnAψV
23 abrexex2g ZVnZg|g:MnAψVg|nZg:MnAψV
24 12 22 23 sylancr φg|nZg:MnAψV
25 10 24 eqeltrid φJV
26 25 adantr φg:MAτJV
27 7 adantr φg:MAτM
28 uzid MMM
29 27 28 syl φg:MAτMM
30 29 1 eleqtrrdi φg:MAτMZ
31 simprl φg:MAτg:MA
32 fzsn MMM=M
33 27 32 syl φg:MAτMM=M
34 33 feq2d φg:MAτg:MMAg:MA
35 31 34 mpbird φg:MAτg:MMA
36 simprr φg:MAττ
37 oveq2 n=MMn=MM
38 37 feq2d n=Mg:MnAg:MMA
39 38 3 anbi12d n=Mg:MnAψg:MMAτ
40 39 rspcev MZg:MMAτnZg:MnAψ
41 30 35 36 40 syl12anc φg:MAτnZg:MnAψ
42 10 eqabri gJnZg:MnAψ
43 41 42 sylibr φg:MAτgJ
44 1 peano2uzs kZk+1Z
45 44 ad2antlr φkZh:Mk+1Ax=hMkσk+1Z
46 simpr1 φkZh:Mk+1Ax=hMkσh:Mk+1A
47 simpr3 φkZh:Mk+1Ax=hMkσσ
48 vex hV
49 ovex k+1V
50 5 a1i φg=hn=k+1ψσ
51 48 49 50 sbc2iedv φ[˙h/g]˙[˙k+1/n]˙ψσ
52 51 ad2antrr φkZh:Mk+1Ax=hMkσ[˙h/g]˙[˙k+1/n]˙ψσ
53 47 52 mpbird φkZh:Mk+1Ax=hMkσ[˙h/g]˙[˙k+1/n]˙ψ
54 nfv nh:Mk+1A
55 nfcv _nh
56 nfsbc1v n[˙k+1/n]˙ψ
57 55 56 nfsbcw n[˙h/g]˙[˙k+1/n]˙ψ
58 54 57 nfan nh:Mk+1A[˙h/g]˙[˙k+1/n]˙ψ
59 oveq2 n=k+1Mn=Mk+1
60 59 feq2d n=k+1h:MnAh:Mk+1A
61 sbceq1a n=k+1ψ[˙k+1/n]˙ψ
62 61 sbcbidv n=k+1[˙h/g]˙ψ[˙h/g]˙[˙k+1/n]˙ψ
63 60 62 anbi12d n=k+1h:MnA[˙h/g]˙ψh:Mk+1A[˙h/g]˙[˙k+1/n]˙ψ
64 58 63 rspce k+1Zh:Mk+1A[˙h/g]˙[˙k+1/n]˙ψnZh:MnA[˙h/g]˙ψ
65 45 46 53 64 syl12anc φkZh:Mk+1Ax=hMkσnZh:MnA[˙h/g]˙ψ
66 10 eleq2i hJhg|nZg:MnAψ
67 nfcv _gZ
68 nfv gh:MnA
69 nfsbc1v g[˙h/g]˙ψ
70 68 69 nfan gh:MnA[˙h/g]˙ψ
71 67 70 nfrexw gnZh:MnA[˙h/g]˙ψ
72 feq1 g=hg:MnAh:MnA
73 sbceq1a g=hψ[˙h/g]˙ψ
74 72 73 anbi12d g=hg:MnAψh:MnA[˙h/g]˙ψ
75 74 rexbidv g=hnZg:MnAψnZh:MnA[˙h/g]˙ψ
76 71 48 75 elabf hg|nZg:MnAψnZh:MnA[˙h/g]˙ψ
77 66 76 bitri hJnZh:MnA[˙h/g]˙ψ
78 65 77 sylibr φkZh:Mk+1Ax=hMkσhJ
79 78 rexlimdva2 φkZh:Mk+1Ax=hMkσhJ
80 79 abssdv φh|kZh:Mk+1Ax=hMkσJ
81 80 ad2antrr φg:MAτxJh|kZh:Mk+1Ax=hMkσJ
82 25 ad2antrr φg:MAτxJJV
83 elpw2g JVh|kZh:Mk+1Ax=hMkσ𝒫Jh|kZh:Mk+1Ax=hMkσJ
84 82 83 syl φg:MAτxJh|kZh:Mk+1Ax=hMkσ𝒫Jh|kZh:Mk+1Ax=hMkσJ
85 81 84 mpbird φg:MAτxJh|kZh:Mk+1Ax=hMkσ𝒫J
86 oveq2 n=kMn=Mk
87 86 feq2d n=kg:MnAg:MkA
88 87 4 anbi12d n=kg:MnAψg:MkAθ
89 88 cbvrexvw nZg:MnAψkZg:MkAθ
90 9 reximdva φkZg:MkAθkZhh:Mk+1Ag=hMkσ
91 rexcom4 kZhh:Mk+1Ag=hMkσhkZh:Mk+1Ag=hMkσ
92 90 91 imbitrdi φkZg:MkAθhkZh:Mk+1Ag=hMkσ
93 89 92 biimtrid φnZg:MnAψhkZh:Mk+1Ag=hMkσ
94 93 ss2abdv φg|nZg:MnAψg|hkZh:Mk+1Ag=hMkσ
95 10 94 eqsstrid φJg|hkZh:Mk+1Ag=hMkσ
96 95 sselda φxJxg|hkZh:Mk+1Ag=hMkσ
97 vex xV
98 eqeq1 g=xg=hMkx=hMk
99 98 3anbi2d g=xh:Mk+1Ag=hMkσh:Mk+1Ax=hMkσ
100 99 rexbidv g=xkZh:Mk+1Ag=hMkσkZh:Mk+1Ax=hMkσ
101 100 exbidv g=xhkZh:Mk+1Ag=hMkσhkZh:Mk+1Ax=hMkσ
102 97 101 elab xg|hkZh:Mk+1Ag=hMkσhkZh:Mk+1Ax=hMkσ
103 96 102 sylib φxJhkZh:Mk+1Ax=hMkσ
104 abn0 h|kZh:Mk+1Ax=hMkσhkZh:Mk+1Ax=hMkσ
105 103 104 sylibr φxJh|kZh:Mk+1Ax=hMkσ
106 105 adantlr φg:MAτxJh|kZh:Mk+1Ax=hMkσ
107 eldifsn h|kZh:Mk+1Ax=hMkσ𝒫Jh|kZh:Mk+1Ax=hMkσ𝒫Jh|kZh:Mk+1Ax=hMkσ
108 85 106 107 sylanbrc φg:MAτxJh|kZh:Mk+1Ax=hMkσ𝒫J
109 108 adantrl φg:MAτwZxJh|kZh:Mk+1Ax=hMkσ𝒫J
110 109 ralrimivva φg:MAτwZxJh|kZh:Mk+1Ax=hMkσ𝒫J
111 11 fmpo wZxJh|kZh:Mk+1Ax=hMkσ𝒫JF:Z×J𝒫J
112 110 111 sylib φg:MAτF:Z×J𝒫J
113 7 iftrued φifMM0=M
114 113 fveq2d φifMM0=M
115 114 1 eqtr4di φifMM0=Z
116 115 xpeq1d φifMM0×J=Z×J
117 116 feq2d φF:ifMM0×J𝒫JF:Z×J𝒫J
118 117 biimpar φF:Z×J𝒫JF:ifMM0×J𝒫J
119 112 118 syldan φg:MAτF:ifMM0×J𝒫J
120 0z 0
121 120 elimel ifMM0
122 eqid ifMM0=ifMM0
123 121 122 axdc4uz JVgJF:ifMM0×J𝒫Jjj:ifMM0JjifMM0=gmifMM0jm+1mFjm
124 26 43 119 123 syl3anc φg:MAτjj:ifMM0JjifMM0=gmifMM0jm+1mFjm
125 27 iftrued φg:MAτifMM0=M
126 125 fveq2d φg:MAτifMM0=M
127 126 1 eqtr4di φg:MAτifMM0=Z
128 127 feq2d φg:MAτj:ifMM0Jj:ZJ
129 89 abbii g|nZg:MnAψ=g|kZg:MkAθ
130 10 129 eqtri J=g|kZg:MkAθ
131 feq3 J=g|kZg:MkAθj:ZJj:Zg|kZg:MkAθ
132 130 131 ax-mp j:ZJj:Zg|kZg:MkAθ
133 128 132 bitrdi φg:MAτj:ifMM0Jj:Zg|kZg:MkAθ
134 125 fveqeq2d φg:MAτjifMM0=gjM=g
135 127 raleqdv φg:MAτmifMM0jm+1mFjmmZjm+1mFjm
136 133 134 135 3anbi123d φg:MAτj:ifMM0JjifMM0=gmifMM0jm+1mFjmj:Zg|kZg:MkAθjM=gmZjm+1mFjm
137 6 ad2antrr φg:MAτj:Zg|kZg:MkAθjM=gmZjm+1mFjmAV
138 7 ad2antrr φg:MAτj:Zg|kZg:MkAθjM=gmZjm+1mFjmM
139 8 ad2antrr φg:MAτj:Zg|kZg:MkAθjM=gmZjm+1mFjmgg:MAτ
140 simpll φg:MAτj:Zg|kZg:MkAθjM=gmZjm+1mFjmφ
141 140 9 sylan φg:MAτj:Zg|kZg:MkAθjM=gmZjm+1mFjmkZg:MkAθhh:Mk+1Ag=hMkσ
142 nfv kφg:MAτ
143 nfcv _kj
144 nfcv _kZ
145 nfre1 kkZg:MkAθ
146 145 nfab _kg|kZg:MkAθ
147 143 144 146 nff kj:Zg|kZg:MkAθ
148 nfv kjM=g
149 nfcv _km
150 130 146 nfcxfr _kJ
151 nfre1 kkZh:Mk+1Ax=hMkσ
152 151 nfab _kh|kZh:Mk+1Ax=hMkσ
153 144 150 152 nfmpo _kwZ,xJh|kZh:Mk+1Ax=hMkσ
154 11 153 nfcxfr _kF
155 nfcv _kjm
156 149 154 155 nfov _kmFjm
157 156 nfel2 kjm+1mFjm
158 144 157 nfralw kmZjm+1mFjm
159 147 148 158 nf3an kj:Zg|kZg:MkAθjM=gmZjm+1mFjm
160 142 159 nfan kφg:MAτj:Zg|kZg:MkAθjM=gmZjm+1mFjm
161 simpr1 φg:MAτj:Zg|kZg:MkAθjM=gmZjm+1mFjmj:Zg|kZg:MkAθ
162 161 132 sylibr φg:MAτj:Zg|kZg:MkAθjM=gmZjm+1mFjmj:ZJ
163 31 adantr φg:MAτj:Zg|kZg:MkAθjM=gmZjm+1mFjmg:MA
164 simpr2 φg:MAτj:Zg|kZg:MkAθjM=gmZjm+1mFjmjM=g
165 138 32 syl φg:MAτj:Zg|kZg:MkAθjM=gmZjm+1mFjmMM=M
166 164 165 feq12d φg:MAτj:Zg|kZg:MkAθjM=gmZjm+1mFjmjM:MMAg:MA
167 163 166 mpbird φg:MAτj:Zg|kZg:MkAθjM=gmZjm+1mFjmjM:MMA
168 simpr3 φg:MAτj:Zg|kZg:MkAθjM=gmZjm+1mFjmmZjm+1mFjm
169 fvoveq1 m=wjm+1=jw+1
170 id m=wm=w
171 fveq2 m=wjm=jw
172 170 171 oveq12d m=wmFjm=wFjw
173 169 172 eleq12d m=wjm+1mFjmjw+1wFjw
174 173 rspccva mZjm+1mFjmwZjw+1wFjw
175 168 174 sylan φg:MAτj:Zg|kZg:MkAθjM=gmZjm+1mFjmwZjw+1wFjw
176 1 2 3 4 5 137 138 139 141 10 11 160 162 167 175 sdclem2 φg:MAτj:Zg|kZg:MkAθjM=gmZjm+1mFjmff:ZAnZχ
177 176 ex φg:MAτj:Zg|kZg:MkAθjM=gmZjm+1mFjmff:ZAnZχ
178 136 177 sylbid φg:MAτj:ifMM0JjifMM0=gmifMM0jm+1mFjmff:ZAnZχ
179 178 exlimdv φg:MAτjj:ifMM0JjifMM0=gmifMM0jm+1mFjmff:ZAnZχ
180 124 179 mpd φg:MAτff:ZAnZχ
181 8 180 exlimddv φff:ZAnZχ