Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
The Prime Number Theorem
selberglem2
Next ⟩
selberglem3
Metamath Proof Explorer
Ascii
Unicode
Theorem
selberglem2
Description:
Lemma for
selberg
.
(Contributed by
Mario Carneiro
, 23-May-2016)
Ref
Expression
Hypothesis
selberglem1.t
⊢
T
=
log
x
n
2
+
2
-
2
log
x
n
n
Assertion
selberglem2
⊢
x
∈
ℝ
+
⟼
∑
n
=
1
x
∑
m
=
1
x
n
μ
n
log
m
2
x
−
2
log
x
∈
𝑂
1
Proof
Step
Hyp
Ref
Expression
1
selberglem1.t
⊢
T
=
log
x
n
2
+
2
-
2
log
x
n
n
2
reex
⊢
ℝ
∈
V
3
rpssre
⊢
ℝ
+
⊆
ℝ
4
2
3
ssexi
⊢
ℝ
+
∈
V
5
4
a1i
⊢
⊤
→
ℝ
+
∈
V
6
fzfid
⊢
⊤
∧
x
∈
ℝ
+
→
1
…
x
∈
Fin
7
elfznn
⊢
n
∈
1
…
x
→
n
∈
ℕ
8
7
adantl
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
n
∈
ℕ
9
mucl
⊢
n
∈
ℕ
→
μ
n
∈
ℤ
10
8
9
syl
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
∈
ℤ
11
10
zred
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
∈
ℝ
12
11
recnd
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
∈
ℂ
13
fzfid
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
1
…
x
n
∈
Fin
14
elfznn
⊢
m
∈
1
…
x
n
→
m
∈
ℕ
15
14
adantl
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
1
…
x
n
→
m
∈
ℕ
16
15
nnrpd
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
1
…
x
n
→
m
∈
ℝ
+
17
16
relogcld
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
1
…
x
n
→
log
m
∈
ℝ
18
17
resqcld
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
1
…
x
n
→
log
m
2
∈
ℝ
19
13
18
fsumrecl
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
∑
m
=
1
x
n
log
m
2
∈
ℝ
20
simplr
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
x
∈
ℝ
+
21
19
20
rerpdivcld
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
∑
m
=
1
x
n
log
m
2
x
∈
ℝ
22
21
recnd
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
∑
m
=
1
x
n
log
m
2
x
∈
ℂ
23
simpr
⊢
⊤
∧
x
∈
ℝ
+
→
x
∈
ℝ
+
24
7
nnrpd
⊢
n
∈
1
…
x
→
n
∈
ℝ
+
25
rpdivcl
⊢
x
∈
ℝ
+
∧
n
∈
ℝ
+
→
x
n
∈
ℝ
+
26
23
24
25
syl2an
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
x
n
∈
ℝ
+
27
26
relogcld
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
log
x
n
∈
ℝ
28
27
resqcld
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
log
x
n
2
∈
ℝ
29
2re
⊢
2
∈
ℝ
30
remulcl
⊢
2
∈
ℝ
∧
log
x
n
∈
ℝ
→
2
log
x
n
∈
ℝ
31
29
27
30
sylancr
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
2
log
x
n
∈
ℝ
32
resubcl
⊢
2
∈
ℝ
∧
2
log
x
n
∈
ℝ
→
2
−
2
log
x
n
∈
ℝ
33
29
31
32
sylancr
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
2
−
2
log
x
n
∈
ℝ
34
28
33
readdcld
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
log
x
n
2
+
2
-
2
log
x
n
∈
ℝ
35
34
8
nndivred
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
log
x
n
2
+
2
-
2
log
x
n
n
∈
ℝ
36
1
35
eqeltrid
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
T
∈
ℝ
37
36
recnd
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
T
∈
ℂ
38
22
37
subcld
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
∑
m
=
1
x
n
log
m
2
x
−
T
∈
ℂ
39
12
38
mulcld
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
∑
m
=
1
x
n
log
m
2
x
−
T
∈
ℂ
40
6
39
fsumcl
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
∑
m
=
1
x
n
log
m
2
x
−
T
∈
ℂ
41
12
37
mulcld
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
T
∈
ℂ
42
6
41
fsumcl
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
T
∈
ℂ
43
2cn
⊢
2
∈
ℂ
44
relogcl
⊢
x
∈
ℝ
+
→
log
x
∈
ℝ
45
44
adantl
⊢
⊤
∧
x
∈
ℝ
+
→
log
x
∈
ℝ
46
45
recnd
⊢
⊤
∧
x
∈
ℝ
+
→
log
x
∈
ℂ
47
mulcl
⊢
2
∈
ℂ
∧
log
x
∈
ℂ
→
2
log
x
∈
ℂ
48
43
46
47
sylancr
⊢
⊤
∧
x
∈
ℝ
+
→
2
log
x
∈
ℂ
49
42
48
subcld
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
T
−
2
log
x
∈
ℂ
50
eqidd
⊢
⊤
→
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
∑
m
=
1
x
n
log
m
2
x
−
T
=
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
∑
m
=
1
x
n
log
m
2
x
−
T
51
eqidd
⊢
⊤
→
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
T
−
2
log
x
=
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
T
−
2
log
x
52
5
40
49
50
51
offval2
⊢
⊤
→
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
∑
m
=
1
x
n
log
m
2
x
−
T
+
f
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
T
−
2
log
x
=
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
∑
m
=
1
x
n
log
m
2
x
−
T
+
∑
n
=
1
x
μ
n
T
-
2
log
x
53
40
42
48
addsubassd
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
∑
m
=
1
x
n
log
m
2
x
−
T
+
∑
n
=
1
x
μ
n
T
-
2
log
x
=
∑
n
=
1
x
μ
n
∑
m
=
1
x
n
log
m
2
x
−
T
+
∑
n
=
1
x
μ
n
T
-
2
log
x
54
rpcnne0
⊢
x
∈
ℝ
+
→
x
∈
ℂ
∧
x
≠
0
55
54
adantl
⊢
⊤
∧
x
∈
ℝ
+
→
x
∈
ℂ
∧
x
≠
0
56
55
simpld
⊢
⊤
∧
x
∈
ℝ
+
→
x
∈
ℂ
57
11
adantr
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
1
…
x
n
→
μ
n
∈
ℝ
58
57
18
remulcld
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
1
…
x
n
→
μ
n
log
m
2
∈
ℝ
59
13
58
fsumrecl
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
∑
m
=
1
x
n
μ
n
log
m
2
∈
ℝ
60
59
recnd
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
∑
m
=
1
x
n
μ
n
log
m
2
∈
ℂ
61
55
simprd
⊢
⊤
∧
x
∈
ℝ
+
→
x
≠
0
62
6
56
60
61
fsumdivc
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
∑
m
=
1
x
n
μ
n
log
m
2
x
=
∑
n
=
1
x
∑
m
=
1
x
n
μ
n
log
m
2
x
63
18
recnd
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
1
…
x
n
→
log
m
2
∈
ℂ
64
13
63
fsumcl
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
∑
m
=
1
x
n
log
m
2
∈
ℂ
65
55
adantr
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
x
∈
ℂ
∧
x
≠
0
66
divass
⊢
μ
n
∈
ℂ
∧
∑
m
=
1
x
n
log
m
2
∈
ℂ
∧
x
∈
ℂ
∧
x
≠
0
→
μ
n
∑
m
=
1
x
n
log
m
2
x
=
μ
n
∑
m
=
1
x
n
log
m
2
x
67
12
64
65
66
syl3anc
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
∑
m
=
1
x
n
log
m
2
x
=
μ
n
∑
m
=
1
x
n
log
m
2
x
68
13
12
63
fsummulc2
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
∑
m
=
1
x
n
log
m
2
=
∑
m
=
1
x
n
μ
n
log
m
2
69
68
oveq1d
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
∑
m
=
1
x
n
log
m
2
x
=
∑
m
=
1
x
n
μ
n
log
m
2
x
70
22
37
npcand
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
∑
m
=
1
x
n
log
m
2
x
-
T
+
T
=
∑
m
=
1
x
n
log
m
2
x
71
70
oveq2d
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
∑
m
=
1
x
n
log
m
2
x
-
T
+
T
=
μ
n
∑
m
=
1
x
n
log
m
2
x
72
12
38
37
adddid
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
∑
m
=
1
x
n
log
m
2
x
-
T
+
T
=
μ
n
∑
m
=
1
x
n
log
m
2
x
−
T
+
μ
n
T
73
71
72
eqtr3d
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
∑
m
=
1
x
n
log
m
2
x
=
μ
n
∑
m
=
1
x
n
log
m
2
x
−
T
+
μ
n
T
74
67
69
73
3eqtr3d
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
∑
m
=
1
x
n
μ
n
log
m
2
x
=
μ
n
∑
m
=
1
x
n
log
m
2
x
−
T
+
μ
n
T
75
74
sumeq2dv
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
∑
m
=
1
x
n
μ
n
log
m
2
x
=
∑
n
=
1
x
μ
n
∑
m
=
1
x
n
log
m
2
x
−
T
+
μ
n
T
76
6
39
41
fsumadd
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
∑
m
=
1
x
n
log
m
2
x
−
T
+
μ
n
T
=
∑
n
=
1
x
μ
n
∑
m
=
1
x
n
log
m
2
x
−
T
+
∑
n
=
1
x
μ
n
T
77
62
75
76
3eqtrrd
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
∑
m
=
1
x
n
log
m
2
x
−
T
+
∑
n
=
1
x
μ
n
T
=
∑
n
=
1
x
∑
m
=
1
x
n
μ
n
log
m
2
x
78
77
oveq1d
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
∑
m
=
1
x
n
log
m
2
x
−
T
+
∑
n
=
1
x
μ
n
T
-
2
log
x
=
∑
n
=
1
x
∑
m
=
1
x
n
μ
n
log
m
2
x
−
2
log
x
79
53
78
eqtr3d
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
∑
m
=
1
x
n
log
m
2
x
−
T
+
∑
n
=
1
x
μ
n
T
-
2
log
x
=
∑
n
=
1
x
∑
m
=
1
x
n
μ
n
log
m
2
x
−
2
log
x
80
79
mpteq2dva
⊢
⊤
→
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
∑
m
=
1
x
n
log
m
2
x
−
T
+
∑
n
=
1
x
μ
n
T
-
2
log
x
=
x
∈
ℝ
+
⟼
∑
n
=
1
x
∑
m
=
1
x
n
μ
n
log
m
2
x
−
2
log
x
81
52
80
eqtrd
⊢
⊤
→
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
∑
m
=
1
x
n
log
m
2
x
−
T
+
f
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
T
−
2
log
x
=
x
∈
ℝ
+
⟼
∑
n
=
1
x
∑
m
=
1
x
n
μ
n
log
m
2
x
−
2
log
x
82
1red
⊢
⊤
→
1
∈
ℝ
83
6
28
fsumrecl
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
log
x
n
2
∈
ℝ
84
83
23
rerpdivcld
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
log
x
n
2
x
∈
ℝ
85
84
recnd
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
log
x
n
2
x
∈
ℂ
86
2cnd
⊢
⊤
∧
x
∈
ℝ
+
→
2
∈
ℂ
87
2nn0
⊢
2
∈
ℕ
0
88
logexprlim
⊢
2
∈
ℕ
0
→
x
∈
ℝ
+
⟼
∑
n
=
1
x
log
x
n
2
x
⇝
ℝ
2
!
89
87
88
mp1i
⊢
⊤
→
x
∈
ℝ
+
⟼
∑
n
=
1
x
log
x
n
2
x
⇝
ℝ
2
!
90
2cnd
⊢
⊤
→
2
∈
ℂ
91
rlimconst
⊢
ℝ
+
⊆
ℝ
∧
2
∈
ℂ
→
x
∈
ℝ
+
⟼
2
⇝
ℝ
2
92
3
90
91
sylancr
⊢
⊤
→
x
∈
ℝ
+
⟼
2
⇝
ℝ
2
93
85
86
89
92
rlimadd
⊢
⊤
→
x
∈
ℝ
+
⟼
∑
n
=
1
x
log
x
n
2
x
+
2
⇝
ℝ
2
!
+
2
94
rlimo1
⊢
x
∈
ℝ
+
⟼
∑
n
=
1
x
log
x
n
2
x
+
2
⇝
ℝ
2
!
+
2
→
x
∈
ℝ
+
⟼
∑
n
=
1
x
log
x
n
2
x
+
2
∈
𝑂
1
95
93
94
syl
⊢
⊤
→
x
∈
ℝ
+
⟼
∑
n
=
1
x
log
x
n
2
x
+
2
∈
𝑂
1
96
readdcl
⊢
∑
n
=
1
x
log
x
n
2
x
∈
ℝ
∧
2
∈
ℝ
→
∑
n
=
1
x
log
x
n
2
x
+
2
∈
ℝ
97
84
29
96
sylancl
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
log
x
n
2
x
+
2
∈
ℝ
98
40
abscld
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
∑
m
=
1
x
n
log
m
2
x
−
T
∈
ℝ
99
97
recnd
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
log
x
n
2
x
+
2
∈
ℂ
100
99
abscld
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
log
x
n
2
x
+
2
∈
ℝ
101
39
abscld
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
∑
m
=
1
x
n
log
m
2
x
−
T
∈
ℝ
102
6
101
fsumrecl
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
∑
m
=
1
x
n
log
m
2
x
−
T
∈
ℝ
103
6
39
fsumabs
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
∑
m
=
1
x
n
log
m
2
x
−
T
≤
∑
n
=
1
x
μ
n
∑
m
=
1
x
n
log
m
2
x
−
T
104
readdcl
⊢
log
x
n
2
∈
ℝ
∧
2
∈
ℝ
→
log
x
n
2
+
2
∈
ℝ
105
28
29
104
sylancl
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
log
x
n
2
+
2
∈
ℝ
106
105
20
rerpdivcld
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
log
x
n
2
+
2
x
∈
ℝ
107
6
106
fsumrecl
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
log
x
n
2
+
2
x
∈
ℝ
108
38
abscld
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
∑
m
=
1
x
n
log
m
2
x
−
T
∈
ℝ
109
12
38
absmuld
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
∑
m
=
1
x
n
log
m
2
x
−
T
=
μ
n
∑
m
=
1
x
n
log
m
2
x
−
T
110
12
abscld
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
∈
ℝ
111
1red
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
1
∈
ℝ
112
38
absge0d
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
0
≤
∑
m
=
1
x
n
log
m
2
x
−
T
113
mule1
⊢
n
∈
ℕ
→
μ
n
≤
1
114
8
113
syl
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
≤
1
115
110
111
108
112
114
lemul1ad
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
∑
m
=
1
x
n
log
m
2
x
−
T
≤
1
∑
m
=
1
x
n
log
m
2
x
−
T
116
108
recnd
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
∑
m
=
1
x
n
log
m
2
x
−
T
∈
ℂ
117
116
mullidd
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
1
∑
m
=
1
x
n
log
m
2
x
−
T
=
∑
m
=
1
x
n
log
m
2
x
−
T
118
115
117
breqtrd
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
∑
m
=
1
x
n
log
m
2
x
−
T
≤
∑
m
=
1
x
n
log
m
2
x
−
T
119
109
118
eqbrtrd
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
∑
m
=
1
x
n
log
m
2
x
−
T
≤
∑
m
=
1
x
n
log
m
2
x
−
T
120
65
simpld
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
x
∈
ℂ
121
120
38
absmuld
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
x
∑
m
=
1
x
n
log
m
2
x
−
T
=
x
∑
m
=
1
x
n
log
m
2
x
−
T
122
120
22
37
subdid
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
x
∑
m
=
1
x
n
log
m
2
x
−
T
=
x
∑
m
=
1
x
n
log
m
2
x
−
x
T
123
65
simprd
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
x
≠
0
124
64
120
123
divcan2d
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
x
∑
m
=
1
x
n
log
m
2
x
=
∑
m
=
1
x
n
log
m
2
125
34
recnd
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
log
x
n
2
+
2
-
2
log
x
n
∈
ℂ
126
8
nnrpd
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
n
∈
ℝ
+
127
rpcnne0
⊢
n
∈
ℝ
+
→
n
∈
ℂ
∧
n
≠
0
128
126
127
syl
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
n
∈
ℂ
∧
n
≠
0
129
divass
⊢
x
∈
ℂ
∧
log
x
n
2
+
2
-
2
log
x
n
∈
ℂ
∧
n
∈
ℂ
∧
n
≠
0
→
x
log
x
n
2
+
2
-
2
log
x
n
n
=
x
log
x
n
2
+
2
-
2
log
x
n
n
130
1
oveq2i
⊢
x
T
=
x
log
x
n
2
+
2
-
2
log
x
n
n
131
129
130
eqtr4di
⊢
x
∈
ℂ
∧
log
x
n
2
+
2
-
2
log
x
n
∈
ℂ
∧
n
∈
ℂ
∧
n
≠
0
→
x
log
x
n
2
+
2
-
2
log
x
n
n
=
x
T
132
div23
⊢
x
∈
ℂ
∧
log
x
n
2
+
2
-
2
log
x
n
∈
ℂ
∧
n
∈
ℂ
∧
n
≠
0
→
x
log
x
n
2
+
2
-
2
log
x
n
n
=
x
n
log
x
n
2
+
2
-
2
log
x
n
133
131
132
eqtr3d
⊢
x
∈
ℂ
∧
log
x
n
2
+
2
-
2
log
x
n
∈
ℂ
∧
n
∈
ℂ
∧
n
≠
0
→
x
T
=
x
n
log
x
n
2
+
2
-
2
log
x
n
134
120
125
128
133
syl3anc
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
x
T
=
x
n
log
x
n
2
+
2
-
2
log
x
n
135
124
134
oveq12d
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
x
∑
m
=
1
x
n
log
m
2
x
−
x
T
=
∑
m
=
1
x
n
log
m
2
−
x
n
log
x
n
2
+
2
-
2
log
x
n
136
122
135
eqtrd
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
x
∑
m
=
1
x
n
log
m
2
x
−
T
=
∑
m
=
1
x
n
log
m
2
−
x
n
log
x
n
2
+
2
-
2
log
x
n
137
136
fveq2d
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
x
∑
m
=
1
x
n
log
m
2
x
−
T
=
∑
m
=
1
x
n
log
m
2
−
x
n
log
x
n
2
+
2
-
2
log
x
n
138
rprege0
⊢
x
∈
ℝ
+
→
x
∈
ℝ
∧
0
≤
x
139
absid
⊢
x
∈
ℝ
∧
0
≤
x
→
x
=
x
140
20
138
139
3syl
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
x
=
x
141
140
oveq1d
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
x
∑
m
=
1
x
n
log
m
2
x
−
T
=
x
∑
m
=
1
x
n
log
m
2
x
−
T
142
121
137
141
3eqtr3d
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
∑
m
=
1
x
n
log
m
2
−
x
n
log
x
n
2
+
2
-
2
log
x
n
=
x
∑
m
=
1
x
n
log
m
2
x
−
T
143
8
nncnd
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
n
∈
ℂ
144
143
mullidd
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
1
n
=
n
145
rpre
⊢
x
∈
ℝ
+
→
x
∈
ℝ
146
145
adantl
⊢
⊤
∧
x
∈
ℝ
+
→
x
∈
ℝ
147
fznnfl
⊢
x
∈
ℝ
→
n
∈
1
…
x
↔
n
∈
ℕ
∧
n
≤
x
148
146
147
syl
⊢
⊤
∧
x
∈
ℝ
+
→
n
∈
1
…
x
↔
n
∈
ℕ
∧
n
≤
x
149
148
simplbda
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
n
≤
x
150
144
149
eqbrtrd
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
1
n
≤
x
151
20
rpred
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
x
∈
ℝ
152
111
151
126
lemuldivd
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
1
n
≤
x
↔
1
≤
x
n
153
150
152
mpbid
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
1
≤
x
n
154
log2sumbnd
⊢
x
n
∈
ℝ
+
∧
1
≤
x
n
→
∑
m
=
1
x
n
log
m
2
−
x
n
log
x
n
2
+
2
-
2
log
x
n
≤
log
x
n
2
+
2
155
26
153
154
syl2anc
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
∑
m
=
1
x
n
log
m
2
−
x
n
log
x
n
2
+
2
-
2
log
x
n
≤
log
x
n
2
+
2
156
142
155
eqbrtrrd
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
x
∑
m
=
1
x
n
log
m
2
x
−
T
≤
log
x
n
2
+
2
157
108
105
20
lemuldiv2d
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
x
∑
m
=
1
x
n
log
m
2
x
−
T
≤
log
x
n
2
+
2
↔
∑
m
=
1
x
n
log
m
2
x
−
T
≤
log
x
n
2
+
2
x
158
156
157
mpbid
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
∑
m
=
1
x
n
log
m
2
x
−
T
≤
log
x
n
2
+
2
x
159
101
108
106
119
158
letrd
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
∑
m
=
1
x
n
log
m
2
x
−
T
≤
log
x
n
2
+
2
x
160
6
101
106
159
fsumle
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
∑
m
=
1
x
n
log
m
2
x
−
T
≤
∑
n
=
1
x
log
x
n
2
+
2
x
161
6
105
fsumrecl
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
log
x
n
2
+
2
∈
ℝ
162
remulcl
⊢
x
∈
ℝ
∧
2
∈
ℝ
→
x
⋅
2
∈
ℝ
163
146
29
162
sylancl
⊢
⊤
∧
x
∈
ℝ
+
→
x
⋅
2
∈
ℝ
164
83
163
readdcld
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
log
x
n
2
+
x
⋅
2
∈
ℝ
165
28
recnd
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
log
x
n
2
∈
ℂ
166
2cnd
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
2
∈
ℂ
167
6
165
166
fsumadd
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
log
x
n
2
+
2
=
∑
n
=
1
x
log
x
n
2
+
∑
n
=
1
x
2
168
fsumconst
⊢
1
…
x
∈
Fin
∧
2
∈
ℂ
→
∑
n
=
1
x
2
=
1
…
x
⋅
2
169
6
43
168
sylancl
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
2
=
1
…
x
⋅
2
170
138
adantl
⊢
⊤
∧
x
∈
ℝ
+
→
x
∈
ℝ
∧
0
≤
x
171
flge0nn0
⊢
x
∈
ℝ
∧
0
≤
x
→
x
∈
ℕ
0
172
hashfz1
⊢
x
∈
ℕ
0
→
1
…
x
=
x
173
170
171
172
3syl
⊢
⊤
∧
x
∈
ℝ
+
→
1
…
x
=
x
174
173
oveq1d
⊢
⊤
∧
x
∈
ℝ
+
→
1
…
x
⋅
2
=
x
⋅
2
175
169
174
eqtrd
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
2
=
x
⋅
2
176
175
oveq2d
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
log
x
n
2
+
∑
n
=
1
x
2
=
∑
n
=
1
x
log
x
n
2
+
x
⋅
2
177
167
176
eqtrd
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
log
x
n
2
+
2
=
∑
n
=
1
x
log
x
n
2
+
x
⋅
2
178
reflcl
⊢
x
∈
ℝ
→
x
∈
ℝ
179
146
178
syl
⊢
⊤
∧
x
∈
ℝ
+
→
x
∈
ℝ
180
29
a1i
⊢
⊤
∧
x
∈
ℝ
+
→
2
∈
ℝ
181
179
180
remulcld
⊢
⊤
∧
x
∈
ℝ
+
→
x
⋅
2
∈
ℝ
182
flle
⊢
x
∈
ℝ
→
x
≤
x
183
146
182
syl
⊢
⊤
∧
x
∈
ℝ
+
→
x
≤
x
184
2pos
⊢
0
<
2
185
29
184
pm3.2i
⊢
2
∈
ℝ
∧
0
<
2
186
185
a1i
⊢
⊤
∧
x
∈
ℝ
+
→
2
∈
ℝ
∧
0
<
2
187
lemul1
⊢
x
∈
ℝ
∧
x
∈
ℝ
∧
2
∈
ℝ
∧
0
<
2
→
x
≤
x
↔
x
⋅
2
≤
x
⋅
2
188
179
146
186
187
syl3anc
⊢
⊤
∧
x
∈
ℝ
+
→
x
≤
x
↔
x
⋅
2
≤
x
⋅
2
189
183
188
mpbid
⊢
⊤
∧
x
∈
ℝ
+
→
x
⋅
2
≤
x
⋅
2
190
181
163
83
189
leadd2dd
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
log
x
n
2
+
x
⋅
2
≤
∑
n
=
1
x
log
x
n
2
+
x
⋅
2
191
177
190
eqbrtrd
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
log
x
n
2
+
2
≤
∑
n
=
1
x
log
x
n
2
+
x
⋅
2
192
161
164
23
191
lediv1dd
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
log
x
n
2
+
2
x
≤
∑
n
=
1
x
log
x
n
2
+
x
⋅
2
x
193
105
recnd
⊢
⊤
∧
x
∈
ℝ
+
∧
n
∈
1
…
x
→
log
x
n
2
+
2
∈
ℂ
194
6
56
193
61
fsumdivc
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
log
x
n
2
+
2
x
=
∑
n
=
1
x
log
x
n
2
+
2
x
195
83
recnd
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
log
x
n
2
∈
ℂ
196
56
86
mulcld
⊢
⊤
∧
x
∈
ℝ
+
→
x
⋅
2
∈
ℂ
197
divdir
⊢
∑
n
=
1
x
log
x
n
2
∈
ℂ
∧
x
⋅
2
∈
ℂ
∧
x
∈
ℂ
∧
x
≠
0
→
∑
n
=
1
x
log
x
n
2
+
x
⋅
2
x
=
∑
n
=
1
x
log
x
n
2
x
+
x
⋅
2
x
198
195
196
55
197
syl3anc
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
log
x
n
2
+
x
⋅
2
x
=
∑
n
=
1
x
log
x
n
2
x
+
x
⋅
2
x
199
86
56
61
divcan3d
⊢
⊤
∧
x
∈
ℝ
+
→
x
⋅
2
x
=
2
200
199
oveq2d
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
log
x
n
2
x
+
x
⋅
2
x
=
∑
n
=
1
x
log
x
n
2
x
+
2
201
198
200
eqtrd
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
log
x
n
2
+
x
⋅
2
x
=
∑
n
=
1
x
log
x
n
2
x
+
2
202
192
194
201
3brtr3d
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
log
x
n
2
+
2
x
≤
∑
n
=
1
x
log
x
n
2
x
+
2
203
102
107
97
160
202
letrd
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
∑
m
=
1
x
n
log
m
2
x
−
T
≤
∑
n
=
1
x
log
x
n
2
x
+
2
204
98
102
97
103
203
letrd
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
∑
m
=
1
x
n
log
m
2
x
−
T
≤
∑
n
=
1
x
log
x
n
2
x
+
2
205
97
leabsd
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
log
x
n
2
x
+
2
≤
∑
n
=
1
x
log
x
n
2
x
+
2
206
98
97
100
204
205
letrd
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
∑
m
=
1
x
n
log
m
2
x
−
T
≤
∑
n
=
1
x
log
x
n
2
x
+
2
207
206
adantrr
⊢
⊤
∧
x
∈
ℝ
+
∧
1
≤
x
→
∑
n
=
1
x
μ
n
∑
m
=
1
x
n
log
m
2
x
−
T
≤
∑
n
=
1
x
log
x
n
2
x
+
2
208
82
95
97
40
207
o1le
⊢
⊤
→
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
∑
m
=
1
x
n
log
m
2
x
−
T
∈
𝑂
1
209
1
selberglem1
⊢
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
T
−
2
log
x
∈
𝑂
1
210
o1add
⊢
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
∑
m
=
1
x
n
log
m
2
x
−
T
∈
𝑂
1
∧
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
T
−
2
log
x
∈
𝑂
1
→
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
∑
m
=
1
x
n
log
m
2
x
−
T
+
f
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
T
−
2
log
x
∈
𝑂
1
211
208
209
210
sylancl
⊢
⊤
→
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
∑
m
=
1
x
n
log
m
2
x
−
T
+
f
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
T
−
2
log
x
∈
𝑂
1
212
81
211
eqeltrrd
⊢
⊤
→
x
∈
ℝ
+
⟼
∑
n
=
1
x
∑
m
=
1
x
n
μ
n
log
m
2
x
−
2
log
x
∈
𝑂
1
213
212
mptru
⊢
x
∈
ℝ
+
⟼
∑
n
=
1
x
∑
m
=
1
x
n
μ
n
log
m
2
x
−
2
log
x
∈
𝑂
1