Metamath Proof Explorer


Theorem selberglem2

Description: Lemma for selberg . (Contributed by Mario Carneiro, 23-May-2016)

Ref Expression
Hypothesis selberglem1.t T=logxn2+2-2logxnn
Assertion selberglem2 x+n=1xm=1xnμnlogm2x2logx𝑂1

Proof

Step Hyp Ref Expression
1 selberglem1.t T=logxn2+2-2logxnn
2 reex V
3 rpssre +
4 2 3 ssexi +V
5 4 a1i +V
6 fzfid x+1xFin
7 elfznn n1xn
8 7 adantl x+n1xn
9 mucl nμn
10 8 9 syl x+n1xμn
11 10 zred x+n1xμn
12 11 recnd x+n1xμn
13 fzfid x+n1x1xnFin
14 elfznn m1xnm
15 14 adantl x+n1xm1xnm
16 15 nnrpd x+n1xm1xnm+
17 16 relogcld x+n1xm1xnlogm
18 17 resqcld x+n1xm1xnlogm2
19 13 18 fsumrecl x+n1xm=1xnlogm2
20 simplr x+n1xx+
21 19 20 rerpdivcld x+n1xm=1xnlogm2x
22 21 recnd x+n1xm=1xnlogm2x
23 simpr x+x+
24 7 nnrpd n1xn+
25 rpdivcl x+n+xn+
26 23 24 25 syl2an x+n1xxn+
27 26 relogcld x+n1xlogxn
28 27 resqcld x+n1xlogxn2
29 2re 2
30 remulcl 2logxn2logxn
31 29 27 30 sylancr x+n1x2logxn
32 resubcl 22logxn22logxn
33 29 31 32 sylancr x+n1x22logxn
34 28 33 readdcld x+n1xlogxn2+2-2logxn
35 34 8 nndivred x+n1xlogxn2+2-2logxnn
36 1 35 eqeltrid x+n1xT
37 36 recnd x+n1xT
38 22 37 subcld x+n1xm=1xnlogm2xT
39 12 38 mulcld x+n1xμnm=1xnlogm2xT
40 6 39 fsumcl x+n=1xμnm=1xnlogm2xT
41 12 37 mulcld x+n1xμnT
42 6 41 fsumcl x+n=1xμnT
43 2cn 2
44 relogcl x+logx
45 44 adantl x+logx
46 45 recnd x+logx
47 mulcl 2logx2logx
48 43 46 47 sylancr x+2logx
49 42 48 subcld x+n=1xμnT2logx
50 eqidd x+n=1xμnm=1xnlogm2xT=x+n=1xμnm=1xnlogm2xT
51 eqidd x+n=1xμnT2logx=x+n=1xμnT2logx
52 5 40 49 50 51 offval2 x+n=1xμnm=1xnlogm2xT+fx+n=1xμnT2logx=x+n=1xμnm=1xnlogm2xT+n=1xμnT-2logx
53 40 42 48 addsubassd x+n=1xμnm=1xnlogm2xT+n=1xμnT-2logx=n=1xμnm=1xnlogm2xT+n=1xμnT-2logx
54 rpcnne0 x+xx0
55 54 adantl x+xx0
56 55 simpld x+x
57 11 adantr x+n1xm1xnμn
58 57 18 remulcld x+n1xm1xnμnlogm2
59 13 58 fsumrecl x+n1xm=1xnμnlogm2
60 59 recnd x+n1xm=1xnμnlogm2
61 55 simprd x+x0
62 6 56 60 61 fsumdivc x+n=1xm=1xnμnlogm2x=n=1xm=1xnμnlogm2x
63 18 recnd x+n1xm1xnlogm2
64 13 63 fsumcl x+n1xm=1xnlogm2
65 55 adantr x+n1xxx0
66 divass μnm=1xnlogm2xx0μnm=1xnlogm2x=μnm=1xnlogm2x
67 12 64 65 66 syl3anc x+n1xμnm=1xnlogm2x=μnm=1xnlogm2x
68 13 12 63 fsummulc2 x+n1xμnm=1xnlogm2=m=1xnμnlogm2
69 68 oveq1d x+n1xμnm=1xnlogm2x=m=1xnμnlogm2x
70 22 37 npcand x+n1xm=1xnlogm2x-T+T=m=1xnlogm2x
71 70 oveq2d x+n1xμnm=1xnlogm2x-T+T=μnm=1xnlogm2x
72 12 38 37 adddid x+n1xμnm=1xnlogm2x-T+T=μnm=1xnlogm2xT+μnT
73 71 72 eqtr3d x+n1xμnm=1xnlogm2x=μnm=1xnlogm2xT+μnT
74 67 69 73 3eqtr3d x+n1xm=1xnμnlogm2x=μnm=1xnlogm2xT+μnT
75 74 sumeq2dv x+n=1xm=1xnμnlogm2x=n=1xμnm=1xnlogm2xT+μnT
76 6 39 41 fsumadd x+n=1xμnm=1xnlogm2xT+μnT=n=1xμnm=1xnlogm2xT+n=1xμnT
77 62 75 76 3eqtrrd x+n=1xμnm=1xnlogm2xT+n=1xμnT=n=1xm=1xnμnlogm2x
78 77 oveq1d x+n=1xμnm=1xnlogm2xT+n=1xμnT-2logx=n=1xm=1xnμnlogm2x2logx
79 53 78 eqtr3d x+n=1xμnm=1xnlogm2xT+n=1xμnT-2logx=n=1xm=1xnμnlogm2x2logx
80 79 mpteq2dva x+n=1xμnm=1xnlogm2xT+n=1xμnT-2logx=x+n=1xm=1xnμnlogm2x2logx
81 52 80 eqtrd x+n=1xμnm=1xnlogm2xT+fx+n=1xμnT2logx=x+n=1xm=1xnμnlogm2x2logx
82 1red 1
83 6 28 fsumrecl x+n=1xlogxn2
84 83 23 rerpdivcld x+n=1xlogxn2x
85 84 recnd x+n=1xlogxn2x
86 2cnd x+2
87 2nn0 20
88 logexprlim 20x+n=1xlogxn2x2!
89 87 88 mp1i x+n=1xlogxn2x2!
90 2cnd 2
91 rlimconst +2x+22
92 3 90 91 sylancr x+22
93 85 86 89 92 rlimadd x+n=1xlogxn2x+22!+2
94 rlimo1 x+n=1xlogxn2x+22!+2x+n=1xlogxn2x+2𝑂1
95 93 94 syl x+n=1xlogxn2x+2𝑂1
96 readdcl n=1xlogxn2x2n=1xlogxn2x+2
97 84 29 96 sylancl x+n=1xlogxn2x+2
98 40 abscld x+n=1xμnm=1xnlogm2xT
99 97 recnd x+n=1xlogxn2x+2
100 99 abscld x+n=1xlogxn2x+2
101 39 abscld x+n1xμnm=1xnlogm2xT
102 6 101 fsumrecl x+n=1xμnm=1xnlogm2xT
103 6 39 fsumabs x+n=1xμnm=1xnlogm2xTn=1xμnm=1xnlogm2xT
104 readdcl logxn22logxn2+2
105 28 29 104 sylancl x+n1xlogxn2+2
106 105 20 rerpdivcld x+n1xlogxn2+2x
107 6 106 fsumrecl x+n=1xlogxn2+2x
108 38 abscld x+n1xm=1xnlogm2xT
109 12 38 absmuld x+n1xμnm=1xnlogm2xT=μnm=1xnlogm2xT
110 12 abscld x+n1xμn
111 1red x+n1x1
112 38 absge0d x+n1x0m=1xnlogm2xT
113 mule1 nμn1
114 8 113 syl x+n1xμn1
115 110 111 108 112 114 lemul1ad x+n1xμnm=1xnlogm2xT1m=1xnlogm2xT
116 108 recnd x+n1xm=1xnlogm2xT
117 116 mullidd x+n1x1m=1xnlogm2xT=m=1xnlogm2xT
118 115 117 breqtrd x+n1xμnm=1xnlogm2xTm=1xnlogm2xT
119 109 118 eqbrtrd x+n1xμnm=1xnlogm2xTm=1xnlogm2xT
120 65 simpld x+n1xx
121 120 38 absmuld x+n1xxm=1xnlogm2xT=xm=1xnlogm2xT
122 120 22 37 subdid x+n1xxm=1xnlogm2xT=xm=1xnlogm2xxT
123 65 simprd x+n1xx0
124 64 120 123 divcan2d x+n1xxm=1xnlogm2x=m=1xnlogm2
125 34 recnd x+n1xlogxn2+2-2logxn
126 8 nnrpd x+n1xn+
127 rpcnne0 n+nn0
128 126 127 syl x+n1xnn0
129 divass xlogxn2+2-2logxnnn0xlogxn2+2-2logxnn=xlogxn2+2-2logxnn
130 1 oveq2i xT=xlogxn2+2-2logxnn
131 129 130 eqtr4di xlogxn2+2-2logxnnn0xlogxn2+2-2logxnn=xT
132 div23 xlogxn2+2-2logxnnn0xlogxn2+2-2logxnn=xnlogxn2+2-2logxn
133 131 132 eqtr3d xlogxn2+2-2logxnnn0xT=xnlogxn2+2-2logxn
134 120 125 128 133 syl3anc x+n1xxT=xnlogxn2+2-2logxn
135 124 134 oveq12d x+n1xxm=1xnlogm2xxT=m=1xnlogm2xnlogxn2+2-2logxn
136 122 135 eqtrd x+n1xxm=1xnlogm2xT=m=1xnlogm2xnlogxn2+2-2logxn
137 136 fveq2d x+n1xxm=1xnlogm2xT=m=1xnlogm2xnlogxn2+2-2logxn
138 rprege0 x+x0x
139 absid x0xx=x
140 20 138 139 3syl x+n1xx=x
141 140 oveq1d x+n1xxm=1xnlogm2xT=xm=1xnlogm2xT
142 121 137 141 3eqtr3d x+n1xm=1xnlogm2xnlogxn2+2-2logxn=xm=1xnlogm2xT
143 8 nncnd x+n1xn
144 143 mullidd x+n1x1n=n
145 rpre x+x
146 145 adantl x+x
147 fznnfl xn1xnnx
148 146 147 syl x+n1xnnx
149 148 simplbda x+n1xnx
150 144 149 eqbrtrd x+n1x1nx
151 20 rpred x+n1xx
152 111 151 126 lemuldivd x+n1x1nx1xn
153 150 152 mpbid x+n1x1xn
154 log2sumbnd xn+1xnm=1xnlogm2xnlogxn2+2-2logxnlogxn2+2
155 26 153 154 syl2anc x+n1xm=1xnlogm2xnlogxn2+2-2logxnlogxn2+2
156 142 155 eqbrtrrd x+n1xxm=1xnlogm2xTlogxn2+2
157 108 105 20 lemuldiv2d x+n1xxm=1xnlogm2xTlogxn2+2m=1xnlogm2xTlogxn2+2x
158 156 157 mpbid x+n1xm=1xnlogm2xTlogxn2+2x
159 101 108 106 119 158 letrd x+n1xμnm=1xnlogm2xTlogxn2+2x
160 6 101 106 159 fsumle x+n=1xμnm=1xnlogm2xTn=1xlogxn2+2x
161 6 105 fsumrecl x+n=1xlogxn2+2
162 remulcl x2x2
163 146 29 162 sylancl x+x2
164 83 163 readdcld x+n=1xlogxn2+x2
165 28 recnd x+n1xlogxn2
166 2cnd x+n1x2
167 6 165 166 fsumadd x+n=1xlogxn2+2=n=1xlogxn2+n=1x2
168 fsumconst 1xFin2n=1x2=1x2
169 6 43 168 sylancl x+n=1x2=1x2
170 138 adantl x+x0x
171 flge0nn0 x0xx0
172 hashfz1 x01x=x
173 170 171 172 3syl x+1x=x
174 173 oveq1d x+1x2=x2
175 169 174 eqtrd x+n=1x2=x2
176 175 oveq2d x+n=1xlogxn2+n=1x2=n=1xlogxn2+x2
177 167 176 eqtrd x+n=1xlogxn2+2=n=1xlogxn2+x2
178 reflcl xx
179 146 178 syl x+x
180 29 a1i x+2
181 179 180 remulcld x+x2
182 flle xxx
183 146 182 syl x+xx
184 2pos 0<2
185 29 184 pm3.2i 20<2
186 185 a1i x+20<2
187 lemul1 xx20<2xxx2x2
188 179 146 186 187 syl3anc x+xxx2x2
189 183 188 mpbid x+x2x2
190 181 163 83 189 leadd2dd x+n=1xlogxn2+x2n=1xlogxn2+x2
191 177 190 eqbrtrd x+n=1xlogxn2+2n=1xlogxn2+x2
192 161 164 23 191 lediv1dd x+n=1xlogxn2+2xn=1xlogxn2+x2x
193 105 recnd x+n1xlogxn2+2
194 6 56 193 61 fsumdivc x+n=1xlogxn2+2x=n=1xlogxn2+2x
195 83 recnd x+n=1xlogxn2
196 56 86 mulcld x+x2
197 divdir n=1xlogxn2x2xx0n=1xlogxn2+x2x=n=1xlogxn2x+x2x
198 195 196 55 197 syl3anc x+n=1xlogxn2+x2x=n=1xlogxn2x+x2x
199 86 56 61 divcan3d x+x2x=2
200 199 oveq2d x+n=1xlogxn2x+x2x=n=1xlogxn2x+2
201 198 200 eqtrd x+n=1xlogxn2+x2x=n=1xlogxn2x+2
202 192 194 201 3brtr3d x+n=1xlogxn2+2xn=1xlogxn2x+2
203 102 107 97 160 202 letrd x+n=1xμnm=1xnlogm2xTn=1xlogxn2x+2
204 98 102 97 103 203 letrd x+n=1xμnm=1xnlogm2xTn=1xlogxn2x+2
205 97 leabsd x+n=1xlogxn2x+2n=1xlogxn2x+2
206 98 97 100 204 205 letrd x+n=1xμnm=1xnlogm2xTn=1xlogxn2x+2
207 206 adantrr x+1xn=1xμnm=1xnlogm2xTn=1xlogxn2x+2
208 82 95 97 40 207 o1le x+n=1xμnm=1xnlogm2xT𝑂1
209 1 selberglem1 x+n=1xμnT2logx𝑂1
210 o1add x+n=1xμnm=1xnlogm2xT𝑂1x+n=1xμnT2logx𝑂1x+n=1xμnm=1xnlogm2xT+fx+n=1xμnT2logx𝑂1
211 208 209 210 sylancl x+n=1xμnm=1xnlogm2xT+fx+n=1xμnT2logx𝑂1
212 81 211 eqeltrrd x+n=1xm=1xnμnlogm2x2logx𝑂1
213 212 mptru x+n=1xm=1xnμnlogm2x2logx𝑂1