Step |
Hyp |
Ref |
Expression |
1 |
|
signsply0.d |
|
2 |
|
signsply0.c |
|
3 |
|
signsply0.b |
|
4 |
|
signsplypnf.g |
|
5 |
|
plyf |
|
6 |
5
|
ffnd |
|
7 |
|
ovex |
|
8 |
7
|
rgenw |
|
9 |
4
|
fnmpt |
|
10 |
8 9
|
mp1i |
|
11 |
|
cnex |
|
12 |
11
|
a1i |
|
13 |
|
reex |
|
14 |
|
rpssre |
|
15 |
13 14
|
ssexi |
|
16 |
15
|
a1i |
|
17 |
|
ax-resscn |
|
18 |
14 17
|
sstri |
|
19 |
|
sseqin2 |
|
20 |
18 19
|
mpbi |
|
21 |
2 1
|
coeid2 |
|
22 |
4
|
fvmpt2 |
|
23 |
7 22
|
mpan2 |
|
24 |
23
|
adantl |
|
25 |
6 10 12 16 20 21 24
|
offval |
|
26 |
|
fzfid |
|
27 |
18
|
a1i |
|
28 |
27
|
sselda |
|
29 |
|
dgrcl |
|
30 |
1 29
|
eqeltrid |
|
31 |
30
|
adantr |
|
32 |
28 31
|
expcld |
|
33 |
2
|
coef3 |
|
34 |
33
|
ad2antrr |
|
35 |
|
elfznn0 |
|
36 |
35
|
adantl |
|
37 |
34 36
|
ffvelrnd |
|
38 |
28
|
adantr |
|
39 |
38 36
|
expcld |
|
40 |
37 39
|
mulcld |
|
41 |
|
rpne0 |
|
42 |
41
|
adantl |
|
43 |
30
|
nn0zd |
|
44 |
43
|
adantr |
|
45 |
28 42 44
|
expne0d |
|
46 |
26 32 40 45
|
fsumdivc |
|
47 |
|
fzosn |
|
48 |
47
|
ineq2d |
|
49 |
|
fzodisj |
|
50 |
48 49
|
eqtr3di |
|
51 |
44 50
|
syl |
|
52 |
|
fzval3 |
|
53 |
43 52
|
syl |
|
54 |
|
nn0uz |
|
55 |
30 54
|
eleqtrdi |
|
56 |
|
fzosplitsn |
|
57 |
55 56
|
syl |
|
58 |
53 57
|
eqtrd |
|
59 |
58
|
adantr |
|
60 |
32
|
adantr |
|
61 |
42
|
adantr |
|
62 |
44
|
adantr |
|
63 |
38 61 62
|
expne0d |
|
64 |
40 60 63
|
divcld |
|
65 |
51 59 26 64
|
fsumsplit |
|
66 |
46 65
|
eqtrd |
|
67 |
66
|
mpteq2dva |
|
68 |
25 67
|
eqtrd |
|
69 |
|
sumex |
|
70 |
69
|
a1i |
|
71 |
|
sumex |
|
72 |
71
|
a1i |
|
73 |
14
|
a1i |
|
74 |
|
fzofi |
|
75 |
74
|
a1i |
|
76 |
|
ovexd |
|
77 |
33
|
ad2antrr |
|
78 |
|
elfzonn0 |
|
79 |
78
|
ad2antlr |
|
80 |
77 79
|
ffvelrnd |
|
81 |
28
|
adantlr |
|
82 |
81 79
|
expcld |
|
83 |
32
|
adantlr |
|
84 |
41
|
adantl |
|
85 |
44
|
adantlr |
|
86 |
81 84 85
|
expne0d |
|
87 |
80 82 83 86
|
divassd |
|
88 |
87
|
mpteq2dva |
|
89 |
|
fvexd |
|
90 |
|
ovexd |
|
91 |
33
|
adantr |
|
92 |
78
|
adantl |
|
93 |
91 92
|
ffvelrnd |
|
94 |
|
rlimconst |
|
95 |
14 93 94
|
sylancr |
|
96 |
79
|
nn0zd |
|
97 |
85 96
|
zsubcld |
|
98 |
81 84 97
|
cxpexpzd |
|
99 |
98
|
oveq2d |
|
100 |
81 84 97
|
expnegd |
|
101 |
85
|
zcnd |
|
102 |
79
|
nn0cnd |
|
103 |
101 102
|
negsubdi2d |
|
104 |
103
|
oveq2d |
|
105 |
99 100 104
|
3eqtr2d |
|
106 |
81 84 85 96
|
expsubd |
|
107 |
105 106
|
eqtrd |
|
108 |
107
|
mpteq2dva |
|
109 |
92
|
nn0red |
|
110 |
30
|
adantr |
|
111 |
110
|
nn0red |
|
112 |
|
elfzolt2 |
|
113 |
112
|
adantl |
|
114 |
|
difrp |
|
115 |
114
|
biimpa |
|
116 |
109 111 113 115
|
syl21anc |
|
117 |
|
cxplim |
|
118 |
116 117
|
syl |
|
119 |
108 118
|
eqbrtrrd |
|
120 |
89 90 95 119
|
rlimmul |
|
121 |
93
|
mul01d |
|
122 |
120 121
|
breqtrd |
|
123 |
88 122
|
eqbrtrd |
|
124 |
73 75 76 123
|
fsumrlim |
|
125 |
75
|
olcd |
|
126 |
|
sumz |
|
127 |
125 126
|
syl |
|
128 |
124 127
|
breqtrd |
|
129 |
33 30
|
ffvelrnd |
|
130 |
129
|
adantr |
|
131 |
130 32
|
mulcld |
|
132 |
131 32 45
|
divcld |
|
133 |
|
fveq2 |
|
134 |
|
oveq2 |
|
135 |
133 134
|
oveq12d |
|
136 |
135
|
oveq1d |
|
137 |
136
|
sumsn |
|
138 |
31 132 137
|
syl2anc |
|
139 |
130 32 45
|
divcan4d |
|
140 |
138 139
|
eqtrd |
|
141 |
140
|
mpteq2dva |
|
142 |
|
rlimconst |
|
143 |
14 129 142
|
sylancr |
|
144 |
141 143
|
eqbrtrd |
|
145 |
70 72 128 144
|
rlimadd |
|
146 |
129
|
addid2d |
|
147 |
146 3
|
eqtr4di |
|
148 |
145 147
|
breqtrd |
|
149 |
68 148
|
eqbrtrd |
|