Metamath Proof Explorer


Theorem signsplypnf

Description: The quotient of a polynomial F by a monic monomial of same degree G converges to the highest coefficient of F . (Contributed by Thierry Arnoux, 18-Sep-2018)

Ref Expression
Hypotheses signsply0.d D = deg F
signsply0.c C = coeff F
signsply0.b B = C D
signsplypnf.g G = x + x D
Assertion signsplypnf F Poly F ÷ f G B

Proof

Step Hyp Ref Expression
1 signsply0.d D = deg F
2 signsply0.c C = coeff F
3 signsply0.b B = C D
4 signsplypnf.g G = x + x D
5 plyf F Poly F :
6 5 ffnd F Poly F Fn
7 ovex x D V
8 7 rgenw x + x D V
9 4 fnmpt x + x D V G Fn +
10 8 9 mp1i F Poly G Fn +
11 cnex V
12 11 a1i F Poly V
13 reex V
14 rpssre +
15 13 14 ssexi + V
16 15 a1i F Poly + V
17 ax-resscn
18 14 17 sstri +
19 sseqin2 + + = +
20 18 19 mpbi + = +
21 2 1 coeid2 F Poly x F x = k = 0 D C k x k
22 4 fvmpt2 x + x D V G x = x D
23 7 22 mpan2 x + G x = x D
24 23 adantl F Poly x + G x = x D
25 6 10 12 16 20 21 24 offval F Poly F ÷ f G = x + k = 0 D C k x k x D
26 fzfid F Poly x + 0 D Fin
27 18 a1i F Poly +
28 27 sselda F Poly x + x
29 dgrcl F Poly deg F 0
30 1 29 eqeltrid F Poly D 0
31 30 adantr F Poly x + D 0
32 28 31 expcld F Poly x + x D
33 2 coef3 F Poly C : 0
34 33 ad2antrr F Poly x + k 0 D C : 0
35 elfznn0 k 0 D k 0
36 35 adantl F Poly x + k 0 D k 0
37 34 36 ffvelrnd F Poly x + k 0 D C k
38 28 adantr F Poly x + k 0 D x
39 38 36 expcld F Poly x + k 0 D x k
40 37 39 mulcld F Poly x + k 0 D C k x k
41 rpne0 x + x 0
42 41 adantl F Poly x + x 0
43 30 nn0zd F Poly D
44 43 adantr F Poly x + D
45 28 42 44 expne0d F Poly x + x D 0
46 26 32 40 45 fsumdivc F Poly x + k = 0 D C k x k x D = k = 0 D C k x k x D
47 fzosn D D ..^ D + 1 = D
48 47 ineq2d D 0 ..^ D D ..^ D + 1 = 0 ..^ D D
49 fzodisj 0 ..^ D D ..^ D + 1 =
50 48 49 eqtr3di D 0 ..^ D D =
51 44 50 syl F Poly x + 0 ..^ D D =
52 fzval3 D 0 D = 0 ..^ D + 1
53 43 52 syl F Poly 0 D = 0 ..^ D + 1
54 nn0uz 0 = 0
55 30 54 eleqtrdi F Poly D 0
56 fzosplitsn D 0 0 ..^ D + 1 = 0 ..^ D D
57 55 56 syl F Poly 0 ..^ D + 1 = 0 ..^ D D
58 53 57 eqtrd F Poly 0 D = 0 ..^ D D
59 58 adantr F Poly x + 0 D = 0 ..^ D D
60 32 adantr F Poly x + k 0 D x D
61 42 adantr F Poly x + k 0 D x 0
62 44 adantr F Poly x + k 0 D D
63 38 61 62 expne0d F Poly x + k 0 D x D 0
64 40 60 63 divcld F Poly x + k 0 D C k x k x D
65 51 59 26 64 fsumsplit F Poly x + k = 0 D C k x k x D = k 0 ..^ D C k x k x D + k D C k x k x D
66 46 65 eqtrd F Poly x + k = 0 D C k x k x D = k 0 ..^ D C k x k x D + k D C k x k x D
67 66 mpteq2dva F Poly x + k = 0 D C k x k x D = x + k 0 ..^ D C k x k x D + k D C k x k x D
68 25 67 eqtrd F Poly F ÷ f G = x + k 0 ..^ D C k x k x D + k D C k x k x D
69 sumex k 0 ..^ D C k x k x D V
70 69 a1i F Poly x + k 0 ..^ D C k x k x D V
71 sumex k D C k x k x D V
72 71 a1i F Poly x + k D C k x k x D V
73 14 a1i F Poly +
74 fzofi 0 ..^ D Fin
75 74 a1i F Poly 0 ..^ D Fin
76 ovexd F Poly x + k 0 ..^ D C k x k x D V
77 33 ad2antrr F Poly k 0 ..^ D x + C : 0
78 elfzonn0 k 0 ..^ D k 0
79 78 ad2antlr F Poly k 0 ..^ D x + k 0
80 77 79 ffvelrnd F Poly k 0 ..^ D x + C k
81 28 adantlr F Poly k 0 ..^ D x + x
82 81 79 expcld F Poly k 0 ..^ D x + x k
83 32 adantlr F Poly k 0 ..^ D x + x D
84 41 adantl F Poly k 0 ..^ D x + x 0
85 44 adantlr F Poly k 0 ..^ D x + D
86 81 84 85 expne0d F Poly k 0 ..^ D x + x D 0
87 80 82 83 86 divassd F Poly k 0 ..^ D x + C k x k x D = C k x k x D
88 87 mpteq2dva F Poly k 0 ..^ D x + C k x k x D = x + C k x k x D
89 fvexd F Poly k 0 ..^ D x + C k V
90 ovexd F Poly k 0 ..^ D x + x k x D V
91 33 adantr F Poly k 0 ..^ D C : 0
92 78 adantl F Poly k 0 ..^ D k 0
93 91 92 ffvelrnd F Poly k 0 ..^ D C k
94 rlimconst + C k x + C k C k
95 14 93 94 sylancr F Poly k 0 ..^ D x + C k C k
96 79 nn0zd F Poly k 0 ..^ D x + k
97 85 96 zsubcld F Poly k 0 ..^ D x + D k
98 81 84 97 cxpexpzd F Poly k 0 ..^ D x + x D k = x D k
99 98 oveq2d F Poly k 0 ..^ D x + 1 x D k = 1 x D k
100 81 84 97 expnegd F Poly k 0 ..^ D x + x D k = 1 x D k
101 85 zcnd F Poly k 0 ..^ D x + D
102 79 nn0cnd F Poly k 0 ..^ D x + k
103 101 102 negsubdi2d F Poly k 0 ..^ D x + D k = k D
104 103 oveq2d F Poly k 0 ..^ D x + x D k = x k D
105 99 100 104 3eqtr2d F Poly k 0 ..^ D x + 1 x D k = x k D
106 81 84 85 96 expsubd F Poly k 0 ..^ D x + x k D = x k x D
107 105 106 eqtrd F Poly k 0 ..^ D x + 1 x D k = x k x D
108 107 mpteq2dva F Poly k 0 ..^ D x + 1 x D k = x + x k x D
109 92 nn0red F Poly k 0 ..^ D k
110 30 adantr F Poly k 0 ..^ D D 0
111 110 nn0red F Poly k 0 ..^ D D
112 elfzolt2 k 0 ..^ D k < D
113 112 adantl F Poly k 0 ..^ D k < D
114 difrp k D k < D D k +
115 114 biimpa k D k < D D k +
116 109 111 113 115 syl21anc F Poly k 0 ..^ D D k +
117 cxplim D k + x + 1 x D k 0
118 116 117 syl F Poly k 0 ..^ D x + 1 x D k 0
119 108 118 eqbrtrrd F Poly k 0 ..^ D x + x k x D 0
120 89 90 95 119 rlimmul F Poly k 0 ..^ D x + C k x k x D C k 0
121 93 mul01d F Poly k 0 ..^ D C k 0 = 0
122 120 121 breqtrd F Poly k 0 ..^ D x + C k x k x D 0
123 88 122 eqbrtrd F Poly k 0 ..^ D x + C k x k x D 0
124 73 75 76 123 fsumrlim F Poly x + k 0 ..^ D C k x k x D k 0 ..^ D 0
125 75 olcd F Poly 0 ..^ D 0 0 ..^ D Fin
126 sumz 0 ..^ D 0 0 ..^ D Fin k 0 ..^ D 0 = 0
127 125 126 syl F Poly k 0 ..^ D 0 = 0
128 124 127 breqtrd F Poly x + k 0 ..^ D C k x k x D 0
129 33 30 ffvelrnd F Poly C D
130 129 adantr F Poly x + C D
131 130 32 mulcld F Poly x + C D x D
132 131 32 45 divcld F Poly x + C D x D x D
133 fveq2 k = D C k = C D
134 oveq2 k = D x k = x D
135 133 134 oveq12d k = D C k x k = C D x D
136 135 oveq1d k = D C k x k x D = C D x D x D
137 136 sumsn D 0 C D x D x D k D C k x k x D = C D x D x D
138 31 132 137 syl2anc F Poly x + k D C k x k x D = C D x D x D
139 130 32 45 divcan4d F Poly x + C D x D x D = C D
140 138 139 eqtrd F Poly x + k D C k x k x D = C D
141 140 mpteq2dva F Poly x + k D C k x k x D = x + C D
142 rlimconst + C D x + C D C D
143 14 129 142 sylancr F Poly x + C D C D
144 141 143 eqbrtrd F Poly x + k D C k x k x D C D
145 70 72 128 144 rlimadd F Poly x + k 0 ..^ D C k x k x D + k D C k x k x D 0 + C D
146 129 addid2d F Poly 0 + C D = C D
147 146 3 eqtr4di F Poly 0 + C D = B
148 145 147 breqtrd F Poly x + k 0 ..^ D C k x k x D + k D C k x k x D B
149 68 148 eqbrtrd F Poly F ÷ f G B