Metamath Proof Explorer


Theorem smflimsuplem4

Description: If H converges, the limsup of F is real. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses smflimsuplem4.1 n φ
smflimsuplem4.m φ M
smflimsuplem4.z Z = M
smflimsuplem4.s φ S SAlg
smflimsuplem4.f φ F : Z SMblFn S
smflimsuplem4.e E = n Z x m n dom F m | sup ran m n F m x * <
smflimsuplem4.h H = n Z x E n sup ran m n F m x * <
smflimsuplem4.n φ N Z
smflimsuplem4.i φ x n N dom H n
smflimsuplem4.c φ n Z H n x dom
Assertion smflimsuplem4 φ lim sup m Z F m x

Proof

Step Hyp Ref Expression
1 smflimsuplem4.1 n φ
2 smflimsuplem4.m φ M
3 smflimsuplem4.z Z = M
4 smflimsuplem4.s φ S SAlg
5 smflimsuplem4.f φ F : Z SMblFn S
6 smflimsuplem4.e E = n Z x m n dom F m | sup ran m n F m x * <
7 smflimsuplem4.h H = n Z x E n sup ran m n F m x * <
8 smflimsuplem4.n φ N Z
9 smflimsuplem4.i φ x n N dom H n
10 smflimsuplem4.c φ n Z H n x dom
11 nfv m φ
12 3 8 eluzelz2d φ N
13 eqid N = N
14 fvexd φ m Z F m x V
15 fvexd φ m N F m x V
16 11 2 12 3 13 14 15 limsupequzmpt φ lim sup m Z F m x = lim sup m N F m x
17 4 adantr φ m N S SAlg
18 3 8 uzssd2 φ N Z
19 18 sselda φ m N m Z
20 5 ffvelrnda φ m Z F m SMblFn S
21 19 20 syldan φ m N F m SMblFn S
22 eqid dom F m = dom F m
23 17 21 22 smff φ m N F m : dom F m
24 3 6 7 19 smflimsuplem1 φ m N dom H m dom F m
25 9 adantr φ m N x n N dom H n
26 simpr φ m N m N
27 fveq2 n = m H n = H m
28 27 dmeqd n = m dom H n = dom H m
29 28 eleq2d n = m x dom H n x dom H m
30 25 26 29 eliind φ m N x dom H m
31 24 30 sseldd φ m N x dom F m
32 23 31 ffvelrnd φ m N F m x
33 32 rexrd φ m N F m x *
34 11 12 13 33 limsupvaluzmpt φ lim sup m N F m x = sup ran n N sup ran m n F m x * < * <
35 16 34 eqtrd φ lim sup m Z F m x = sup ran n N sup ran m n F m x * < * <
36 18 adantr φ n N N Z
37 simpr φ n N n N
38 36 37 sseldd φ n N n Z
39 7 a1i φ H = n Z x E n sup ran m n F m x * <
40 fvex E n V
41 40 mptex x E n sup ran m n F m x * < V
42 41 a1i φ n Z x E n sup ran m n F m x * < V
43 39 42 fvmpt2d φ n Z H n = x E n sup ran m n F m x * <
44 38 43 syldan φ n N H n = x E n sup ran m n F m x * <
45 44 dmeqd φ n N dom H n = dom x E n sup ran m n F m x * <
46 xrltso < Or *
47 46 supex sup ran m n F m x * < V
48 eqid x E n sup ran m n F m x * < = x E n sup ran m n F m x * <
49 47 48 dmmpti dom x E n sup ran m n F m x * < = E n
50 49 a1i φ n N dom x E n sup ran m n F m x * < = E n
51 45 50 eqtrd φ n N dom H n = E n
52 1 51 iineq2d φ n N dom H n = n N E n
53 9 52 eleqtrd φ x n N E n
54 53 adantr φ n N x n N E n
55 eliinid x n N E n n N x E n
56 54 37 55 syl2anc φ n N x E n
57 47 a1i φ n N x E n sup ran m n F m x * < V
58 44 57 fvmpt2d φ n N x E n H n x = sup ran m n F m x * <
59 56 58 mpdan φ n N H n x = sup ran m n F m x * <
60 eqid x m n dom F m | sup ran m n F m x * < = x m n dom F m | sup ran m n F m x * <
61 3 eluzelz2 n Z n
62 eqid n = n
63 61 62 uzn0d n Z n
64 fvex F m V
65 64 dmex dom F m V
66 65 rgenw m n dom F m V
67 66 a1i n Z m n dom F m V
68 63 67 iinexd n Z m n dom F m V
69 68 adantl φ n Z m n dom F m V
70 60 69 rabexd φ n Z x m n dom F m | sup ran m n F m x * < V
71 38 70 syldan φ n N x m n dom F m | sup ran m n F m x * < V
72 6 fvmpt2 n Z x m n dom F m | sup ran m n F m x * < V E n = x m n dom F m | sup ran m n F m x * <
73 38 71 72 syl2anc φ n N E n = x m n dom F m | sup ran m n F m x * <
74 56 73 eleqtrd φ n N x x m n dom F m | sup ran m n F m x * <
75 rabid x x m n dom F m | sup ran m n F m x * < x m n dom F m sup ran m n F m x * <
76 74 75 sylib φ n N x m n dom F m sup ran m n F m x * <
77 76 simprd φ n N sup ran m n F m x * <
78 59 77 eqeltrd φ n N H n x
79 1 59 mpteq2da φ n N H n x = n N sup ran m n F m x * <
80 nfv k φ
81 fveq2 n = k n = k
82 81 mpteq1d n = k m n F m x = m k F m x
83 82 rneqd n = k ran m n F m x = ran m k F m x
84 83 supeq1d n = k sup ran m n F m x * < = sup ran m k F m x * <
85 nfv m n N k = n + 1
86 eluzelz n N n
87 86 adantr n N k = n + 1 n
88 simpr n N k = n + 1 k = n + 1
89 87 peano2zd n N k = n + 1 n + 1
90 88 89 eqeltrd n N k = n + 1 k
91 87 zred n N k = n + 1 n
92 90 zred n N k = n + 1 k
93 91 ltp1d n N k = n + 1 n < n + 1
94 88 eqcomd n N k = n + 1 n + 1 = k
95 93 94 breqtrd n N k = n + 1 n < k
96 91 92 95 ltled n N k = n + 1 n k
97 62 87 90 96 eluzd n N k = n + 1 k n
98 uzss k n k n
99 97 98 syl n N k = n + 1 k n
100 fvexd n N k = n + 1 m k F m x V
101 85 99 100 rnmptss2 n N k = n + 1 ran m k F m x ran m n F m x
102 101 3adant1 φ n N k = n + 1 ran m k F m x ran m n F m x
103 nfv m φ n N
104 eqid m n F m x = m n F m x
105 simpll φ n Z m n φ
106 38 105 syldanl φ n N m n φ
107 13 uztrn2 n N m n m N
108 107 adantll φ n N m n m N
109 106 108 32 syl2anc φ n N m n F m x
110 103 104 109 rnmptssd φ n N ran m n F m x
111 ressxr *
112 111 a1i φ n N *
113 110 112 sstrd φ n N ran m n F m x *
114 113 3adant3 φ n N k = n + 1 ran m n F m x *
115 supxrss ran m k F m x ran m n F m x ran m n F m x * sup ran m k F m x * < sup ran m n F m x * <
116 102 114 115 syl2anc φ n N k = n + 1 sup ran m k F m x * < sup ran m n F m x * <
117 3 fvexi Z V
118 117 a1i φ Z V
119 fvexd φ n Z H n x V
120 fvexd φ N V
121 1 37 ssdf φ N N
122 fvexd φ n N H n x V
123 eqidd φ n N H n x = H n x
124 1 12 13 118 18 119 120 121 122 123 climeldmeqmpt φ n Z H n x dom n N H n x dom
125 10 124 mpbid φ n N H n x dom
126 79 125 eqeltrrd φ n N sup ran m n F m x * < dom
127 1 80 12 13 77 84 116 126 climinf2mpt φ n N sup ran m n F m x * < sup ran n N sup ran m n F m x * < * <
128 79 127 eqbrtrd φ n N H n x sup ran n N sup ran m n F m x * < * <
129 1 12 13 78 128 climreclmpt φ sup ran n N sup ran m n F m x * < * <
130 35 129 eqeltrd φ lim sup m Z F m x