Metamath Proof Explorer


Theorem smflimsuplem4

Description: If H converges, the limsup of F is real. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses smflimsuplem4.1 nφ
smflimsuplem4.m φM
smflimsuplem4.z Z=M
smflimsuplem4.s φSSAlg
smflimsuplem4.f φF:ZSMblFnS
smflimsuplem4.e E=nZxmndomFm|supranmnFmx*<
smflimsuplem4.h H=nZxEnsupranmnFmx*<
smflimsuplem4.n φNZ
smflimsuplem4.i φxnNdomHn
smflimsuplem4.c φnZHnxdom
Assertion smflimsuplem4 φlim supmZFmx

Proof

Step Hyp Ref Expression
1 smflimsuplem4.1 nφ
2 smflimsuplem4.m φM
3 smflimsuplem4.z Z=M
4 smflimsuplem4.s φSSAlg
5 smflimsuplem4.f φF:ZSMblFnS
6 smflimsuplem4.e E=nZxmndomFm|supranmnFmx*<
7 smflimsuplem4.h H=nZxEnsupranmnFmx*<
8 smflimsuplem4.n φNZ
9 smflimsuplem4.i φxnNdomHn
10 smflimsuplem4.c φnZHnxdom
11 nfv mφ
12 3 8 eluzelz2d φN
13 eqid N=N
14 fvexd φmZFmxV
15 fvexd φmNFmxV
16 11 2 12 3 13 14 15 limsupequzmpt φlim supmZFmx=lim supmNFmx
17 4 adantr φmNSSAlg
18 3 8 uzssd2 φNZ
19 18 sselda φmNmZ
20 5 ffvelcdmda φmZFmSMblFnS
21 19 20 syldan φmNFmSMblFnS
22 eqid domFm=domFm
23 17 21 22 smff φmNFm:domFm
24 3 6 7 19 smflimsuplem1 φmNdomHmdomFm
25 9 adantr φmNxnNdomHn
26 simpr φmNmN
27 fveq2 n=mHn=Hm
28 27 dmeqd n=mdomHn=domHm
29 28 eleq2d n=mxdomHnxdomHm
30 25 26 29 eliind φmNxdomHm
31 24 30 sseldd φmNxdomFm
32 23 31 ffvelcdmd φmNFmx
33 32 rexrd φmNFmx*
34 11 12 13 33 limsupvaluzmpt φlim supmNFmx=suprannNsupranmnFmx*<*<
35 16 34 eqtrd φlim supmZFmx=suprannNsupranmnFmx*<*<
36 18 adantr φnNNZ
37 simpr φnNnN
38 36 37 sseldd φnNnZ
39 7 a1i φH=nZxEnsupranmnFmx*<
40 fvex EnV
41 40 mptex xEnsupranmnFmx*<V
42 41 a1i φnZxEnsupranmnFmx*<V
43 39 42 fvmpt2d φnZHn=xEnsupranmnFmx*<
44 38 43 syldan φnNHn=xEnsupranmnFmx*<
45 44 dmeqd φnNdomHn=domxEnsupranmnFmx*<
46 xrltso <Or*
47 46 supex supranmnFmx*<V
48 eqid xEnsupranmnFmx*<=xEnsupranmnFmx*<
49 47 48 dmmpti domxEnsupranmnFmx*<=En
50 49 a1i φnNdomxEnsupranmnFmx*<=En
51 45 50 eqtrd φnNdomHn=En
52 1 51 iineq2d φnNdomHn=nNEn
53 9 52 eleqtrd φxnNEn
54 53 adantr φnNxnNEn
55 eliinid xnNEnnNxEn
56 54 37 55 syl2anc φnNxEn
57 47 a1i φnNxEnsupranmnFmx*<V
58 44 57 fvmpt2d φnNxEnHnx=supranmnFmx*<
59 56 58 mpdan φnNHnx=supranmnFmx*<
60 eqid xmndomFm|supranmnFmx*<=xmndomFm|supranmnFmx*<
61 3 eluzelz2 nZn
62 eqid n=n
63 61 62 uzn0d nZn
64 fvex FmV
65 64 dmex domFmV
66 65 rgenw mndomFmV
67 66 a1i nZmndomFmV
68 63 67 iinexd nZmndomFmV
69 68 adantl φnZmndomFmV
70 60 69 rabexd φnZxmndomFm|supranmnFmx*<V
71 38 70 syldan φnNxmndomFm|supranmnFmx*<V
72 6 fvmpt2 nZxmndomFm|supranmnFmx*<VEn=xmndomFm|supranmnFmx*<
73 38 71 72 syl2anc φnNEn=xmndomFm|supranmnFmx*<
74 56 73 eleqtrd φnNxxmndomFm|supranmnFmx*<
75 rabid xxmndomFm|supranmnFmx*<xmndomFmsupranmnFmx*<
76 74 75 sylib φnNxmndomFmsupranmnFmx*<
77 76 simprd φnNsupranmnFmx*<
78 59 77 eqeltrd φnNHnx
79 1 59 mpteq2da φnNHnx=nNsupranmnFmx*<
80 nfv kφ
81 fveq2 n=kn=k
82 81 mpteq1d n=kmnFmx=mkFmx
83 82 rneqd n=kranmnFmx=ranmkFmx
84 83 supeq1d n=ksupranmnFmx*<=supranmkFmx*<
85 nfv mnNk=n+1
86 eluzelz nNn
87 86 adantr nNk=n+1n
88 simpr nNk=n+1k=n+1
89 87 peano2zd nNk=n+1n+1
90 88 89 eqeltrd nNk=n+1k
91 87 zred nNk=n+1n
92 90 zred nNk=n+1k
93 91 ltp1d nNk=n+1n<n+1
94 88 eqcomd nNk=n+1n+1=k
95 93 94 breqtrd nNk=n+1n<k
96 91 92 95 ltled nNk=n+1nk
97 62 87 90 96 eluzd nNk=n+1kn
98 uzss knkn
99 97 98 syl nNk=n+1kn
100 fvexd nNk=n+1mkFmxV
101 85 99 100 rnmptss2 nNk=n+1ranmkFmxranmnFmx
102 101 3adant1 φnNk=n+1ranmkFmxranmnFmx
103 nfv mφnN
104 eqid mnFmx=mnFmx
105 simpll φnZmnφ
106 38 105 syldanl φnNmnφ
107 13 uztrn2 nNmnmN
108 107 adantll φnNmnmN
109 106 108 32 syl2anc φnNmnFmx
110 103 104 109 rnmptssd φnNranmnFmx
111 ressxr *
112 111 a1i φnN*
113 110 112 sstrd φnNranmnFmx*
114 113 3adant3 φnNk=n+1ranmnFmx*
115 supxrss ranmkFmxranmnFmxranmnFmx*supranmkFmx*<supranmnFmx*<
116 102 114 115 syl2anc φnNk=n+1supranmkFmx*<supranmnFmx*<
117 3 fvexi ZV
118 117 a1i φZV
119 fvexd φnZHnxV
120 fvexd φNV
121 1 37 ssdf φNN
122 fvexd φnNHnxV
123 eqidd φnNHnx=Hnx
124 1 12 13 118 18 119 120 121 122 123 climeldmeqmpt φnZHnxdomnNHnxdom
125 10 124 mpbid φnNHnxdom
126 79 125 eqeltrrd φnNsupranmnFmx*<dom
127 1 80 12 13 77 84 116 126 climinf2mpt φnNsupranmnFmx*<suprannNsupranmnFmx*<*<
128 79 127 eqbrtrd φnNHnxsuprannNsupranmnFmx*<*<
129 1 12 13 78 128 climreclmpt φsuprannNsupranmnFmx*<*<
130 35 129 eqeltrd φlim supmZFmx