| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssdifidlprm.1 |  | 
						
							| 2 |  | ssdifidlprm.2 |  | 
						
							| 3 |  | ssdifidlprm.3 |  | 
						
							| 4 |  | ssdifidlprm.4 |  | 
						
							| 5 |  | ssdifidlprm.5 |  | 
						
							| 6 |  | ssdifidlprm.6 |  | 
						
							| 7 |  | ssdifidlprm.7 |  | 
						
							| 8 | 2 | ad2antrr |  | 
						
							| 9 | 7 | ssrab3 |  | 
						
							| 10 |  | simpr |  | 
						
							| 11 | 9 10 | sselid |  | 
						
							| 12 | 11 | adantr |  | 
						
							| 13 | 2 | crngringd |  | 
						
							| 14 |  | eqid |  | 
						
							| 15 | 1 14 | ringidcl |  | 
						
							| 16 | 13 15 | syl |  | 
						
							| 17 | 16 | ad2antrr |  | 
						
							| 18 |  | eqid |  | 
						
							| 19 | 1 18 | lidlss |  | 
						
							| 20 | 11 19 | syl |  | 
						
							| 21 | 20 | adantr |  | 
						
							| 22 |  | incom |  | 
						
							| 23 | 22 | eqeq1i |  | 
						
							| 24 |  | ineq1 |  | 
						
							| 25 | 24 | eqeq1d |  | 
						
							| 26 | 23 25 | bitrid |  | 
						
							| 27 |  | sseq2 |  | 
						
							| 28 | 26 27 | anbi12d |  | 
						
							| 29 | 28 7 | elrab2 |  | 
						
							| 30 | 29 | biimpi |  | 
						
							| 31 | 30 | simprd |  | 
						
							| 32 | 31 | simpld |  | 
						
							| 33 | 32 | ad2antlr |  | 
						
							| 34 |  | reldisj |  | 
						
							| 35 | 34 | biimpa |  | 
						
							| 36 | 21 33 35 | syl2anc |  | 
						
							| 37 | 5 14 | ringidval |  | 
						
							| 38 | 37 | subm0cl |  | 
						
							| 39 | 4 38 | syl |  | 
						
							| 40 | 39 | ad2antrr |  | 
						
							| 41 |  | elndif |  | 
						
							| 42 | 40 41 | syl |  | 
						
							| 43 | 36 42 | ssneldd |  | 
						
							| 44 |  | nelne1 |  | 
						
							| 45 | 17 43 44 | syl2anc |  | 
						
							| 46 | 45 | necomd |  | 
						
							| 47 | 33 | ad4antr |  | 
						
							| 48 |  | ioran |  | 
						
							| 49 | 18 | lidlsubg |  | 
						
							| 50 | 13 11 49 | syl2an2r |  | 
						
							| 51 | 50 | ad6antr |  | 
						
							| 52 | 13 | ad7antr |  | 
						
							| 53 |  | simp-5r |  | 
						
							| 54 | 53 | snssd |  | 
						
							| 55 |  | eqid |  | 
						
							| 56 | 55 1 18 | rspcl |  | 
						
							| 57 | 52 54 56 | syl2anc |  | 
						
							| 58 | 18 | lidlsubg |  | 
						
							| 59 | 52 57 58 | syl2anc |  | 
						
							| 60 |  | eqid |  | 
						
							| 61 | 60 | lsmub1 |  | 
						
							| 62 | 51 59 61 | syl2anc |  | 
						
							| 63 | 60 | lsmub2 |  | 
						
							| 64 | 51 59 63 | syl2anc |  | 
						
							| 65 | 1 55 | rspsnid |  | 
						
							| 66 | 52 53 65 | syl2anc |  | 
						
							| 67 | 64 66 | sseldd |  | 
						
							| 68 |  | simplr |  | 
						
							| 69 | 62 67 68 | ssnelpssd |  | 
						
							| 70 | 12 | ad5antr |  | 
						
							| 71 | 1 60 55 52 70 57 | lsmidl |  | 
						
							| 72 | 31 | simprd |  | 
						
							| 73 | 72 | adantl |  | 
						
							| 74 | 73 | ad6antr |  | 
						
							| 75 | 74 62 | sstrd |  | 
						
							| 76 | 71 75 | jca |  | 
						
							| 77 |  | simp-6r |  | 
						
							| 78 |  | df-ral |  | 
						
							| 79 |  | con2b |  | 
						
							| 80 | 79 | albii |  | 
						
							| 81 | 78 80 | bitri |  | 
						
							| 82 | 77 81 | sylib |  | 
						
							| 83 |  | ineq2 |  | 
						
							| 84 | 83 | eqeq1d |  | 
						
							| 85 |  | sseq2 |  | 
						
							| 86 | 84 85 | anbi12d |  | 
						
							| 87 | 86 7 | elrab2 |  | 
						
							| 88 | 87 | baib |  | 
						
							| 89 | 88 | rbaibd |  | 
						
							| 90 | 89 | notbid |  | 
						
							| 91 | 90 | biimpcd |  | 
						
							| 92 | 91 | imim2i |  | 
						
							| 93 | 92 | impd |  | 
						
							| 94 | 93 | alimi |  | 
						
							| 95 |  | ovex |  | 
						
							| 96 |  | psseq2 |  | 
						
							| 97 |  | eleq1 |  | 
						
							| 98 |  | sseq2 |  | 
						
							| 99 | 97 98 | anbi12d |  | 
						
							| 100 | 96 99 | anbi12d |  | 
						
							| 101 |  | ineq2 |  | 
						
							| 102 | 101 | eqeq1d |  | 
						
							| 103 | 102 | notbid |  | 
						
							| 104 | 100 103 | imbi12d |  | 
						
							| 105 | 95 104 | spcv |  | 
						
							| 106 | 82 94 105 | 3syl |  | 
						
							| 107 | 69 76 106 | mp2and |  | 
						
							| 108 |  | neq0 |  | 
						
							| 109 | 107 108 | sylib |  | 
						
							| 110 |  | simp-4r |  | 
						
							| 111 | 110 | snssd |  | 
						
							| 112 | 55 1 18 | rspcl |  | 
						
							| 113 | 52 111 112 | syl2anc |  | 
						
							| 114 | 18 | lidlsubg |  | 
						
							| 115 | 52 113 114 | syl2anc |  | 
						
							| 116 | 60 | lsmub1 |  | 
						
							| 117 | 51 115 116 | syl2anc |  | 
						
							| 118 | 60 | lsmub2 |  | 
						
							| 119 | 51 115 118 | syl2anc |  | 
						
							| 120 | 1 55 | rspsnid |  | 
						
							| 121 | 52 110 120 | syl2anc |  | 
						
							| 122 | 119 121 | sseldd |  | 
						
							| 123 |  | simpr |  | 
						
							| 124 | 117 122 123 | ssnelpssd |  | 
						
							| 125 | 1 60 55 52 70 113 | lsmidl |  | 
						
							| 126 | 74 117 | sstrd |  | 
						
							| 127 | 125 126 | jca |  | 
						
							| 128 |  | ovex |  | 
						
							| 129 |  | psseq2 |  | 
						
							| 130 |  | eleq1 |  | 
						
							| 131 |  | sseq2 |  | 
						
							| 132 | 130 131 | anbi12d |  | 
						
							| 133 | 129 132 | anbi12d |  | 
						
							| 134 |  | ineq2 |  | 
						
							| 135 | 134 | eqeq1d |  | 
						
							| 136 | 135 | notbid |  | 
						
							| 137 | 133 136 | imbi12d |  | 
						
							| 138 | 128 137 | spcv |  | 
						
							| 139 | 82 94 138 | 3syl |  | 
						
							| 140 | 124 127 139 | mp2and |  | 
						
							| 141 |  | neq0 |  | 
						
							| 142 | 140 141 | sylib |  | 
						
							| 143 | 142 | adantr |  | 
						
							| 144 | 52 | ad2antrr |  | 
						
							| 145 | 144 | ad2antrr |  | 
						
							| 146 | 53 | ad2antrr |  | 
						
							| 147 | 146 | ad2antrr |  | 
						
							| 148 |  | eqid |  | 
						
							| 149 | 1 148 55 | elrspsn |  | 
						
							| 150 | 145 147 149 | syl2anc |  | 
						
							| 151 | 144 | ad6antr |  | 
						
							| 152 | 110 | ad2antrr |  | 
						
							| 153 | 152 | ad6antr |  | 
						
							| 154 | 1 148 55 | elrspsn |  | 
						
							| 155 | 151 153 154 | syl2anc |  | 
						
							| 156 |  | simp-7r |  | 
						
							| 157 |  | simpllr |  | 
						
							| 158 | 156 157 | oveq12d |  | 
						
							| 159 |  | simp-5r |  | 
						
							| 160 | 159 | oveq2d |  | 
						
							| 161 |  | simpr |  | 
						
							| 162 | 161 | oveq2d |  | 
						
							| 163 | 160 162 | oveq12d |  | 
						
							| 164 |  | eqid |  | 
						
							| 165 | 151 | ad2antrr |  | 
						
							| 166 | 21 | ad7antr |  | 
						
							| 167 | 166 | ad4antr |  | 
						
							| 168 | 167 | ad4antr |  | 
						
							| 169 |  | simp-8r |  | 
						
							| 170 | 168 169 | sseldd |  | 
						
							| 171 |  | simp-6r |  | 
						
							| 172 | 146 | ad8antr |  | 
						
							| 173 | 1 148 165 171 172 | ringcld |  | 
						
							| 174 |  | simp-4r |  | 
						
							| 175 | 168 174 | sseldd |  | 
						
							| 176 |  | simplr |  | 
						
							| 177 | 153 | ad2antrr |  | 
						
							| 178 | 1 148 165 176 177 | ringcld |  | 
						
							| 179 | 1 164 148 165 170 173 175 178 | ringdi22 |  | 
						
							| 180 | 158 163 179 | 3eqtrd |  | 
						
							| 181 | 70 | ad2antrr |  | 
						
							| 182 | 181 | ad8antr |  | 
						
							| 183 | 165 182 49 | syl2anc |  | 
						
							| 184 | 18 1 148 165 182 170 174 | lidlmcld |  | 
						
							| 185 | 18 1 148 165 182 173 174 | lidlmcld |  | 
						
							| 186 | 164 183 184 185 | subgcld |  | 
						
							| 187 | 8 | ad7antr |  | 
						
							| 188 | 187 | ad4antr |  | 
						
							| 189 | 188 | ad4antr |  | 
						
							| 190 | 1 148 189 170 178 | crngcomd |  | 
						
							| 191 | 18 1 148 165 182 178 169 | lidlmcld |  | 
						
							| 192 | 190 191 | eqeltrd |  | 
						
							| 193 | 1 148 | cringm4 |  | 
						
							| 194 | 189 171 172 176 177 193 | syl122anc |  | 
						
							| 195 | 1 148 165 171 176 | ringcld |  | 
						
							| 196 |  | simp-5r |  | 
						
							| 197 | 196 | ad8antr |  | 
						
							| 198 | 18 1 148 165 182 195 197 | lidlmcld |  | 
						
							| 199 | 194 198 | eqeltrd |  | 
						
							| 200 | 164 183 192 199 | subgcld |  | 
						
							| 201 | 164 183 186 200 | subgcld |  | 
						
							| 202 | 180 201 | eqeltrd |  | 
						
							| 203 | 202 | r19.29an |  | 
						
							| 204 | 155 203 | sylbida |  | 
						
							| 205 | 204 | an32s |  | 
						
							| 206 | 205 | r19.29an |  | 
						
							| 207 | 113 | ad2antrr |  | 
						
							| 208 | 1 18 | lidlss |  | 
						
							| 209 | 207 208 | syl |  | 
						
							| 210 | 209 | ad4antr |  | 
						
							| 211 |  | simpr |  | 
						
							| 212 | 211 | elin2d |  | 
						
							| 213 | 212 | ad4antr |  | 
						
							| 214 | 1 164 60 | lsmelvalx |  | 
						
							| 215 | 214 | biimpa |  | 
						
							| 216 | 188 167 210 213 215 | syl31anc |  | 
						
							| 217 | 206 216 | r19.29a |  | 
						
							| 218 | 217 | r19.29an |  | 
						
							| 219 | 150 218 | sylbida |  | 
						
							| 220 | 219 | an32s |  | 
						
							| 221 | 220 | r19.29an |  | 
						
							| 222 | 57 | ad2antrr |  | 
						
							| 223 | 1 18 | lidlss |  | 
						
							| 224 | 222 223 | syl |  | 
						
							| 225 |  | simplr |  | 
						
							| 226 | 225 | elin2d |  | 
						
							| 227 | 1 164 60 | lsmelvalx |  | 
						
							| 228 | 227 | biimpa |  | 
						
							| 229 | 187 166 224 226 228 | syl31anc |  | 
						
							| 230 | 221 229 | r19.29a |  | 
						
							| 231 | 5 148 | mgpplusg |  | 
						
							| 232 | 4 | ad9antr |  | 
						
							| 233 | 225 | elin1d |  | 
						
							| 234 | 211 | elin1d |  | 
						
							| 235 | 231 232 233 234 | submcld |  | 
						
							| 236 | 230 235 | elind |  | 
						
							| 237 | 236 | ne0d |  | 
						
							| 238 | 143 237 | exlimddv |  | 
						
							| 239 | 109 238 | exlimddv |  | 
						
							| 240 | 239 | anasss |  | 
						
							| 241 | 48 240 | sylan2b |  | 
						
							| 242 | 241 | neneqd |  | 
						
							| 243 | 47 242 | condan |  | 
						
							| 244 | 243 | ex |  | 
						
							| 245 | 244 | anasss |  | 
						
							| 246 | 245 | ralrimivva |  | 
						
							| 247 | 1 148 | isprmidlc |  | 
						
							| 248 | 247 | biimpar |  | 
						
							| 249 | 8 12 46 246 248 | syl13anc |  | 
						
							| 250 | 249 | anasss |  | 
						
							| 251 |  | simprr |  | 
						
							| 252 | 250 251 | jca |  | 
						
							| 253 | 5 1 | mgpbas |  | 
						
							| 254 | 253 | submss |  | 
						
							| 255 | 4 254 | syl |  | 
						
							| 256 | 1 13 3 255 6 7 | ssdifidl |  | 
						
							| 257 | 252 256 | reximddv |  |