Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for metakunt
Sticks and stones
sticksstones22
Next ⟩
Permutation results
Metamath Proof Explorer
Ascii
Unicode
Theorem
sticksstones22
Description:
Non-exhaustive sticks and stones.
(Contributed by
metakunt
, 26-Oct-2024)
Ref
Expression
Hypotheses
sticksstones22.1
⊢
φ
→
N
∈
ℕ
0
sticksstones22.2
⊢
φ
→
S
∈
Fin
sticksstones22.3
⊢
φ
→
S
≠
∅
sticksstones22.4
⊢
A
=
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
N
Assertion
sticksstones22
⊢
φ
→
A
=
(
N
+
S
S
)
Proof
Step
Hyp
Ref
Expression
1
sticksstones22.1
⊢
φ
→
N
∈
ℕ
0
2
sticksstones22.2
⊢
φ
→
S
∈
Fin
3
sticksstones22.3
⊢
φ
→
S
≠
∅
4
sticksstones22.4
⊢
A
=
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
N
5
4
a1i
⊢
φ
→
A
=
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
N
6
5
fveq2d
⊢
φ
→
A
=
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
N
7
breq2
⊢
x
=
0
→
∑
i
∈
S
f
i
≤
x
↔
∑
i
∈
S
f
i
≤
0
8
7
anbi2d
⊢
x
=
0
→
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
x
↔
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
0
9
8
abbidv
⊢
x
=
0
→
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
x
=
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
0
10
9
fveq2d
⊢
x
=
0
→
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
x
=
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
0
11
oveq1
⊢
x
=
0
→
x
+
S
=
0
+
S
12
11
oveq1d
⊢
x
=
0
→
(
x
+
S
S
)
=
(
0
+
S
S
)
13
10
12
eqeq12d
⊢
x
=
0
→
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
x
=
(
x
+
S
S
)
↔
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
0
=
(
0
+
S
S
)
14
breq2
⊢
x
=
y
→
∑
i
∈
S
f
i
≤
x
↔
∑
i
∈
S
f
i
≤
y
15
14
anbi2d
⊢
x
=
y
→
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
x
↔
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
16
15
abbidv
⊢
x
=
y
→
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
x
=
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
17
16
fveq2d
⊢
x
=
y
→
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
x
=
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
18
oveq1
⊢
x
=
y
→
x
+
S
=
y
+
S
19
18
oveq1d
⊢
x
=
y
→
(
x
+
S
S
)
=
(
y
+
S
S
)
20
17
19
eqeq12d
⊢
x
=
y
→
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
x
=
(
x
+
S
S
)
↔
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
=
(
y
+
S
S
)
21
breq2
⊢
x
=
y
+
1
→
∑
i
∈
S
f
i
≤
x
↔
∑
i
∈
S
f
i
≤
y
+
1
22
21
anbi2d
⊢
x
=
y
+
1
→
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
x
↔
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
+
1
23
22
abbidv
⊢
x
=
y
+
1
→
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
x
=
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
+
1
24
23
fveq2d
⊢
x
=
y
+
1
→
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
x
=
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
+
1
25
oveq1
⊢
x
=
y
+
1
→
x
+
S
=
y
+
1
+
S
26
25
oveq1d
⊢
x
=
y
+
1
→
(
x
+
S
S
)
=
(
y
+
1
+
S
S
)
27
24
26
eqeq12d
⊢
x
=
y
+
1
→
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
x
=
(
x
+
S
S
)
↔
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
+
1
=
(
y
+
1
+
S
S
)
28
breq2
⊢
x
=
N
→
∑
i
∈
S
f
i
≤
x
↔
∑
i
∈
S
f
i
≤
N
29
28
anbi2d
⊢
x
=
N
→
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
x
↔
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
N
30
29
abbidv
⊢
x
=
N
→
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
x
=
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
N
31
30
fveq2d
⊢
x
=
N
→
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
x
=
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
N
32
oveq1
⊢
x
=
N
→
x
+
S
=
N
+
S
33
32
oveq1d
⊢
x
=
N
→
(
x
+
S
S
)
=
(
N
+
S
S
)
34
31
33
eqeq12d
⊢
x
=
N
→
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
x
=
(
x
+
S
S
)
↔
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
N
=
(
N
+
S
S
)
35
simprl
⊢
φ
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
0
→
f
:
S
⟶
ℕ
0
36
simprr
⊢
φ
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
0
→
∑
i
∈
S
f
i
≤
0
37
2
adantr
⊢
φ
∧
f
:
S
⟶
ℕ
0
→
S
∈
Fin
38
simpr
⊢
φ
∧
f
:
S
⟶
ℕ
0
→
f
:
S
⟶
ℕ
0
39
38
ffvelcdmda
⊢
φ
∧
f
:
S
⟶
ℕ
0
∧
i
∈
S
→
f
i
∈
ℕ
0
40
37
39
fsumnn0cl
⊢
φ
∧
f
:
S
⟶
ℕ
0
→
∑
i
∈
S
f
i
∈
ℕ
0
41
35
40
syldan
⊢
φ
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
0
→
∑
i
∈
S
f
i
∈
ℕ
0
42
41
nn0ge0d
⊢
φ
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
0
→
0
≤
∑
i
∈
S
f
i
43
0red
⊢
φ
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
0
→
0
∈
ℝ
44
41
nn0red
⊢
φ
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
0
→
∑
i
∈
S
f
i
∈
ℝ
45
43
44
lenltd
⊢
φ
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
0
→
0
≤
∑
i
∈
S
f
i
↔
¬
∑
i
∈
S
f
i
<
0
46
42
45
mpbid
⊢
φ
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
0
→
¬
∑
i
∈
S
f
i
<
0
47
36
46
jca
⊢
φ
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
0
→
∑
i
∈
S
f
i
≤
0
∧
¬
∑
i
∈
S
f
i
<
0
48
44
43
eqleltd
⊢
φ
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
0
→
∑
i
∈
S
f
i
=
0
↔
∑
i
∈
S
f
i
≤
0
∧
¬
∑
i
∈
S
f
i
<
0
49
47
48
mpbird
⊢
φ
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
0
→
∑
i
∈
S
f
i
=
0
50
35
49
jca
⊢
φ
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
0
→
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
0
51
50
ex
⊢
φ
→
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
0
→
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
0
52
simprl
⊢
φ
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
0
→
f
:
S
⟶
ℕ
0
53
simprr
⊢
φ
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
0
→
∑
i
∈
S
f
i
=
0
54
0red
⊢
φ
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
0
→
0
∈
ℝ
55
54
leidd
⊢
φ
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
0
→
0
≤
0
56
53
55
eqbrtrd
⊢
φ
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
0
→
∑
i
∈
S
f
i
≤
0
57
52
56
jca
⊢
φ
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
0
→
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
0
58
57
ex
⊢
φ
→
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
0
→
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
0
59
51
58
impbid
⊢
φ
→
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
0
↔
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
0
60
59
abbidv
⊢
φ
→
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
0
=
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
0
61
60
fveq2d
⊢
φ
→
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
0
=
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
0
62
0nn0
⊢
0
∈
ℕ
0
63
62
a1i
⊢
φ
→
0
∈
ℕ
0
64
eqid
⊢
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
0
=
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
0
65
63
2
3
64
sticksstones21
⊢
φ
→
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
0
=
(
0
+
S
-
1
S
−
1
)
66
hashnncl
⊢
S
∈
Fin
→
S
∈
ℕ
↔
S
≠
∅
67
2
66
syl
⊢
φ
→
S
∈
ℕ
↔
S
≠
∅
68
67
bicomd
⊢
φ
→
S
≠
∅
↔
S
∈
ℕ
69
68
biimpd
⊢
φ
→
S
≠
∅
→
S
∈
ℕ
70
3
69
mpd
⊢
φ
→
S
∈
ℕ
71
70
nncnd
⊢
φ
→
S
∈
ℂ
72
1cnd
⊢
φ
→
1
∈
ℂ
73
71
72
subcld
⊢
φ
→
S
−
1
∈
ℂ
74
73
addlidd
⊢
φ
→
0
+
S
-
1
=
S
−
1
75
74
oveq1d
⊢
φ
→
(
0
+
S
-
1
S
−
1
)
=
(
S
−
1
S
−
1
)
76
nnm1nn0
⊢
S
∈
ℕ
→
S
−
1
∈
ℕ
0
77
70
76
syl
⊢
φ
→
S
−
1
∈
ℕ
0
78
bcnn
⊢
S
−
1
∈
ℕ
0
→
(
S
−
1
S
−
1
)
=
1
79
77
78
syl
⊢
φ
→
(
S
−
1
S
−
1
)
=
1
80
75
79
eqtrd
⊢
φ
→
(
0
+
S
-
1
S
−
1
)
=
1
81
eqidd
⊢
φ
→
1
=
1
82
70
nnnn0d
⊢
φ
→
S
∈
ℕ
0
83
bcnn
⊢
S
∈
ℕ
0
→
(
S
S
)
=
1
84
82
83
syl
⊢
φ
→
(
S
S
)
=
1
85
84
eqcomd
⊢
φ
→
1
=
(
S
S
)
86
71
addlidd
⊢
φ
→
0
+
S
=
S
87
86
eqcomd
⊢
φ
→
S
=
0
+
S
88
87
oveq1d
⊢
φ
→
(
S
S
)
=
(
0
+
S
S
)
89
85
88
eqtrd
⊢
φ
→
1
=
(
0
+
S
S
)
90
80
81
89
3eqtrd
⊢
φ
→
(
0
+
S
-
1
S
−
1
)
=
(
0
+
S
S
)
91
65
90
eqtrd
⊢
φ
→
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
0
=
(
0
+
S
S
)
92
61
91
eqtrd
⊢
φ
→
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
0
=
(
0
+
S
S
)
93
simprl
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
+
1
→
f
:
S
⟶
ℕ
0
94
simprr
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
+
1
→
∑
i
∈
S
f
i
≤
y
+
1
95
2
ad2antrr
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
→
S
∈
Fin
96
simpr
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
→
f
:
S
⟶
ℕ
0
97
96
ffvelcdmda
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
i
∈
S
→
f
i
∈
ℕ
0
98
95
97
fsumnn0cl
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
→
∑
i
∈
S
f
i
∈
ℕ
0
99
93
98
syldan
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
+
1
→
∑
i
∈
S
f
i
∈
ℕ
0
100
99
nn0red
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
+
1
→
∑
i
∈
S
f
i
∈
ℝ
101
nn0re
⊢
y
∈
ℕ
0
→
y
∈
ℝ
102
101
adantl
⊢
φ
∧
y
∈
ℕ
0
→
y
∈
ℝ
103
102
adantr
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
+
1
→
y
∈
ℝ
104
1red
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
+
1
→
1
∈
ℝ
105
103
104
readdcld
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
+
1
→
y
+
1
∈
ℝ
106
100
105
leloed
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
+
1
→
∑
i
∈
S
f
i
≤
y
+
1
↔
∑
i
∈
S
f
i
<
y
+
1
∨
∑
i
∈
S
f
i
=
y
+
1
107
94
106
mpbid
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
+
1
→
∑
i
∈
S
f
i
<
y
+
1
∨
∑
i
∈
S
f
i
=
y
+
1
108
99
nn0zd
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
+
1
→
∑
i
∈
S
f
i
∈
ℤ
109
nn0z
⊢
y
∈
ℕ
0
→
y
∈
ℤ
110
109
adantl
⊢
φ
∧
y
∈
ℕ
0
→
y
∈
ℤ
111
110
adantr
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
+
1
→
y
∈
ℤ
112
zleltp1
⊢
∑
i
∈
S
f
i
∈
ℤ
∧
y
∈
ℤ
→
∑
i
∈
S
f
i
≤
y
↔
∑
i
∈
S
f
i
<
y
+
1
113
112
bicomd
⊢
∑
i
∈
S
f
i
∈
ℤ
∧
y
∈
ℤ
→
∑
i
∈
S
f
i
<
y
+
1
↔
∑
i
∈
S
f
i
≤
y
114
108
111
113
syl2anc
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
+
1
→
∑
i
∈
S
f
i
<
y
+
1
↔
∑
i
∈
S
f
i
≤
y
115
114
orbi1d
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
+
1
→
∑
i
∈
S
f
i
<
y
+
1
∨
∑
i
∈
S
f
i
=
y
+
1
↔
∑
i
∈
S
f
i
≤
y
∨
∑
i
∈
S
f
i
=
y
+
1
116
107
115
mpbid
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
+
1
→
∑
i
∈
S
f
i
≤
y
∨
∑
i
∈
S
f
i
=
y
+
1
117
93
116
jca
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
+
1
→
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∨
∑
i
∈
S
f
i
=
y
+
1
118
andi
⊢
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∨
∑
i
∈
S
f
i
=
y
+
1
↔
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∨
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
119
118
bicomi
⊢
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∨
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
↔
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∨
∑
i
∈
S
f
i
=
y
+
1
120
117
119
sylibr
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
+
1
→
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∨
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
121
120
ex
⊢
φ
∧
y
∈
ℕ
0
→
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
+
1
→
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∨
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
122
simprl
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
→
f
:
S
⟶
ℕ
0
123
122
98
syldan
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
→
∑
i
∈
S
f
i
∈
ℕ
0
124
123
nn0red
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
→
∑
i
∈
S
f
i
∈
ℝ
125
102
adantr
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
→
y
∈
ℝ
126
1red
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
→
1
∈
ℝ
127
125
126
readdcld
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
→
y
+
1
∈
ℝ
128
simprr
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
→
∑
i
∈
S
f
i
≤
y
129
125
lep1d
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
→
y
≤
y
+
1
130
124
125
127
128
129
letrd
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
→
∑
i
∈
S
f
i
≤
y
+
1
131
122
130
jca
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
→
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
+
1
132
131
ex
⊢
φ
∧
y
∈
ℕ
0
→
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
→
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
+
1
133
simprl
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
→
f
:
S
⟶
ℕ
0
134
simprr
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
→
∑
i
∈
S
f
i
=
y
+
1
135
102
adantr
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
→
y
∈
ℝ
136
1red
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
→
1
∈
ℝ
137
135
136
readdcld
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
→
y
+
1
∈
ℝ
138
137
leidd
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
→
y
+
1
≤
y
+
1
139
134
138
eqbrtrd
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
→
∑
i
∈
S
f
i
≤
y
+
1
140
133
139
jca
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
→
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
+
1
141
140
ex
⊢
φ
∧
y
∈
ℕ
0
→
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
→
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
+
1
142
132
141
jaod
⊢
φ
∧
y
∈
ℕ
0
→
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∨
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
→
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
+
1
143
121
142
impbid
⊢
φ
∧
y
∈
ℕ
0
→
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
+
1
↔
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∨
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
144
143
abbidv
⊢
φ
∧
y
∈
ℕ
0
→
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
+
1
=
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∨
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
145
unab
⊢
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∪
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
=
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∨
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
146
145
a1i
⊢
φ
∧
y
∈
ℕ
0
→
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∪
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
=
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∨
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
147
146
eqcomd
⊢
φ
∧
y
∈
ℕ
0
→
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∨
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
=
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∪
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
148
144
147
eqtrd
⊢
φ
∧
y
∈
ℕ
0
→
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
+
1
=
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∪
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
149
148
adantr
⊢
φ
∧
y
∈
ℕ
0
∧
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
=
(
y
+
S
S
)
→
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
+
1
=
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∪
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
150
149
fveq2d
⊢
φ
∧
y
∈
ℕ
0
∧
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
=
(
y
+
S
S
)
→
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
+
1
=
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∪
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
151
2
adantr
⊢
φ
∧
y
∈
ℕ
0
→
S
∈
Fin
152
fzfid
⊢
φ
∧
y
∈
ℕ
0
→
0
…
y
∈
Fin
153
151
152
jca
⊢
φ
∧
y
∈
ℕ
0
→
S
∈
Fin
∧
0
…
y
∈
Fin
154
xpfi
⊢
S
∈
Fin
∧
0
…
y
∈
Fin
→
S
×
0
…
y
∈
Fin
155
153
154
syl
⊢
φ
∧
y
∈
ℕ
0
→
S
×
0
…
y
∈
Fin
156
pwfi
⊢
S
×
0
…
y
∈
Fin
↔
𝒫
S
×
0
…
y
∈
Fin
157
155
156
sylib
⊢
φ
∧
y
∈
ℕ
0
→
𝒫
S
×
0
…
y
∈
Fin
158
fsetsspwxp
⊢
f
|
f
:
S
⟶
0
…
y
⊆
𝒫
S
×
0
…
y
159
158
a1i
⊢
φ
∧
y
∈
ℕ
0
→
f
|
f
:
S
⟶
0
…
y
⊆
𝒫
S
×
0
…
y
160
157
159
ssfid
⊢
φ
∧
y
∈
ℕ
0
→
f
|
f
:
S
⟶
0
…
y
∈
Fin
161
ffn
⊢
f
:
S
⟶
ℕ
0
→
f
Fn
S
162
122
161
syl
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
→
f
Fn
S
163
0zd
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
s
∈
S
→
0
∈
ℤ
164
110
adantr
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
→
y
∈
ℤ
165
164
adantr
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
s
∈
S
→
y
∈
ℤ
166
122
ffvelcdmda
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
s
∈
S
→
f
s
∈
ℕ
0
167
166
nn0zd
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
s
∈
S
→
f
s
∈
ℤ
168
166
nn0ge0d
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
s
∈
S
→
0
≤
f
s
169
128
ad2antrr
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
s
∈
S
∧
y
<
f
s
→
∑
i
∈
S
f
i
≤
y
170
125
ad2antrr
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
s
∈
S
∧
y
<
f
s
→
y
∈
ℝ
171
166
nn0red
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
s
∈
S
→
f
s
∈
ℝ
172
171
adantr
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
s
∈
S
∧
y
<
f
s
→
f
s
∈
ℝ
173
124
adantr
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
s
∈
S
→
∑
i
∈
S
f
i
∈
ℝ
174
173
adantr
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
s
∈
S
∧
y
<
f
s
→
∑
i
∈
S
f
i
∈
ℝ
175
simpr
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
s
∈
S
∧
y
<
f
s
→
y
<
f
s
176
simplll
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
s
∈
S
→
φ
177
simpllr
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
s
∈
S
→
y
∈
ℕ
0
178
simplrl
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
s
∈
S
→
f
:
S
⟶
ℕ
0
179
176
177
178
jca31
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
s
∈
S
→
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
180
difssd
⊢
φ
→
S
∖
s
⊆
S
181
2
180
ssfid
⊢
φ
→
S
∖
s
∈
Fin
182
181
adantr
⊢
φ
∧
y
∈
ℕ
0
→
S
∖
s
∈
Fin
183
182
adantr
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
→
S
∖
s
∈
Fin
184
eldifi
⊢
i
∈
S
∖
s
→
i
∈
S
185
184
adantl
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
i
∈
S
∖
s
→
i
∈
S
186
97
adantlr
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
i
∈
S
∖
s
∧
i
∈
S
→
f
i
∈
ℕ
0
187
185
186
mpdan
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
i
∈
S
∖
s
→
f
i
∈
ℕ
0
188
183
187
fsumnn0cl
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
→
∑
i
∈
S
∖
s
f
i
∈
ℕ
0
189
179
188
syl
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
s
∈
S
→
∑
i
∈
S
∖
s
f
i
∈
ℕ
0
190
189
nn0ge0d
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
s
∈
S
→
0
≤
∑
i
∈
S
∖
s
f
i
191
difssd
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
→
S
∖
s
⊆
S
192
95
191
ssfid
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
→
S
∖
s
∈
Fin
193
192
187
fsumnn0cl
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
→
∑
i
∈
S
∖
s
f
i
∈
ℕ
0
194
179
193
syl
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
s
∈
S
→
∑
i
∈
S
∖
s
f
i
∈
ℕ
0
195
194
nn0red
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
s
∈
S
→
∑
i
∈
S
∖
s
f
i
∈
ℝ
196
171
195
addge01d
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
s
∈
S
→
0
≤
∑
i
∈
S
∖
s
f
i
↔
f
s
≤
f
s
+
∑
i
∈
S
∖
s
f
i
197
190
196
mpbid
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
s
∈
S
→
f
s
≤
f
s
+
∑
i
∈
S
∖
s
f
i
198
simpr
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
s
∈
S
→
s
∈
S
199
179
198
jca
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
s
∈
S
→
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
s
∈
S
200
nfv
⊢
Ⅎ
i
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
s
∈
S
201
nfcv
⊢
Ⅎ
_
i
f
s
202
95
adantr
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
s
∈
S
→
S
∈
Fin
203
97
adantlr
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
s
∈
S
∧
i
∈
S
→
f
i
∈
ℕ
0
204
203
nn0cnd
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
s
∈
S
∧
i
∈
S
→
f
i
∈
ℂ
205
simpr
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
s
∈
S
→
s
∈
S
206
fveq2
⊢
i
=
s
→
f
i
=
f
s
207
200
201
202
204
205
206
fsumsplit1
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
s
∈
S
→
∑
i
∈
S
f
i
=
f
s
+
∑
i
∈
S
∖
s
f
i
208
199
207
syl
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
s
∈
S
→
∑
i
∈
S
f
i
=
f
s
+
∑
i
∈
S
∖
s
f
i
209
208
eqcomd
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
s
∈
S
→
f
s
+
∑
i
∈
S
∖
s
f
i
=
∑
i
∈
S
f
i
210
197
209
breqtrd
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
s
∈
S
→
f
s
≤
∑
i
∈
S
f
i
211
210
adantr
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
s
∈
S
∧
y
<
f
s
→
f
s
≤
∑
i
∈
S
f
i
212
170
172
174
175
211
ltletrd
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
s
∈
S
∧
y
<
f
s
→
y
<
∑
i
∈
S
f
i
213
170
174
ltnled
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
s
∈
S
∧
y
<
f
s
→
y
<
∑
i
∈
S
f
i
↔
¬
∑
i
∈
S
f
i
≤
y
214
212
213
mpbid
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
s
∈
S
∧
y
<
f
s
→
¬
∑
i
∈
S
f
i
≤
y
215
169
214
pm2.21dd
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
s
∈
S
∧
y
<
f
s
→
¬
y
<
f
s
216
215
pm2.01da
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
s
∈
S
→
¬
y
<
f
s
217
177
101
syl
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
s
∈
S
→
y
∈
ℝ
218
171
217
lenltd
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
s
∈
S
→
f
s
≤
y
↔
¬
y
<
f
s
219
216
218
mpbird
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
s
∈
S
→
f
s
≤
y
220
163
165
167
168
219
elfzd
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
s
∈
S
→
f
s
∈
0
…
y
221
220
ralrimiva
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
→
∀
s
∈
S
f
s
∈
0
…
y
222
162
221
jca
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
→
f
Fn
S
∧
∀
s
∈
S
f
s
∈
0
…
y
223
ffnfv
⊢
f
:
S
⟶
0
…
y
↔
f
Fn
S
∧
∀
s
∈
S
f
s
∈
0
…
y
224
222
223
sylibr
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
→
f
:
S
⟶
0
…
y
225
224
ex
⊢
φ
∧
y
∈
ℕ
0
→
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
→
f
:
S
⟶
0
…
y
226
225
ss2abdv
⊢
φ
∧
y
∈
ℕ
0
→
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
⊆
f
|
f
:
S
⟶
0
…
y
227
160
226
ssfid
⊢
φ
∧
y
∈
ℕ
0
→
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∈
Fin
228
227
adantr
⊢
φ
∧
y
∈
ℕ
0
∧
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
=
(
y
+
S
S
)
→
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∈
Fin
229
fzfid
⊢
φ
∧
y
∈
ℕ
0
→
0
…
y
+
1
∈
Fin
230
151
229
jca
⊢
φ
∧
y
∈
ℕ
0
→
S
∈
Fin
∧
0
…
y
+
1
∈
Fin
231
xpfi
⊢
S
∈
Fin
∧
0
…
y
+
1
∈
Fin
→
S
×
0
…
y
+
1
∈
Fin
232
230
231
syl
⊢
φ
∧
y
∈
ℕ
0
→
S
×
0
…
y
+
1
∈
Fin
233
pwfi
⊢
S
×
0
…
y
+
1
∈
Fin
↔
𝒫
S
×
0
…
y
+
1
∈
Fin
234
232
233
sylib
⊢
φ
∧
y
∈
ℕ
0
→
𝒫
S
×
0
…
y
+
1
∈
Fin
235
fsetsspwxp
⊢
f
|
f
:
S
⟶
0
…
y
+
1
⊆
𝒫
S
×
0
…
y
+
1
236
235
a1i
⊢
φ
∧
y
∈
ℕ
0
→
f
|
f
:
S
⟶
0
…
y
+
1
⊆
𝒫
S
×
0
…
y
+
1
237
234
236
ssfid
⊢
φ
∧
y
∈
ℕ
0
→
f
|
f
:
S
⟶
0
…
y
+
1
∈
Fin
238
161
ad2antrl
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
→
f
Fn
S
239
0zd
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
∧
s
∈
S
→
0
∈
ℤ
240
simpllr
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
∧
s
∈
S
→
y
∈
ℕ
0
241
240
nn0zd
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
∧
s
∈
S
→
y
∈
ℤ
242
241
peano2zd
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
∧
s
∈
S
→
y
+
1
∈
ℤ
243
133
ffvelcdmda
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
∧
s
∈
S
→
f
s
∈
ℕ
0
244
243
nn0zd
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
∧
s
∈
S
→
f
s
∈
ℤ
245
243
nn0ge0d
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
∧
s
∈
S
→
0
≤
f
s
246
134
ad2antrr
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
∧
s
∈
S
∧
y
+
1
<
f
s
→
∑
i
∈
S
f
i
=
y
+
1
247
137
ad2antrr
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
∧
s
∈
S
∧
y
+
1
<
f
s
→
y
+
1
∈
ℝ
248
133
ad2antrr
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
∧
s
∈
S
∧
y
+
1
<
f
s
→
f
:
S
⟶
ℕ
0
249
simplr
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
∧
s
∈
S
∧
y
+
1
<
f
s
→
s
∈
S
250
248
249
ffvelcdmd
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
∧
s
∈
S
∧
y
+
1
<
f
s
→
f
s
∈
ℕ
0
251
250
nn0red
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
∧
s
∈
S
∧
y
+
1
<
f
s
→
f
s
∈
ℝ
252
246
247
eqeltrd
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
∧
s
∈
S
∧
y
+
1
<
f
s
→
∑
i
∈
S
f
i
∈
ℝ
253
simpr
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
∧
s
∈
S
∧
y
+
1
<
f
s
→
y
+
1
<
f
s
254
133
188
syldan
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
→
∑
i
∈
S
∖
s
f
i
∈
ℕ
0
255
254
adantr
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
∧
s
∈
S
→
∑
i
∈
S
∖
s
f
i
∈
ℕ
0
256
255
adantr
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
∧
s
∈
S
∧
y
+
1
<
f
s
→
∑
i
∈
S
∖
s
f
i
∈
ℕ
0
257
256
nn0ge0d
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
∧
s
∈
S
∧
y
+
1
<
f
s
→
0
≤
∑
i
∈
S
∖
s
f
i
258
256
nn0red
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
∧
s
∈
S
∧
y
+
1
<
f
s
→
∑
i
∈
S
∖
s
f
i
∈
ℝ
259
251
258
addge01d
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
∧
s
∈
S
∧
y
+
1
<
f
s
→
0
≤
∑
i
∈
S
∖
s
f
i
↔
f
s
≤
f
s
+
∑
i
∈
S
∖
s
f
i
260
257
259
mpbid
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
∧
s
∈
S
∧
y
+
1
<
f
s
→
f
s
≤
f
s
+
∑
i
∈
S
∖
s
f
i
261
133
207
syldanl
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
∧
s
∈
S
→
∑
i
∈
S
f
i
=
f
s
+
∑
i
∈
S
∖
s
f
i
262
261
adantr
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
∧
s
∈
S
∧
y
+
1
<
f
s
→
∑
i
∈
S
f
i
=
f
s
+
∑
i
∈
S
∖
s
f
i
263
262
eqcomd
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
∧
s
∈
S
∧
y
+
1
<
f
s
→
f
s
+
∑
i
∈
S
∖
s
f
i
=
∑
i
∈
S
f
i
264
260
263
breqtrd
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
∧
s
∈
S
∧
y
+
1
<
f
s
→
f
s
≤
∑
i
∈
S
f
i
265
247
251
252
253
264
ltletrd
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
∧
s
∈
S
∧
y
+
1
<
f
s
→
y
+
1
<
∑
i
∈
S
f
i
266
247
265
ltned
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
∧
s
∈
S
∧
y
+
1
<
f
s
→
y
+
1
≠
∑
i
∈
S
f
i
267
266
necomd
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
∧
s
∈
S
∧
y
+
1
<
f
s
→
∑
i
∈
S
f
i
≠
y
+
1
268
246
267
pm2.21ddne
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
∧
s
∈
S
∧
y
+
1
<
f
s
→
¬
y
+
1
<
f
s
269
268
pm2.01da
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
∧
s
∈
S
→
¬
y
+
1
<
f
s
270
243
nn0red
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
∧
s
∈
S
→
f
s
∈
ℝ
271
137
adantr
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
∧
s
∈
S
→
y
+
1
∈
ℝ
272
270
271
lenltd
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
∧
s
∈
S
→
f
s
≤
y
+
1
↔
¬
y
+
1
<
f
s
273
269
272
mpbird
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
∧
s
∈
S
→
f
s
≤
y
+
1
274
239
242
244
245
273
elfzd
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
∧
s
∈
S
→
f
s
∈
0
…
y
+
1
275
274
ralrimiva
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
→
∀
s
∈
S
f
s
∈
0
…
y
+
1
276
238
275
jca
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
→
f
Fn
S
∧
∀
s
∈
S
f
s
∈
0
…
y
+
1
277
ffnfv
⊢
f
:
S
⟶
0
…
y
+
1
↔
f
Fn
S
∧
∀
s
∈
S
f
s
∈
0
…
y
+
1
278
276
277
sylibr
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
→
f
:
S
⟶
0
…
y
+
1
279
278
ex
⊢
φ
∧
y
∈
ℕ
0
→
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
→
f
:
S
⟶
0
…
y
+
1
280
279
ss2abdv
⊢
φ
∧
y
∈
ℕ
0
→
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
⊆
f
|
f
:
S
⟶
0
…
y
+
1
281
237
280
ssfid
⊢
φ
∧
y
∈
ℕ
0
→
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
∈
Fin
282
281
adantr
⊢
φ
∧
y
∈
ℕ
0
∧
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
=
(
y
+
S
S
)
→
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
∈
Fin
283
inab
⊢
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∩
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
=
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
284
283
a1i
⊢
φ
∧
y
∈
ℕ
0
→
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∩
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
=
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
285
98
adantrr
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
→
∑
i
∈
S
f
i
∈
ℕ
0
286
285
nn0zd
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
→
∑
i
∈
S
f
i
∈
ℤ
287
286
zred
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
→
∑
i
∈
S
f
i
∈
ℝ
288
125
ltp1d
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
→
y
<
y
+
1
289
287
125
127
128
288
lelttrd
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
→
∑
i
∈
S
f
i
<
y
+
1
290
287
289
ltned
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
→
∑
i
∈
S
f
i
≠
y
+
1
291
290
neneqd
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
→
¬
∑
i
∈
S
f
i
=
y
+
1
292
291
intnand
⊢
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
→
¬
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
293
nan
⊢
φ
∧
y
∈
ℕ
0
→
¬
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
↔
φ
∧
y
∈
ℕ
0
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
→
¬
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
294
292
293
mpbir
⊢
φ
∧
y
∈
ℕ
0
→
¬
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
295
294
alrimiv
⊢
φ
∧
y
∈
ℕ
0
→
∀
f
¬
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
296
ab0
⊢
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
=
∅
↔
∀
f
¬
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
297
295
296
sylibr
⊢
φ
∧
y
∈
ℕ
0
→
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∧
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
=
∅
298
284
297
eqtrd
⊢
φ
∧
y
∈
ℕ
0
→
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∩
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
=
∅
299
298
adantr
⊢
φ
∧
y
∈
ℕ
0
∧
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
=
(
y
+
S
S
)
→
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∩
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
=
∅
300
hashun
⊢
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∈
Fin
∧
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
∈
Fin
∧
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∩
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
=
∅
→
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∪
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
=
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
+
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
301
228
282
299
300
syl3anc
⊢
φ
∧
y
∈
ℕ
0
∧
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
=
(
y
+
S
S
)
→
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∪
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
=
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
+
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
302
simpr
⊢
φ
∧
y
∈
ℕ
0
∧
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
=
(
y
+
S
S
)
→
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
=
(
y
+
S
S
)
303
simplr
⊢
φ
∧
y
∈
ℕ
0
∧
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
=
(
y
+
S
S
)
→
y
∈
ℕ
0
304
1nn0
⊢
1
∈
ℕ
0
305
304
a1i
⊢
φ
∧
y
∈
ℕ
0
∧
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
=
(
y
+
S
S
)
→
1
∈
ℕ
0
306
303
305
nn0addcld
⊢
φ
∧
y
∈
ℕ
0
∧
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
=
(
y
+
S
S
)
→
y
+
1
∈
ℕ
0
307
2
ad2antrr
⊢
φ
∧
y
∈
ℕ
0
∧
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
=
(
y
+
S
S
)
→
S
∈
Fin
308
3
ad2antrr
⊢
φ
∧
y
∈
ℕ
0
∧
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
=
(
y
+
S
S
)
→
S
≠
∅
309
eqid
⊢
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
=
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
310
306
307
308
309
sticksstones21
⊢
φ
∧
y
∈
ℕ
0
∧
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
=
(
y
+
S
S
)
→
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
=
(
y
+
1
+
S
−
1
S
−
1
)
311
302
310
oveq12d
⊢
φ
∧
y
∈
ℕ
0
∧
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
=
(
y
+
S
S
)
→
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
+
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
=
(
y
+
S
S
)
+
(
y
+
1
+
S
−
1
S
−
1
)
312
303
nn0cnd
⊢
φ
∧
y
∈
ℕ
0
∧
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
=
(
y
+
S
S
)
→
y
∈
ℂ
313
1cnd
⊢
φ
∧
y
∈
ℕ
0
∧
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
=
(
y
+
S
S
)
→
1
∈
ℂ
314
71
ad2antrr
⊢
φ
∧
y
∈
ℕ
0
∧
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
=
(
y
+
S
S
)
→
S
∈
ℂ
315
312
313
314
ppncand
⊢
φ
∧
y
∈
ℕ
0
∧
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
=
(
y
+
S
S
)
→
y
+
1
+
S
−
1
=
y
+
S
316
315
oveq1d
⊢
φ
∧
y
∈
ℕ
0
∧
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
=
(
y
+
S
S
)
→
(
y
+
1
+
S
−
1
S
−
1
)
=
(
y
+
S
S
−
1
)
317
316
oveq2d
⊢
φ
∧
y
∈
ℕ
0
∧
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
=
(
y
+
S
S
)
→
(
y
+
S
S
)
+
(
y
+
1
+
S
−
1
S
−
1
)
=
(
y
+
S
S
)
+
(
y
+
S
S
−
1
)
318
82
ad2antrr
⊢
φ
∧
y
∈
ℕ
0
∧
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
=
(
y
+
S
S
)
→
S
∈
ℕ
0
319
303
318
nn0addcld
⊢
φ
∧
y
∈
ℕ
0
∧
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
=
(
y
+
S
S
)
→
y
+
S
∈
ℕ
0
320
318
nn0zd
⊢
φ
∧
y
∈
ℕ
0
∧
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
=
(
y
+
S
S
)
→
S
∈
ℤ
321
bcpasc
⊢
y
+
S
∈
ℕ
0
∧
S
∈
ℤ
→
(
y
+
S
S
)
+
(
y
+
S
S
−
1
)
=
(
y
+
S
+
1
S
)
322
319
320
321
syl2anc
⊢
φ
∧
y
∈
ℕ
0
∧
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
=
(
y
+
S
S
)
→
(
y
+
S
S
)
+
(
y
+
S
S
−
1
)
=
(
y
+
S
+
1
S
)
323
317
322
eqtrd
⊢
φ
∧
y
∈
ℕ
0
∧
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
=
(
y
+
S
S
)
→
(
y
+
S
S
)
+
(
y
+
1
+
S
−
1
S
−
1
)
=
(
y
+
S
+
1
S
)
324
312
314
313
add32d
⊢
φ
∧
y
∈
ℕ
0
∧
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
=
(
y
+
S
S
)
→
y
+
S
+
1
=
y
+
1
+
S
325
324
oveq1d
⊢
φ
∧
y
∈
ℕ
0
∧
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
=
(
y
+
S
S
)
→
(
y
+
S
+
1
S
)
=
(
y
+
1
+
S
S
)
326
323
325
eqtrd
⊢
φ
∧
y
∈
ℕ
0
∧
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
=
(
y
+
S
S
)
→
(
y
+
S
S
)
+
(
y
+
1
+
S
−
1
S
−
1
)
=
(
y
+
1
+
S
S
)
327
311
326
eqtrd
⊢
φ
∧
y
∈
ℕ
0
∧
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
=
(
y
+
S
S
)
→
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
+
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
=
(
y
+
1
+
S
S
)
328
301
327
eqtrd
⊢
φ
∧
y
∈
ℕ
0
∧
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
=
(
y
+
S
S
)
→
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
∪
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
=
y
+
1
=
(
y
+
1
+
S
S
)
329
150
328
eqtrd
⊢
φ
∧
y
∈
ℕ
0
∧
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
=
(
y
+
S
S
)
→
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
y
+
1
=
(
y
+
1
+
S
S
)
330
13
20
27
34
92
329
nn0indd
⊢
φ
∧
N
∈
ℕ
0
→
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
N
=
(
N
+
S
S
)
331
1
330
mpdan
⊢
φ
→
f
|
f
:
S
⟶
ℕ
0
∧
∑
i
∈
S
f
i
≤
N
=
(
N
+
S
S
)
332
6
331
eqtrd
⊢
φ
→
A
=
(
N
+
S
S
)