Metamath Proof Explorer


Theorem sticksstones22

Description: Non-exhaustive sticks and stones. (Contributed by metakunt, 26-Oct-2024)

Ref Expression
Hypotheses sticksstones22.1 φN0
sticksstones22.2 φSFin
sticksstones22.3 φS
sticksstones22.4 A=f|f:S0iSfiN
Assertion sticksstones22 φA=(N+SS)

Proof

Step Hyp Ref Expression
1 sticksstones22.1 φN0
2 sticksstones22.2 φSFin
3 sticksstones22.3 φS
4 sticksstones22.4 A=f|f:S0iSfiN
5 4 a1i φA=f|f:S0iSfiN
6 5 fveq2d φA=f|f:S0iSfiN
7 breq2 x=0iSfixiSfi0
8 7 anbi2d x=0f:S0iSfixf:S0iSfi0
9 8 abbidv x=0f|f:S0iSfix=f|f:S0iSfi0
10 9 fveq2d x=0f|f:S0iSfix=f|f:S0iSfi0
11 oveq1 x=0x+S=0+S
12 11 oveq1d x=0(x+SS)=(0+SS)
13 10 12 eqeq12d x=0f|f:S0iSfix=(x+SS)f|f:S0iSfi0=(0+SS)
14 breq2 x=yiSfixiSfiy
15 14 anbi2d x=yf:S0iSfixf:S0iSfiy
16 15 abbidv x=yf|f:S0iSfix=f|f:S0iSfiy
17 16 fveq2d x=yf|f:S0iSfix=f|f:S0iSfiy
18 oveq1 x=yx+S=y+S
19 18 oveq1d x=y(x+SS)=(y+SS)
20 17 19 eqeq12d x=yf|f:S0iSfix=(x+SS)f|f:S0iSfiy=(y+SS)
21 breq2 x=y+1iSfixiSfiy+1
22 21 anbi2d x=y+1f:S0iSfixf:S0iSfiy+1
23 22 abbidv x=y+1f|f:S0iSfix=f|f:S0iSfiy+1
24 23 fveq2d x=y+1f|f:S0iSfix=f|f:S0iSfiy+1
25 oveq1 x=y+1x+S=y+1+S
26 25 oveq1d x=y+1(x+SS)=(y+1+SS)
27 24 26 eqeq12d x=y+1f|f:S0iSfix=(x+SS)f|f:S0iSfiy+1=(y+1+SS)
28 breq2 x=NiSfixiSfiN
29 28 anbi2d x=Nf:S0iSfixf:S0iSfiN
30 29 abbidv x=Nf|f:S0iSfix=f|f:S0iSfiN
31 30 fveq2d x=Nf|f:S0iSfix=f|f:S0iSfiN
32 oveq1 x=Nx+S=N+S
33 32 oveq1d x=N(x+SS)=(N+SS)
34 31 33 eqeq12d x=Nf|f:S0iSfix=(x+SS)f|f:S0iSfiN=(N+SS)
35 simprl φf:S0iSfi0f:S0
36 simprr φf:S0iSfi0iSfi0
37 2 adantr φf:S0SFin
38 simpr φf:S0f:S0
39 38 ffvelcdmda φf:S0iSfi0
40 37 39 fsumnn0cl φf:S0iSfi0
41 35 40 syldan φf:S0iSfi0iSfi0
42 41 nn0ge0d φf:S0iSfi00iSfi
43 0red φf:S0iSfi00
44 41 nn0red φf:S0iSfi0iSfi
45 43 44 lenltd φf:S0iSfi00iSfi¬iSfi<0
46 42 45 mpbid φf:S0iSfi0¬iSfi<0
47 36 46 jca φf:S0iSfi0iSfi0¬iSfi<0
48 44 43 eqleltd φf:S0iSfi0iSfi=0iSfi0¬iSfi<0
49 47 48 mpbird φf:S0iSfi0iSfi=0
50 35 49 jca φf:S0iSfi0f:S0iSfi=0
51 50 ex φf:S0iSfi0f:S0iSfi=0
52 simprl φf:S0iSfi=0f:S0
53 simprr φf:S0iSfi=0iSfi=0
54 0red φf:S0iSfi=00
55 54 leidd φf:S0iSfi=000
56 53 55 eqbrtrd φf:S0iSfi=0iSfi0
57 52 56 jca φf:S0iSfi=0f:S0iSfi0
58 57 ex φf:S0iSfi=0f:S0iSfi0
59 51 58 impbid φf:S0iSfi0f:S0iSfi=0
60 59 abbidv φf|f:S0iSfi0=f|f:S0iSfi=0
61 60 fveq2d φf|f:S0iSfi0=f|f:S0iSfi=0
62 0nn0 00
63 62 a1i φ00
64 eqid f|f:S0iSfi=0=f|f:S0iSfi=0
65 63 2 3 64 sticksstones21 φf|f:S0iSfi=0=(0+S-1S1)
66 hashnncl SFinSS
67 2 66 syl φSS
68 67 bicomd φSS
69 68 biimpd φSS
70 3 69 mpd φS
71 70 nncnd φS
72 1cnd φ1
73 71 72 subcld φS1
74 73 addlidd φ0+S-1=S1
75 74 oveq1d φ(0+S-1S1)=(S1S1)
76 nnm1nn0 SS10
77 70 76 syl φS10
78 bcnn S10(S1S1)=1
79 77 78 syl φ(S1S1)=1
80 75 79 eqtrd φ(0+S-1S1)=1
81 eqidd φ1=1
82 70 nnnn0d φS0
83 bcnn S0(SS)=1
84 82 83 syl φ(SS)=1
85 84 eqcomd φ1=(SS)
86 71 addlidd φ0+S=S
87 86 eqcomd φS=0+S
88 87 oveq1d φ(SS)=(0+SS)
89 85 88 eqtrd φ1=(0+SS)
90 80 81 89 3eqtrd φ(0+S-1S1)=(0+SS)
91 65 90 eqtrd φf|f:S0iSfi=0=(0+SS)
92 61 91 eqtrd φf|f:S0iSfi0=(0+SS)
93 simprl φy0f:S0iSfiy+1f:S0
94 simprr φy0f:S0iSfiy+1iSfiy+1
95 2 ad2antrr φy0f:S0SFin
96 simpr φy0f:S0f:S0
97 96 ffvelcdmda φy0f:S0iSfi0
98 95 97 fsumnn0cl φy0f:S0iSfi0
99 93 98 syldan φy0f:S0iSfiy+1iSfi0
100 99 nn0red φy0f:S0iSfiy+1iSfi
101 nn0re y0y
102 101 adantl φy0y
103 102 adantr φy0f:S0iSfiy+1y
104 1red φy0f:S0iSfiy+11
105 103 104 readdcld φy0f:S0iSfiy+1y+1
106 100 105 leloed φy0f:S0iSfiy+1iSfiy+1iSfi<y+1iSfi=y+1
107 94 106 mpbid φy0f:S0iSfiy+1iSfi<y+1iSfi=y+1
108 99 nn0zd φy0f:S0iSfiy+1iSfi
109 nn0z y0y
110 109 adantl φy0y
111 110 adantr φy0f:S0iSfiy+1y
112 zleltp1 iSfiyiSfiyiSfi<y+1
113 112 bicomd iSfiyiSfi<y+1iSfiy
114 108 111 113 syl2anc φy0f:S0iSfiy+1iSfi<y+1iSfiy
115 114 orbi1d φy0f:S0iSfiy+1iSfi<y+1iSfi=y+1iSfiyiSfi=y+1
116 107 115 mpbid φy0f:S0iSfiy+1iSfiyiSfi=y+1
117 93 116 jca φy0f:S0iSfiy+1f:S0iSfiyiSfi=y+1
118 andi f:S0iSfiyiSfi=y+1f:S0iSfiyf:S0iSfi=y+1
119 118 bicomi f:S0iSfiyf:S0iSfi=y+1f:S0iSfiyiSfi=y+1
120 117 119 sylibr φy0f:S0iSfiy+1f:S0iSfiyf:S0iSfi=y+1
121 120 ex φy0f:S0iSfiy+1f:S0iSfiyf:S0iSfi=y+1
122 simprl φy0f:S0iSfiyf:S0
123 122 98 syldan φy0f:S0iSfiyiSfi0
124 123 nn0red φy0f:S0iSfiyiSfi
125 102 adantr φy0f:S0iSfiyy
126 1red φy0f:S0iSfiy1
127 125 126 readdcld φy0f:S0iSfiyy+1
128 simprr φy0f:S0iSfiyiSfiy
129 125 lep1d φy0f:S0iSfiyyy+1
130 124 125 127 128 129 letrd φy0f:S0iSfiyiSfiy+1
131 122 130 jca φy0f:S0iSfiyf:S0iSfiy+1
132 131 ex φy0f:S0iSfiyf:S0iSfiy+1
133 simprl φy0f:S0iSfi=y+1f:S0
134 simprr φy0f:S0iSfi=y+1iSfi=y+1
135 102 adantr φy0f:S0iSfi=y+1y
136 1red φy0f:S0iSfi=y+11
137 135 136 readdcld φy0f:S0iSfi=y+1y+1
138 137 leidd φy0f:S0iSfi=y+1y+1y+1
139 134 138 eqbrtrd φy0f:S0iSfi=y+1iSfiy+1
140 133 139 jca φy0f:S0iSfi=y+1f:S0iSfiy+1
141 140 ex φy0f:S0iSfi=y+1f:S0iSfiy+1
142 132 141 jaod φy0f:S0iSfiyf:S0iSfi=y+1f:S0iSfiy+1
143 121 142 impbid φy0f:S0iSfiy+1f:S0iSfiyf:S0iSfi=y+1
144 143 abbidv φy0f|f:S0iSfiy+1=f|f:S0iSfiyf:S0iSfi=y+1
145 unab f|f:S0iSfiyf|f:S0iSfi=y+1=f|f:S0iSfiyf:S0iSfi=y+1
146 145 a1i φy0f|f:S0iSfiyf|f:S0iSfi=y+1=f|f:S0iSfiyf:S0iSfi=y+1
147 146 eqcomd φy0f|f:S0iSfiyf:S0iSfi=y+1=f|f:S0iSfiyf|f:S0iSfi=y+1
148 144 147 eqtrd φy0f|f:S0iSfiy+1=f|f:S0iSfiyf|f:S0iSfi=y+1
149 148 adantr φy0f|f:S0iSfiy=(y+SS)f|f:S0iSfiy+1=f|f:S0iSfiyf|f:S0iSfi=y+1
150 149 fveq2d φy0f|f:S0iSfiy=(y+SS)f|f:S0iSfiy+1=f|f:S0iSfiyf|f:S0iSfi=y+1
151 2 adantr φy0SFin
152 fzfid φy00yFin
153 151 152 jca φy0SFin0yFin
154 xpfi SFin0yFinS×0yFin
155 153 154 syl φy0S×0yFin
156 pwfi S×0yFin𝒫S×0yFin
157 155 156 sylib φy0𝒫S×0yFin
158 fsetsspwxp f|f:S0y𝒫S×0y
159 158 a1i φy0f|f:S0y𝒫S×0y
160 157 159 ssfid φy0f|f:S0yFin
161 ffn f:S0fFnS
162 122 161 syl φy0f:S0iSfiyfFnS
163 0zd φy0f:S0iSfiysS0
164 110 adantr φy0f:S0iSfiyy
165 164 adantr φy0f:S0iSfiysSy
166 122 ffvelcdmda φy0f:S0iSfiysSfs0
167 166 nn0zd φy0f:S0iSfiysSfs
168 166 nn0ge0d φy0f:S0iSfiysS0fs
169 128 ad2antrr φy0f:S0iSfiysSy<fsiSfiy
170 125 ad2antrr φy0f:S0iSfiysSy<fsy
171 166 nn0red φy0f:S0iSfiysSfs
172 171 adantr φy0f:S0iSfiysSy<fsfs
173 124 adantr φy0f:S0iSfiysSiSfi
174 173 adantr φy0f:S0iSfiysSy<fsiSfi
175 simpr φy0f:S0iSfiysSy<fsy<fs
176 simplll φy0f:S0iSfiysSφ
177 simpllr φy0f:S0iSfiysSy0
178 simplrl φy0f:S0iSfiysSf:S0
179 176 177 178 jca31 φy0f:S0iSfiysSφy0f:S0
180 difssd φSsS
181 2 180 ssfid φSsFin
182 181 adantr φy0SsFin
183 182 adantr φy0f:S0SsFin
184 eldifi iSsiS
185 184 adantl φy0f:S0iSsiS
186 97 adantlr φy0f:S0iSsiSfi0
187 185 186 mpdan φy0f:S0iSsfi0
188 183 187 fsumnn0cl φy0f:S0iSsfi0
189 179 188 syl φy0f:S0iSfiysSiSsfi0
190 189 nn0ge0d φy0f:S0iSfiysS0iSsfi
191 difssd φy0f:S0SsS
192 95 191 ssfid φy0f:S0SsFin
193 192 187 fsumnn0cl φy0f:S0iSsfi0
194 179 193 syl φy0f:S0iSfiysSiSsfi0
195 194 nn0red φy0f:S0iSfiysSiSsfi
196 171 195 addge01d φy0f:S0iSfiysS0iSsfifsfs+iSsfi
197 190 196 mpbid φy0f:S0iSfiysSfsfs+iSsfi
198 simpr φy0f:S0iSfiysSsS
199 179 198 jca φy0f:S0iSfiysSφy0f:S0sS
200 nfv iφy0f:S0sS
201 nfcv _ifs
202 95 adantr φy0f:S0sSSFin
203 97 adantlr φy0f:S0sSiSfi0
204 203 nn0cnd φy0f:S0sSiSfi
205 simpr φy0f:S0sSsS
206 fveq2 i=sfi=fs
207 200 201 202 204 205 206 fsumsplit1 φy0f:S0sSiSfi=fs+iSsfi
208 199 207 syl φy0f:S0iSfiysSiSfi=fs+iSsfi
209 208 eqcomd φy0f:S0iSfiysSfs+iSsfi=iSfi
210 197 209 breqtrd φy0f:S0iSfiysSfsiSfi
211 210 adantr φy0f:S0iSfiysSy<fsfsiSfi
212 170 172 174 175 211 ltletrd φy0f:S0iSfiysSy<fsy<iSfi
213 170 174 ltnled φy0f:S0iSfiysSy<fsy<iSfi¬iSfiy
214 212 213 mpbid φy0f:S0iSfiysSy<fs¬iSfiy
215 169 214 pm2.21dd φy0f:S0iSfiysSy<fs¬y<fs
216 215 pm2.01da φy0f:S0iSfiysS¬y<fs
217 177 101 syl φy0f:S0iSfiysSy
218 171 217 lenltd φy0f:S0iSfiysSfsy¬y<fs
219 216 218 mpbird φy0f:S0iSfiysSfsy
220 163 165 167 168 219 elfzd φy0f:S0iSfiysSfs0y
221 220 ralrimiva φy0f:S0iSfiysSfs0y
222 162 221 jca φy0f:S0iSfiyfFnSsSfs0y
223 ffnfv f:S0yfFnSsSfs0y
224 222 223 sylibr φy0f:S0iSfiyf:S0y
225 224 ex φy0f:S0iSfiyf:S0y
226 225 ss2abdv φy0f|f:S0iSfiyf|f:S0y
227 160 226 ssfid φy0f|f:S0iSfiyFin
228 227 adantr φy0f|f:S0iSfiy=(y+SS)f|f:S0iSfiyFin
229 fzfid φy00y+1Fin
230 151 229 jca φy0SFin0y+1Fin
231 xpfi SFin0y+1FinS×0y+1Fin
232 230 231 syl φy0S×0y+1Fin
233 pwfi S×0y+1Fin𝒫S×0y+1Fin
234 232 233 sylib φy0𝒫S×0y+1Fin
235 fsetsspwxp f|f:S0y+1𝒫S×0y+1
236 235 a1i φy0f|f:S0y+1𝒫S×0y+1
237 234 236 ssfid φy0f|f:S0y+1Fin
238 161 ad2antrl φy0f:S0iSfi=y+1fFnS
239 0zd φy0f:S0iSfi=y+1sS0
240 simpllr φy0f:S0iSfi=y+1sSy0
241 240 nn0zd φy0f:S0iSfi=y+1sSy
242 241 peano2zd φy0f:S0iSfi=y+1sSy+1
243 133 ffvelcdmda φy0f:S0iSfi=y+1sSfs0
244 243 nn0zd φy0f:S0iSfi=y+1sSfs
245 243 nn0ge0d φy0f:S0iSfi=y+1sS0fs
246 134 ad2antrr φy0f:S0iSfi=y+1sSy+1<fsiSfi=y+1
247 137 ad2antrr φy0f:S0iSfi=y+1sSy+1<fsy+1
248 133 ad2antrr φy0f:S0iSfi=y+1sSy+1<fsf:S0
249 simplr φy0f:S0iSfi=y+1sSy+1<fssS
250 248 249 ffvelcdmd φy0f:S0iSfi=y+1sSy+1<fsfs0
251 250 nn0red φy0f:S0iSfi=y+1sSy+1<fsfs
252 246 247 eqeltrd φy0f:S0iSfi=y+1sSy+1<fsiSfi
253 simpr φy0f:S0iSfi=y+1sSy+1<fsy+1<fs
254 133 188 syldan φy0f:S0iSfi=y+1iSsfi0
255 254 adantr φy0f:S0iSfi=y+1sSiSsfi0
256 255 adantr φy0f:S0iSfi=y+1sSy+1<fsiSsfi0
257 256 nn0ge0d φy0f:S0iSfi=y+1sSy+1<fs0iSsfi
258 256 nn0red φy0f:S0iSfi=y+1sSy+1<fsiSsfi
259 251 258 addge01d φy0f:S0iSfi=y+1sSy+1<fs0iSsfifsfs+iSsfi
260 257 259 mpbid φy0f:S0iSfi=y+1sSy+1<fsfsfs+iSsfi
261 133 207 syldanl φy0f:S0iSfi=y+1sSiSfi=fs+iSsfi
262 261 adantr φy0f:S0iSfi=y+1sSy+1<fsiSfi=fs+iSsfi
263 262 eqcomd φy0f:S0iSfi=y+1sSy+1<fsfs+iSsfi=iSfi
264 260 263 breqtrd φy0f:S0iSfi=y+1sSy+1<fsfsiSfi
265 247 251 252 253 264 ltletrd φy0f:S0iSfi=y+1sSy+1<fsy+1<iSfi
266 247 265 ltned φy0f:S0iSfi=y+1sSy+1<fsy+1iSfi
267 266 necomd φy0f:S0iSfi=y+1sSy+1<fsiSfiy+1
268 246 267 pm2.21ddne φy0f:S0iSfi=y+1sSy+1<fs¬y+1<fs
269 268 pm2.01da φy0f:S0iSfi=y+1sS¬y+1<fs
270 243 nn0red φy0f:S0iSfi=y+1sSfs
271 137 adantr φy0f:S0iSfi=y+1sSy+1
272 270 271 lenltd φy0f:S0iSfi=y+1sSfsy+1¬y+1<fs
273 269 272 mpbird φy0f:S0iSfi=y+1sSfsy+1
274 239 242 244 245 273 elfzd φy0f:S0iSfi=y+1sSfs0y+1
275 274 ralrimiva φy0f:S0iSfi=y+1sSfs0y+1
276 238 275 jca φy0f:S0iSfi=y+1fFnSsSfs0y+1
277 ffnfv f:S0y+1fFnSsSfs0y+1
278 276 277 sylibr φy0f:S0iSfi=y+1f:S0y+1
279 278 ex φy0f:S0iSfi=y+1f:S0y+1
280 279 ss2abdv φy0f|f:S0iSfi=y+1f|f:S0y+1
281 237 280 ssfid φy0f|f:S0iSfi=y+1Fin
282 281 adantr φy0f|f:S0iSfiy=(y+SS)f|f:S0iSfi=y+1Fin
283 inab f|f:S0iSfiyf|f:S0iSfi=y+1=f|f:S0iSfiyf:S0iSfi=y+1
284 283 a1i φy0f|f:S0iSfiyf|f:S0iSfi=y+1=f|f:S0iSfiyf:S0iSfi=y+1
285 98 adantrr φy0f:S0iSfiyiSfi0
286 285 nn0zd φy0f:S0iSfiyiSfi
287 286 zred φy0f:S0iSfiyiSfi
288 125 ltp1d φy0f:S0iSfiyy<y+1
289 287 125 127 128 288 lelttrd φy0f:S0iSfiyiSfi<y+1
290 287 289 ltned φy0f:S0iSfiyiSfiy+1
291 290 neneqd φy0f:S0iSfiy¬iSfi=y+1
292 291 intnand φy0f:S0iSfiy¬f:S0iSfi=y+1
293 nan φy0¬f:S0iSfiyf:S0iSfi=y+1φy0f:S0iSfiy¬f:S0iSfi=y+1
294 292 293 mpbir φy0¬f:S0iSfiyf:S0iSfi=y+1
295 294 alrimiv φy0f¬f:S0iSfiyf:S0iSfi=y+1
296 ab0 f|f:S0iSfiyf:S0iSfi=y+1=f¬f:S0iSfiyf:S0iSfi=y+1
297 295 296 sylibr φy0f|f:S0iSfiyf:S0iSfi=y+1=
298 284 297 eqtrd φy0f|f:S0iSfiyf|f:S0iSfi=y+1=
299 298 adantr φy0f|f:S0iSfiy=(y+SS)f|f:S0iSfiyf|f:S0iSfi=y+1=
300 hashun f|f:S0iSfiyFinf|f:S0iSfi=y+1Finf|f:S0iSfiyf|f:S0iSfi=y+1=f|f:S0iSfiyf|f:S0iSfi=y+1=f|f:S0iSfiy+f|f:S0iSfi=y+1
301 228 282 299 300 syl3anc φy0f|f:S0iSfiy=(y+SS)f|f:S0iSfiyf|f:S0iSfi=y+1=f|f:S0iSfiy+f|f:S0iSfi=y+1
302 simpr φy0f|f:S0iSfiy=(y+SS)f|f:S0iSfiy=(y+SS)
303 simplr φy0f|f:S0iSfiy=(y+SS)y0
304 1nn0 10
305 304 a1i φy0f|f:S0iSfiy=(y+SS)10
306 303 305 nn0addcld φy0f|f:S0iSfiy=(y+SS)y+10
307 2 ad2antrr φy0f|f:S0iSfiy=(y+SS)SFin
308 3 ad2antrr φy0f|f:S0iSfiy=(y+SS)S
309 eqid f|f:S0iSfi=y+1=f|f:S0iSfi=y+1
310 306 307 308 309 sticksstones21 φy0f|f:S0iSfiy=(y+SS)f|f:S0iSfi=y+1=(y+1+S1S1)
311 302 310 oveq12d φy0f|f:S0iSfiy=(y+SS)f|f:S0iSfiy+f|f:S0iSfi=y+1=(y+SS)+(y+1+S1S1)
312 303 nn0cnd φy0f|f:S0iSfiy=(y+SS)y
313 1cnd φy0f|f:S0iSfiy=(y+SS)1
314 71 ad2antrr φy0f|f:S0iSfiy=(y+SS)S
315 312 313 314 ppncand φy0f|f:S0iSfiy=(y+SS)y+1+S1=y+S
316 315 oveq1d φy0f|f:S0iSfiy=(y+SS)(y+1+S1S1)=(y+SS1)
317 316 oveq2d φy0f|f:S0iSfiy=(y+SS)(y+SS)+(y+1+S1S1)=(y+SS)+(y+SS1)
318 82 ad2antrr φy0f|f:S0iSfiy=(y+SS)S0
319 303 318 nn0addcld φy0f|f:S0iSfiy=(y+SS)y+S0
320 318 nn0zd φy0f|f:S0iSfiy=(y+SS)S
321 bcpasc y+S0S(y+SS)+(y+SS1)=(y+S+1S)
322 319 320 321 syl2anc φy0f|f:S0iSfiy=(y+SS)(y+SS)+(y+SS1)=(y+S+1S)
323 317 322 eqtrd φy0f|f:S0iSfiy=(y+SS)(y+SS)+(y+1+S1S1)=(y+S+1S)
324 312 314 313 add32d φy0f|f:S0iSfiy=(y+SS)y+S+1=y+1+S
325 324 oveq1d φy0f|f:S0iSfiy=(y+SS)(y+S+1S)=(y+1+SS)
326 323 325 eqtrd φy0f|f:S0iSfiy=(y+SS)(y+SS)+(y+1+S1S1)=(y+1+SS)
327 311 326 eqtrd φy0f|f:S0iSfiy=(y+SS)f|f:S0iSfiy+f|f:S0iSfi=y+1=(y+1+SS)
328 301 327 eqtrd φy0f|f:S0iSfiy=(y+SS)f|f:S0iSfiyf|f:S0iSfi=y+1=(y+1+SS)
329 150 328 eqtrd φy0f|f:S0iSfiy=(y+SS)f|f:S0iSfiy+1=(y+1+SS)
330 13 20 27 34 92 329 nn0indd φN0f|f:S0iSfiN=(N+SS)
331 1 330 mpdan φf|f:S0iSfiN=(N+SS)
332 6 331 eqtrd φA=(N+SS)