Metamath Proof Explorer


Theorem stoweidlem27

Description: This lemma is used to prove the existence of a function p as in Lemma 1 BrosowskiDeutsh p. 90: p is in the subalgebra, such that 0 <= p <= 1, p__(t_0) = 0, and p > 0 on T - U. Here ( qi ) is used to represent p__(t_i) in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem27.1 G=wXhQ|w=tT|0<ht
stoweidlem27.2 φQV
stoweidlem27.3 φM
stoweidlem27.4 φYFnranG
stoweidlem27.5 φranGV
stoweidlem27.6 φlranGYll
stoweidlem27.7 φF:1M1-1 ontoranG
stoweidlem27.8 φTUX
stoweidlem27.9 tφ
stoweidlem27.10 wφ
stoweidlem27.11 _hQ
Assertion stoweidlem27 φqMq:1MQtTUi1M0<qit

Proof

Step Hyp Ref Expression
1 stoweidlem27.1 G=wXhQ|w=tT|0<ht
2 stoweidlem27.2 φQV
3 stoweidlem27.3 φM
4 stoweidlem27.4 φYFnranG
5 stoweidlem27.5 φranGV
6 stoweidlem27.6 φlranGYll
7 stoweidlem27.7 φF:1M1-1 ontoranG
8 stoweidlem27.8 φTUX
9 stoweidlem27.9 tφ
10 stoweidlem27.10 wφ
11 stoweidlem27.11 _hQ
12 fnex YFnranGranGVYV
13 4 5 12 syl2anc φYV
14 f1ofn F:1M1-1 ontoranGFFn1M
15 7 14 syl φFFn1M
16 ovex 1MV
17 fnex FFn1M1MVFV
18 15 16 17 sylancl φFV
19 coexg YVFVYFV
20 13 18 19 syl2anc φYFV
21 f1of F:1M1-1 ontoranGF:1MranG
22 7 21 syl φF:1MranG
23 fnfco YFnranGF:1MranGYFFn1M
24 4 22 23 syl2anc φYFFn1M
25 rncoss ranYFranY
26 fvelrnb YFnranGkranYlranGYl=k
27 4 26 syl φkranYlranGYl=k
28 27 biimpa φkranYlranGYl=k
29 nfmpt1 _wwXhQ|w=tT|0<ht
30 1 29 nfcxfr _wG
31 30 nfrn _wranG
32 31 nfcri wlranG
33 10 32 nfan wφlranG
34 6 ad2antrr φlranGwXl=hQ|w=tT|0<htYll
35 simpr φlranGwXl=hQ|w=tT|0<htl=hQ|w=tT|0<ht
36 34 35 eleqtrd φlranGwXl=hQ|w=tT|0<htYlhQ|w=tT|0<ht
37 nfcv _hYl
38 nfv hw=tT|0<Ylt
39 fveq1 h=Ylht=Ylt
40 39 breq2d h=Yl0<ht0<Ylt
41 40 rabbidv h=YltT|0<ht=tT|0<Ylt
42 41 eqeq2d h=Ylw=tT|0<htw=tT|0<Ylt
43 37 11 38 42 elrabf YlhQ|w=tT|0<htYlQw=tT|0<Ylt
44 36 43 sylib φlranGwXl=hQ|w=tT|0<htYlQw=tT|0<Ylt
45 44 simpld φlranGwXl=hQ|w=tT|0<htYlQ
46 simpr φlranGlranG
47 1 elrnmpt lranGlranGwXl=hQ|w=tT|0<ht
48 46 47 syl φlranGlranGwXl=hQ|w=tT|0<ht
49 46 48 mpbid φlranGwXl=hQ|w=tT|0<ht
50 33 45 49 r19.29af φlranGYlQ
51 50 adantlr φkranYlranGYlQ
52 eleq1 Yl=kYlQkQ
53 51 52 syl5ibcom φkranYlranGYl=kkQ
54 53 reximdva φkranYlranGYl=klranGkQ
55 28 54 mpd φkranYlranGkQ
56 idd lranGkQkQ
57 56 a1i φkranYlranGkQkQ
58 57 rexlimdv φkranYlranGkQkQ
59 55 58 mpd φkranYkQ
60 59 ex φkranYkQ
61 60 ssrdv φranYQ
62 25 61 sstrid φranYFQ
63 df-f YF:1MQYFFn1MranYFQ
64 24 62 63 sylanbrc φYF:1MQ
65 nfv wtTU
66 10 65 nfan wφtTU
67 nfv wi1M0<YFit
68 8 sselda φtTUtX
69 eluni tXwtwwX
70 68 69 sylib φtTUwtwwX
71 1 funmpt2 FunG
72 1 dmeqi domG=domwXhQ|w=tT|0<ht
73 11 rabexgf QVhQ|w=tT|0<htV
74 2 73 syl φhQ|w=tT|0<htV
75 74 adantr φwXhQ|w=tT|0<htV
76 75 ex φwXhQ|w=tT|0<htV
77 10 76 ralrimi φwXhQ|w=tT|0<htV
78 dmmptg wXhQ|w=tT|0<htVdomwXhQ|w=tT|0<ht=X
79 77 78 syl φdomwXhQ|w=tT|0<ht=X
80 72 79 eqtrid φdomG=X
81 80 eleq2d φwdomGwX
82 81 biimpar φwXwdomG
83 fvelrn FunGwdomGGwranG
84 71 82 83 sylancr φwXGwranG
85 84 adantrl φtwwXGwranG
86 22 ad2antrr φGwranGi1MFi=GwF:1MranG
87 simprl φGwranGi1MFi=Gwi1M
88 fvco3 F:1MranGi1MYFi=YFi
89 86 87 88 syl2anc φGwranGi1MFi=GwYFi=YFi
90 fveq2 Fi=GwYFi=YGw
91 90 ad2antll φGwranGi1MFi=GwYFi=YGw
92 89 91 eqtrd φGwranGi1MFi=GwYFi=YGw
93 eleq1 l=GwlranGGwranG
94 93 anbi2d l=GwφlranGφGwranG
95 eleq2 l=GwYllYlGw
96 fveq2 l=GwYl=YGw
97 96 eleq1d l=GwYlGwYGwGw
98 95 97 bitrd l=GwYllYGwGw
99 94 98 imbi12d l=GwφlranGYllφGwranGYGwGw
100 99 6 vtoclg GwranGφGwranGYGwGw
101 100 anabsi7 φGwranGYGwGw
102 101 adantr φGwranGi1MFi=GwYGwGw
103 92 102 eqeltrd φGwranGi1MFi=GwYFiGw
104 f1ofo F:1M1-1 ontoranGF:1MontoranG
105 forn F:1MontoranGranF=ranG
106 7 104 105 3syl φranF=ranG
107 106 eleq2d φGwranFGwranG
108 107 biimpar φGwranGGwranF
109 15 adantr φGwranGFFn1M
110 fvelrnb FFn1MGwranFi1MFi=Gw
111 109 110 syl φGwranGGwranFi1MFi=Gw
112 108 111 mpbid φGwranGi1MFi=Gw
113 103 112 reximddv φGwranGi1MYFiGw
114 85 113 syldan φtwwXi1MYFiGw
115 simplrl φtwwXYFiGwtw
116 simpr φwXwX
117 1 fvmpt2 wXhQ|w=tT|0<htVGw=hQ|w=tT|0<ht
118 116 75 117 syl2anc φwXGw=hQ|w=tT|0<ht
119 118 eleq2d φwXYFiGwYFihQ|w=tT|0<ht
120 119 biimpa φwXYFiGwYFihQ|w=tT|0<ht
121 120 adantlrl φtwwXYFiGwYFihQ|w=tT|0<ht
122 nfcv _hYFi
123 nfv hw=tT|0<YFit
124 fveq1 h=YFiht=YFit
125 124 breq2d h=YFi0<ht0<YFit
126 125 rabbidv h=YFitT|0<ht=tT|0<YFit
127 126 eqeq2d h=YFiw=tT|0<htw=tT|0<YFit
128 122 11 123 127 elrabf YFihQ|w=tT|0<htYFiQw=tT|0<YFit
129 121 128 sylib φtwwXYFiGwYFiQw=tT|0<YFit
130 129 simprd φtwwXYFiGww=tT|0<YFit
131 115 130 eleqtrd φtwwXYFiGwttT|0<YFit
132 rabid ttT|0<YFittT0<YFit
133 131 132 sylib φtwwXYFiGwtT0<YFit
134 133 simprd φtwwXYFiGw0<YFit
135 134 ex φtwwXYFiGw0<YFit
136 135 reximdv φtwwXi1MYFiGwi1M0<YFit
137 114 136 mpd φtwwXi1M0<YFit
138 137 ex φtwwXi1M0<YFit
139 138 adantr φtTUtwwXi1M0<YFit
140 66 67 70 139 exlimimdd φtTUi1M0<YFit
141 140 ex φtTUi1M0<YFit
142 9 141 ralrimi φtTUi1M0<YFit
143 3 64 142 jca32 φMYF:1MQtTUi1M0<YFit
144 feq1 q=YFq:1MQYF:1MQ
145 fveq1 q=YFqi=YFi
146 145 fveq1d q=YFqit=YFit
147 146 breq2d q=YF0<qit0<YFit
148 147 rexbidv q=YFi1M0<qiti1M0<YFit
149 148 ralbidv q=YFtTUi1M0<qittTUi1M0<YFit
150 144 149 anbi12d q=YFq:1MQtTUi1M0<qitYF:1MQtTUi1M0<YFit
151 150 anbi2d q=YFMq:1MQtTUi1M0<qitMYF:1MQtTUi1M0<YFit
152 151 spcegv YFVMYF:1MQtTUi1M0<YFitqMq:1MQtTUi1M0<qit
153 20 143 152 sylc φqMq:1MQtTUi1M0<qit