Metamath Proof Explorer


Theorem vonioolem1

Description: The sequence of the measures of the half-open intervals converges to the measure of their union. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses vonioolem1.x φXFin
vonioolem1.a φA:X
vonioolem1.b φB:X
vonioolem1.u φX
vonioolem1.t φkXAk<Bk
vonioolem1.c C=nkXAk+1n
vonioolem1.d D=nkXCnkBk
vonioolem1.s S=nvolnXDn
vonioolem1.r T=nkXBkCnk
vonioolem1.e E=suprankXBkAk<
vonioolem1.n N=1E+1
vonioolem1.z Z=N
Assertion vonioolem1 φSkXBkAk

Proof

Step Hyp Ref Expression
1 vonioolem1.x φXFin
2 vonioolem1.a φA:X
3 vonioolem1.b φB:X
4 vonioolem1.u φX
5 vonioolem1.t φkXAk<Bk
6 vonioolem1.c C=nkXAk+1n
7 vonioolem1.d D=nkXCnkBk
8 vonioolem1.s S=nvolnXDn
9 vonioolem1.r T=nkXBkCnk
10 vonioolem1.e E=suprankXBkAk<
11 vonioolem1.n N=1E+1
12 vonioolem1.z Z=N
13 9 a1i φT=nkXBkCnk
14 6 a1i φC=nkXAk+1n
15 1 mptexd φkXAk+1nV
16 15 adantr φnkXAk+1nV
17 14 16 fvmpt2d φnCn=kXAk+1n
18 ovexd φnkXAk+1nV
19 17 18 fvmpt2d φnkXCnk=Ak+1n
20 19 oveq2d φnkXBkCnk=BkAk+1n
21 3 ffvelcdmda φkXBk
22 21 adantlr φnkXBk
23 22 recnd φnkXBk
24 2 adantr φnA:X
25 24 ffvelcdmda φnkXAk
26 25 recnd φnkXAk
27 nnrecre n1n
28 27 ad2antlr φnkX1n
29 28 recnd φnkX1n
30 23 26 29 subsub4d φnkXBk-Ak-1n=BkAk+1n
31 20 30 eqtr4d φnkXBkCnk=Bk-Ak-1n
32 31 prodeq2dv φnkXBkCnk=kXBk-Ak-1n
33 32 mpteq2dva φnkXBkCnk=nkXBk-Ak-1n
34 13 33 eqtrd φT=nkXBk-Ak-1n
35 nfv kφ
36 rpssre +
37 2 ffvelcdmda φkXAk
38 difrp AkBkAk<BkBkAk+
39 37 21 38 syl2anc φkXAk<BkBkAk+
40 5 39 mpbid φkXBkAk+
41 36 40 sselid φkXBkAk
42 41 recnd φkXBkAk
43 eqid nkXBk-Ak-1n=nkXBk-Ak-1n
44 35 1 42 43 fprodsubrecnncnv φnkXBk-Ak-1nkXBkAk
45 34 44 eqbrtrd φTkXBkAk
46 nnex V
47 46 mptex nkXBkCnkV
48 47 a1i φnkXBkCnkV
49 9 48 eqeltrid φTV
50 46 mptex nvolnXDnV
51 50 a1i φnvolnXDnV
52 8 51 eqeltrid φSV
53 1rp 1+
54 53 a1i φ1+
55 eqid kXBkAk=kXBkAk
56 35 55 40 rnmptssd φrankXBkAk+
57 ltso <Or
58 57 a1i φ<Or
59 55 rnmptfi XFinrankXBkAkFin
60 1 59 syl φrankXBkAkFin
61 35 40 55 4 rnmptn0 φrankXBkAk
62 36 a1i φ+
63 56 62 sstrd φrankXBkAk
64 fiinfcl <OrrankXBkAkFinrankXBkAkrankXBkAksuprankXBkAk<rankXBkAk
65 58 60 61 63 64 syl13anc φsuprankXBkAk<rankXBkAk
66 10 65 eqeltrid φErankXBkAk
67 56 66 sseldd φE+
68 54 67 rpdivcld φ1E+
69 68 rpred φ1E
70 68 rpge0d φ01E
71 flge0nn0 1E01E1E0
72 69 70 71 syl2anc φ1E0
73 nn0p1nn 1E01E+1
74 72 73 syl φ1E+1
75 74 nnzd φ1E+1
76 11 75 eqeltrid φN
77 11 recnnltrp E+N1N<E
78 67 77 syl φN1N<E
79 78 simpld φN
80 uznnssnn NN
81 79 80 syl φN
82 12 81 eqsstrid φZ
83 82 adantr φnZZ
84 simpr φnZnZ
85 83 84 sseldd φnZn
86 7 a1i φD=nkXCnkBk
87 1 adantr φnXFin
88 eqid domvolnX=domvolnX
89 25 28 readdcld φnkXAk+1n
90 89 fmpttd φnkXAk+1n:X
91 17 feq1d φnCn:XkXAk+1n:X
92 90 91 mpbird φnCn:X
93 3 adantr φnB:X
94 87 88 92 93 hoimbl φnkXCnkBkdomvolnX
95 94 elexd φnkXCnkBkV
96 86 95 fvmpt2d φnDn=kXCnkBk
97 85 96 syldan φnZDn=kXCnkBk
98 97 fveq2d φnZvolnXDn=volnXkXCnkBk
99 1 adantr φnZXFin
100 4 adantr φnZX
101 85 92 syldan φnZCn:X
102 3 adantr φnZB:X
103 eqid kXCnkBk=kXCnkBk
104 99 100 101 102 103 vonn0hoi φnZvolnXkXCnkBk=kXvolCnkBk
105 101 ffvelcdmda φnZkXCnk
106 85 22 syldanl φnZkXBk
107 volico CnkBkvolCnkBk=ifCnk<BkBkCnk0
108 105 106 107 syl2anc φnZkXvolCnkBk=ifCnk<BkBkCnk0
109 85 19 syldanl φnZkXCnk=Ak+1n
110 85 28 syldanl φnZkX1n
111 79 nnrecred φ1N
112 111 ad2antrr φnZkX1N
113 41 adantlr φnZkXBkAk
114 12 eleq2i nZnN
115 114 biimpi nZnN
116 eluzle nNNn
117 115 116 syl nZNn
118 117 adantl φnZNn
119 79 nnrpd φN+
120 119 adantr φnZN+
121 nnrp nn+
122 85 121 syl φnZn+
123 120 122 lerecd φnZNn1n1N
124 118 123 mpbid φnZ1n1N
125 124 adantr φnZkX1n1N
126 111 adantr φkX1N
127 36 67 sselid φE
128 127 adantr φkXE
129 78 simprd φ1N<E
130 129 adantr φkX1N<E
131 63 adantr φkXrankXBkAk
132 60 adantr φkXrankXBkAkFin
133 id kXkX
134 ovexd kXBkAkV
135 55 elrnmpt1 kXBkAkVBkAkrankXBkAk
136 133 134 135 syl2anc kXBkAkrankXBkAk
137 136 adantl φkXBkAkrankXBkAk
138 infrefilb rankXBkAkrankXBkAkFinBkAkrankXBkAksuprankXBkAk<BkAk
139 131 132 137 138 syl3anc φkXsuprankXBkAk<BkAk
140 10 139 eqbrtrid φkXEBkAk
141 126 128 41 130 140 ltletrd φkX1N<BkAk
142 141 adantlr φnZkX1N<BkAk
143 110 112 113 125 142 lelttrd φnZkX1n<BkAk
144 85 25 syldanl φnZkXAk
145 144 110 106 ltaddsub2d φnZkXAk+1n<Bk1n<BkAk
146 143 145 mpbird φnZkXAk+1n<Bk
147 109 146 eqbrtrd φnZkXCnk<Bk
148 147 iftrued φnZkXifCnk<BkBkCnk0=BkCnk
149 108 148 eqtrd φnZkXvolCnkBk=BkCnk
150 149 prodeq2dv φnZkXvolCnkBk=kXBkCnk
151 98 104 150 3eqtrd φnZvolnXDn=kXBkCnk
152 fvexd φnZvolnXDnV
153 8 fvmpt2 nvolnXDnVSn=volnXDn
154 85 152 153 syl2anc φnZSn=volnXDn
155 prodex kXBkCnkV
156 155 a1i φnZkXBkCnkV
157 9 fvmpt2 nkXBkCnkVTn=kXBkCnk
158 85 156 157 syl2anc φnZTn=kXBkCnk
159 151 154 158 3eqtr4rd φnZTn=Sn
160 12 49 52 76 159 climeq φTkXBkAkSkXBkAk
161 45 160 mpbid φSkXBkAk