| Step |
Hyp |
Ref |
Expression |
| 1 |
|
poimir.0 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 2 |
|
poimirlem22.s |
⊢ 𝑆 = { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } |
| 3 |
|
poimirlem9.1 |
⊢ ( 𝜑 → 𝑇 ∈ 𝑆 ) |
| 4 |
|
poimirlem9.2 |
⊢ ( 𝜑 → ( 2nd ‘ 𝑇 ) ∈ ( 1 ... ( 𝑁 − 1 ) ) ) |
| 5 |
|
poimirlem6.3 |
⊢ ( 𝜑 → 𝑀 ∈ ( 1 ... ( ( 2nd ‘ 𝑇 ) − 1 ) ) ) |
| 6 |
|
elrabi |
⊢ ( 𝑇 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } → 𝑇 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) |
| 7 |
6 2
|
eleq2s |
⊢ ( 𝑇 ∈ 𝑆 → 𝑇 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) |
| 8 |
3 7
|
syl |
⊢ ( 𝜑 → 𝑇 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) |
| 9 |
|
xp1st |
⊢ ( 𝑇 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( 1st ‘ 𝑇 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) |
| 10 |
8 9
|
syl |
⊢ ( 𝜑 → ( 1st ‘ 𝑇 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) ) |
| 11 |
|
xp2nd |
⊢ ( ( 1st ‘ 𝑇 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ∈ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) |
| 12 |
10 11
|
syl |
⊢ ( 𝜑 → ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ∈ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) |
| 13 |
|
fvex |
⊢ ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ∈ V |
| 14 |
|
f1oeq1 |
⊢ ( 𝑓 = ( 2nd ‘ ( 1st ‘ 𝑇 ) ) → ( 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ↔ ( 2nd ‘ ( 1st ‘ 𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) ) |
| 15 |
13 14
|
elab |
⊢ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ∈ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ↔ ( 2nd ‘ ( 1st ‘ 𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) |
| 16 |
12 15
|
sylib |
⊢ ( 𝜑 → ( 2nd ‘ ( 1st ‘ 𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) |
| 17 |
|
f1of |
⊢ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → ( 2nd ‘ ( 1st ‘ 𝑇 ) ) : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) ) |
| 18 |
16 17
|
syl |
⊢ ( 𝜑 → ( 2nd ‘ ( 1st ‘ 𝑇 ) ) : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) ) |
| 19 |
|
elfznn |
⊢ ( ( 2nd ‘ 𝑇 ) ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( 2nd ‘ 𝑇 ) ∈ ℕ ) |
| 20 |
4 19
|
syl |
⊢ ( 𝜑 → ( 2nd ‘ 𝑇 ) ∈ ℕ ) |
| 21 |
20
|
nnzd |
⊢ ( 𝜑 → ( 2nd ‘ 𝑇 ) ∈ ℤ ) |
| 22 |
|
peano2zm |
⊢ ( ( 2nd ‘ 𝑇 ) ∈ ℤ → ( ( 2nd ‘ 𝑇 ) − 1 ) ∈ ℤ ) |
| 23 |
21 22
|
syl |
⊢ ( 𝜑 → ( ( 2nd ‘ 𝑇 ) − 1 ) ∈ ℤ ) |
| 24 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 25 |
23
|
zred |
⊢ ( 𝜑 → ( ( 2nd ‘ 𝑇 ) − 1 ) ∈ ℝ ) |
| 26 |
20
|
nnred |
⊢ ( 𝜑 → ( 2nd ‘ 𝑇 ) ∈ ℝ ) |
| 27 |
1
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 28 |
26
|
lem1d |
⊢ ( 𝜑 → ( ( 2nd ‘ 𝑇 ) − 1 ) ≤ ( 2nd ‘ 𝑇 ) ) |
| 29 |
|
nnm1nn0 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) |
| 30 |
1 29
|
syl |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℕ0 ) |
| 31 |
30
|
nn0red |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℝ ) |
| 32 |
|
elfzle2 |
⊢ ( ( 2nd ‘ 𝑇 ) ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( 2nd ‘ 𝑇 ) ≤ ( 𝑁 − 1 ) ) |
| 33 |
4 32
|
syl |
⊢ ( 𝜑 → ( 2nd ‘ 𝑇 ) ≤ ( 𝑁 − 1 ) ) |
| 34 |
27
|
lem1d |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ≤ 𝑁 ) |
| 35 |
26 31 27 33 34
|
letrd |
⊢ ( 𝜑 → ( 2nd ‘ 𝑇 ) ≤ 𝑁 ) |
| 36 |
25 26 27 28 35
|
letrd |
⊢ ( 𝜑 → ( ( 2nd ‘ 𝑇 ) − 1 ) ≤ 𝑁 ) |
| 37 |
|
eluz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( ( 2nd ‘ 𝑇 ) − 1 ) ) ↔ ( ( ( 2nd ‘ 𝑇 ) − 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( ( 2nd ‘ 𝑇 ) − 1 ) ≤ 𝑁 ) ) |
| 38 |
23 24 36 37
|
syl3anbrc |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ ( ( 2nd ‘ 𝑇 ) − 1 ) ) ) |
| 39 |
|
fzss2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( ( 2nd ‘ 𝑇 ) − 1 ) ) → ( 1 ... ( ( 2nd ‘ 𝑇 ) − 1 ) ) ⊆ ( 1 ... 𝑁 ) ) |
| 40 |
38 39
|
syl |
⊢ ( 𝜑 → ( 1 ... ( ( 2nd ‘ 𝑇 ) − 1 ) ) ⊆ ( 1 ... 𝑁 ) ) |
| 41 |
40 5
|
sseldd |
⊢ ( 𝜑 → 𝑀 ∈ ( 1 ... 𝑁 ) ) |
| 42 |
18 41
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ∈ ( 1 ... 𝑁 ) ) |
| 43 |
|
xp1st |
⊢ ( ( 1st ‘ 𝑇 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) |
| 44 |
10 43
|
syl |
⊢ ( 𝜑 → ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ) |
| 45 |
|
elmapfn |
⊢ ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) → ( 1st ‘ ( 1st ‘ 𝑇 ) ) Fn ( 1 ... 𝑁 ) ) |
| 46 |
44 45
|
syl |
⊢ ( 𝜑 → ( 1st ‘ ( 1st ‘ 𝑇 ) ) Fn ( 1 ... 𝑁 ) ) |
| 47 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ≠ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) → ( 1st ‘ ( 1st ‘ 𝑇 ) ) Fn ( 1 ... 𝑁 ) ) |
| 48 |
|
1ex |
⊢ 1 ∈ V |
| 49 |
|
fnconstg |
⊢ ( 1 ∈ V → ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) Fn ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) ) |
| 50 |
48 49
|
ax-mp |
⊢ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) Fn ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) |
| 51 |
|
c0ex |
⊢ 0 ∈ V |
| 52 |
|
fnconstg |
⊢ ( 0 ∈ V → ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) Fn ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) ) |
| 53 |
51 52
|
ax-mp |
⊢ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) Fn ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) |
| 54 |
50 53
|
pm3.2i |
⊢ ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) Fn ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) ∧ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) Fn ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) ) |
| 55 |
|
dff1o3 |
⊢ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ↔ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) ∧ Fun ◡ ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ) ) |
| 56 |
55
|
simprbi |
⊢ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → Fun ◡ ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ) |
| 57 |
16 56
|
syl |
⊢ ( 𝜑 → Fun ◡ ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ) |
| 58 |
|
imain |
⊢ ( Fun ◡ ( 2nd ‘ ( 1st ‘ 𝑇 ) ) → ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 1 ... ( 𝑀 − 1 ) ) ∩ ( 𝑀 ... 𝑁 ) ) ) = ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) ∩ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) ) ) |
| 59 |
57 58
|
syl |
⊢ ( 𝜑 → ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 1 ... ( 𝑀 − 1 ) ) ∩ ( 𝑀 ... 𝑁 ) ) ) = ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) ∩ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) ) ) |
| 60 |
|
elfznn |
⊢ ( 𝑀 ∈ ( 1 ... ( ( 2nd ‘ 𝑇 ) − 1 ) ) → 𝑀 ∈ ℕ ) |
| 61 |
5 60
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 62 |
61
|
nnred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 63 |
62
|
ltm1d |
⊢ ( 𝜑 → ( 𝑀 − 1 ) < 𝑀 ) |
| 64 |
|
fzdisj |
⊢ ( ( 𝑀 − 1 ) < 𝑀 → ( ( 1 ... ( 𝑀 − 1 ) ) ∩ ( 𝑀 ... 𝑁 ) ) = ∅ ) |
| 65 |
63 64
|
syl |
⊢ ( 𝜑 → ( ( 1 ... ( 𝑀 − 1 ) ) ∩ ( 𝑀 ... 𝑁 ) ) = ∅ ) |
| 66 |
65
|
imaeq2d |
⊢ ( 𝜑 → ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 1 ... ( 𝑀 − 1 ) ) ∩ ( 𝑀 ... 𝑁 ) ) ) = ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ∅ ) ) |
| 67 |
|
ima0 |
⊢ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ∅ ) = ∅ |
| 68 |
66 67
|
eqtrdi |
⊢ ( 𝜑 → ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 1 ... ( 𝑀 − 1 ) ) ∩ ( 𝑀 ... 𝑁 ) ) ) = ∅ ) |
| 69 |
59 68
|
eqtr3d |
⊢ ( 𝜑 → ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) ∩ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) ) = ∅ ) |
| 70 |
|
fnun |
⊢ ( ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) Fn ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) ∧ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) Fn ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) ) ∧ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) ∩ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) ) = ∅ ) → ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) Fn ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) ∪ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) ) ) |
| 71 |
54 69 70
|
sylancr |
⊢ ( 𝜑 → ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) Fn ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) ∪ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) ) ) |
| 72 |
61
|
nncnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 73 |
|
npcan1 |
⊢ ( 𝑀 ∈ ℂ → ( ( 𝑀 − 1 ) + 1 ) = 𝑀 ) |
| 74 |
72 73
|
syl |
⊢ ( 𝜑 → ( ( 𝑀 − 1 ) + 1 ) = 𝑀 ) |
| 75 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 76 |
61 75
|
eleqtrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
| 77 |
74 76
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝑀 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 78 |
|
nnm1nn0 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 − 1 ) ∈ ℕ0 ) |
| 79 |
61 78
|
syl |
⊢ ( 𝜑 → ( 𝑀 − 1 ) ∈ ℕ0 ) |
| 80 |
79
|
nn0zd |
⊢ ( 𝜑 → ( 𝑀 − 1 ) ∈ ℤ ) |
| 81 |
|
uzid |
⊢ ( ( 𝑀 − 1 ) ∈ ℤ → ( 𝑀 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) ) |
| 82 |
80 81
|
syl |
⊢ ( 𝜑 → ( 𝑀 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) ) |
| 83 |
|
peano2uz |
⊢ ( ( 𝑀 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) → ( ( 𝑀 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) ) |
| 84 |
82 83
|
syl |
⊢ ( 𝜑 → ( ( 𝑀 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) ) |
| 85 |
74 84
|
eqeltrrd |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) ) |
| 86 |
|
uzss |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) → ( ℤ≥ ‘ 𝑀 ) ⊆ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) ) |
| 87 |
85 86
|
syl |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑀 ) ⊆ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) ) |
| 88 |
61
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 89 |
|
elfzle2 |
⊢ ( 𝑀 ∈ ( 1 ... ( ( 2nd ‘ 𝑇 ) − 1 ) ) → 𝑀 ≤ ( ( 2nd ‘ 𝑇 ) − 1 ) ) |
| 90 |
5 89
|
syl |
⊢ ( 𝜑 → 𝑀 ≤ ( ( 2nd ‘ 𝑇 ) − 1 ) ) |
| 91 |
62 25 27 90 36
|
letrd |
⊢ ( 𝜑 → 𝑀 ≤ 𝑁 ) |
| 92 |
|
eluz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) ) |
| 93 |
88 24 91 92
|
syl3anbrc |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 94 |
87 93
|
sseldd |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) ) |
| 95 |
|
fzsplit2 |
⊢ ( ( ( ( 𝑀 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) ) → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑀 − 1 ) ) ∪ ( ( ( 𝑀 − 1 ) + 1 ) ... 𝑁 ) ) ) |
| 96 |
77 94 95
|
syl2anc |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑀 − 1 ) ) ∪ ( ( ( 𝑀 − 1 ) + 1 ) ... 𝑁 ) ) ) |
| 97 |
74
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑀 − 1 ) + 1 ) ... 𝑁 ) = ( 𝑀 ... 𝑁 ) ) |
| 98 |
97
|
uneq2d |
⊢ ( 𝜑 → ( ( 1 ... ( 𝑀 − 1 ) ) ∪ ( ( ( 𝑀 − 1 ) + 1 ) ... 𝑁 ) ) = ( ( 1 ... ( 𝑀 − 1 ) ) ∪ ( 𝑀 ... 𝑁 ) ) ) |
| 99 |
96 98
|
eqtrd |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑀 − 1 ) ) ∪ ( 𝑀 ... 𝑁 ) ) ) |
| 100 |
99
|
imaeq2d |
⊢ ( 𝜑 → ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑁 ) ) = ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 1 ... ( 𝑀 − 1 ) ) ∪ ( 𝑀 ... 𝑁 ) ) ) ) |
| 101 |
|
imaundi |
⊢ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 1 ... ( 𝑀 − 1 ) ) ∪ ( 𝑀 ... 𝑁 ) ) ) = ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) ∪ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) ) |
| 102 |
100 101
|
eqtrdi |
⊢ ( 𝜑 → ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑁 ) ) = ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) ∪ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) ) ) |
| 103 |
|
f1ofo |
⊢ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → ( 2nd ‘ ( 1st ‘ 𝑇 ) ) : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) ) |
| 104 |
16 103
|
syl |
⊢ ( 𝜑 → ( 2nd ‘ ( 1st ‘ 𝑇 ) ) : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) ) |
| 105 |
|
foima |
⊢ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) → ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) ) |
| 106 |
104 105
|
syl |
⊢ ( 𝜑 → ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) ) |
| 107 |
102 106
|
eqtr3d |
⊢ ( 𝜑 → ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) ∪ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) ) = ( 1 ... 𝑁 ) ) |
| 108 |
107
|
fneq2d |
⊢ ( 𝜑 → ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) Fn ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) ∪ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) ) ↔ ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) ) |
| 109 |
71 108
|
mpbid |
⊢ ( 𝜑 → ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) |
| 110 |
109
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ≠ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) → ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) |
| 111 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑛 ≠ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) → ( 1 ... 𝑁 ) ∈ V ) |
| 112 |
|
inidm |
⊢ ( ( 1 ... 𝑁 ) ∩ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) |
| 113 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ≠ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑛 ) = ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑛 ) ) |
| 114 |
|
imaundi |
⊢ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( { 𝑀 } ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) = ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ { 𝑀 } ) ∪ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
| 115 |
|
fzpred |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... 𝑁 ) = ( { 𝑀 } ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
| 116 |
93 115
|
syl |
⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) = ( { 𝑀 } ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
| 117 |
116
|
imaeq2d |
⊢ ( 𝜑 → ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) = ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( { 𝑀 } ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) ) |
| 118 |
|
f1ofn |
⊢ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → ( 2nd ‘ ( 1st ‘ 𝑇 ) ) Fn ( 1 ... 𝑁 ) ) |
| 119 |
16 118
|
syl |
⊢ ( 𝜑 → ( 2nd ‘ ( 1st ‘ 𝑇 ) ) Fn ( 1 ... 𝑁 ) ) |
| 120 |
|
fnsnfv |
⊢ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) Fn ( 1 ... 𝑁 ) ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } = ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ { 𝑀 } ) ) |
| 121 |
119 41 120
|
syl2anc |
⊢ ( 𝜑 → { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } = ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ { 𝑀 } ) ) |
| 122 |
121
|
uneq1d |
⊢ ( 𝜑 → ( { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } ∪ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) = ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ { 𝑀 } ) ∪ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) ) |
| 123 |
114 117 122
|
3eqtr4a |
⊢ ( 𝜑 → ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) = ( { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } ∪ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) ) |
| 124 |
123
|
xpeq1d |
⊢ ( 𝜑 → ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) = ( ( { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } ∪ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) × { 0 } ) ) |
| 125 |
|
xpundir |
⊢ ( ( { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } ∪ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) × { 0 } ) = ( ( { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } × { 0 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) |
| 126 |
124 125
|
eqtrdi |
⊢ ( 𝜑 → ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) = ( ( { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } × { 0 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
| 127 |
126
|
uneq2d |
⊢ ( 𝜑 → ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } × { 0 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 128 |
|
un12 |
⊢ ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } × { 0 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } × { 0 } ) ∪ ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
| 129 |
127 128
|
eqtrdi |
⊢ ( 𝜑 → ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) = ( ( { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } × { 0 } ) ∪ ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 130 |
129
|
fveq1d |
⊢ ( 𝜑 → ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } × { 0 } ) ∪ ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
| 131 |
130
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ≠ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } × { 0 } ) ∪ ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
| 132 |
|
fnconstg |
⊢ ( 0 ∈ V → ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
| 133 |
51 132
|
ax-mp |
⊢ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) |
| 134 |
50 133
|
pm3.2i |
⊢ ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) Fn ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) ∧ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
| 135 |
|
imain |
⊢ ( Fun ◡ ( 2nd ‘ ( 1st ‘ 𝑇 ) ) → ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 1 ... ( 𝑀 − 1 ) ) ∩ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) = ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) ∩ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) ) |
| 136 |
57 135
|
syl |
⊢ ( 𝜑 → ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 1 ... ( 𝑀 − 1 ) ) ∩ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) = ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) ∩ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) ) |
| 137 |
79
|
nn0red |
⊢ ( 𝜑 → ( 𝑀 − 1 ) ∈ ℝ ) |
| 138 |
|
peano2re |
⊢ ( 𝑀 ∈ ℝ → ( 𝑀 + 1 ) ∈ ℝ ) |
| 139 |
62 138
|
syl |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ℝ ) |
| 140 |
62
|
ltp1d |
⊢ ( 𝜑 → 𝑀 < ( 𝑀 + 1 ) ) |
| 141 |
137 62 139 63 140
|
lttrd |
⊢ ( 𝜑 → ( 𝑀 − 1 ) < ( 𝑀 + 1 ) ) |
| 142 |
|
fzdisj |
⊢ ( ( 𝑀 − 1 ) < ( 𝑀 + 1 ) → ( ( 1 ... ( 𝑀 − 1 ) ) ∩ ( ( 𝑀 + 1 ) ... 𝑁 ) ) = ∅ ) |
| 143 |
141 142
|
syl |
⊢ ( 𝜑 → ( ( 1 ... ( 𝑀 − 1 ) ) ∩ ( ( 𝑀 + 1 ) ... 𝑁 ) ) = ∅ ) |
| 144 |
143
|
imaeq2d |
⊢ ( 𝜑 → ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 1 ... ( 𝑀 − 1 ) ) ∩ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) = ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ∅ ) ) |
| 145 |
144 67
|
eqtrdi |
⊢ ( 𝜑 → ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 1 ... ( 𝑀 − 1 ) ) ∩ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) = ∅ ) |
| 146 |
136 145
|
eqtr3d |
⊢ ( 𝜑 → ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) ∩ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) = ∅ ) |
| 147 |
|
fnun |
⊢ ( ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) Fn ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) ∧ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) ∧ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) ∩ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) = ∅ ) → ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) ∪ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) ) |
| 148 |
134 146 147
|
sylancr |
⊢ ( 𝜑 → ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) ∪ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) ) |
| 149 |
|
imaundi |
⊢ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 1 ... ( 𝑀 − 1 ) ) ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) = ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) ∪ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
| 150 |
|
imadif |
⊢ ( Fun ◡ ( 2nd ‘ ( 1st ‘ 𝑇 ) ) → ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 1 ... 𝑁 ) ∖ { 𝑀 } ) ) = ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑁 ) ) ∖ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ { 𝑀 } ) ) ) |
| 151 |
57 150
|
syl |
⊢ ( 𝜑 → ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 1 ... 𝑁 ) ∖ { 𝑀 } ) ) = ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑁 ) ) ∖ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ { 𝑀 } ) ) ) |
| 152 |
|
fzsplit |
⊢ ( 𝑀 ∈ ( 1 ... 𝑁 ) → ( 1 ... 𝑁 ) = ( ( 1 ... 𝑀 ) ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
| 153 |
41 152
|
syl |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) = ( ( 1 ... 𝑀 ) ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
| 154 |
153
|
difeq1d |
⊢ ( 𝜑 → ( ( 1 ... 𝑁 ) ∖ { 𝑀 } ) = ( ( ( 1 ... 𝑀 ) ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ∖ { 𝑀 } ) ) |
| 155 |
|
difundir |
⊢ ( ( ( 1 ... 𝑀 ) ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ∖ { 𝑀 } ) = ( ( ( 1 ... 𝑀 ) ∖ { 𝑀 } ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∖ { 𝑀 } ) ) |
| 156 |
|
fzsplit2 |
⊢ ( ( ( ( 𝑀 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) ) → ( 1 ... 𝑀 ) = ( ( 1 ... ( 𝑀 − 1 ) ) ∪ ( ( ( 𝑀 − 1 ) + 1 ) ... 𝑀 ) ) ) |
| 157 |
77 85 156
|
syl2anc |
⊢ ( 𝜑 → ( 1 ... 𝑀 ) = ( ( 1 ... ( 𝑀 − 1 ) ) ∪ ( ( ( 𝑀 − 1 ) + 1 ) ... 𝑀 ) ) ) |
| 158 |
74
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑀 − 1 ) + 1 ) ... 𝑀 ) = ( 𝑀 ... 𝑀 ) ) |
| 159 |
|
fzsn |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ... 𝑀 ) = { 𝑀 } ) |
| 160 |
88 159
|
syl |
⊢ ( 𝜑 → ( 𝑀 ... 𝑀 ) = { 𝑀 } ) |
| 161 |
158 160
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑀 − 1 ) + 1 ) ... 𝑀 ) = { 𝑀 } ) |
| 162 |
161
|
uneq2d |
⊢ ( 𝜑 → ( ( 1 ... ( 𝑀 − 1 ) ) ∪ ( ( ( 𝑀 − 1 ) + 1 ) ... 𝑀 ) ) = ( ( 1 ... ( 𝑀 − 1 ) ) ∪ { 𝑀 } ) ) |
| 163 |
157 162
|
eqtrd |
⊢ ( 𝜑 → ( 1 ... 𝑀 ) = ( ( 1 ... ( 𝑀 − 1 ) ) ∪ { 𝑀 } ) ) |
| 164 |
163
|
difeq1d |
⊢ ( 𝜑 → ( ( 1 ... 𝑀 ) ∖ { 𝑀 } ) = ( ( ( 1 ... ( 𝑀 − 1 ) ) ∪ { 𝑀 } ) ∖ { 𝑀 } ) ) |
| 165 |
|
difun2 |
⊢ ( ( ( 1 ... ( 𝑀 − 1 ) ) ∪ { 𝑀 } ) ∖ { 𝑀 } ) = ( ( 1 ... ( 𝑀 − 1 ) ) ∖ { 𝑀 } ) |
| 166 |
137 62
|
ltnled |
⊢ ( 𝜑 → ( ( 𝑀 − 1 ) < 𝑀 ↔ ¬ 𝑀 ≤ ( 𝑀 − 1 ) ) ) |
| 167 |
63 166
|
mpbid |
⊢ ( 𝜑 → ¬ 𝑀 ≤ ( 𝑀 − 1 ) ) |
| 168 |
|
elfzle2 |
⊢ ( 𝑀 ∈ ( 1 ... ( 𝑀 − 1 ) ) → 𝑀 ≤ ( 𝑀 − 1 ) ) |
| 169 |
167 168
|
nsyl |
⊢ ( 𝜑 → ¬ 𝑀 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) |
| 170 |
|
difsn |
⊢ ( ¬ 𝑀 ∈ ( 1 ... ( 𝑀 − 1 ) ) → ( ( 1 ... ( 𝑀 − 1 ) ) ∖ { 𝑀 } ) = ( 1 ... ( 𝑀 − 1 ) ) ) |
| 171 |
169 170
|
syl |
⊢ ( 𝜑 → ( ( 1 ... ( 𝑀 − 1 ) ) ∖ { 𝑀 } ) = ( 1 ... ( 𝑀 − 1 ) ) ) |
| 172 |
165 171
|
eqtrid |
⊢ ( 𝜑 → ( ( ( 1 ... ( 𝑀 − 1 ) ) ∪ { 𝑀 } ) ∖ { 𝑀 } ) = ( 1 ... ( 𝑀 − 1 ) ) ) |
| 173 |
164 172
|
eqtrd |
⊢ ( 𝜑 → ( ( 1 ... 𝑀 ) ∖ { 𝑀 } ) = ( 1 ... ( 𝑀 − 1 ) ) ) |
| 174 |
62 139
|
ltnled |
⊢ ( 𝜑 → ( 𝑀 < ( 𝑀 + 1 ) ↔ ¬ ( 𝑀 + 1 ) ≤ 𝑀 ) ) |
| 175 |
140 174
|
mpbid |
⊢ ( 𝜑 → ¬ ( 𝑀 + 1 ) ≤ 𝑀 ) |
| 176 |
|
elfzle1 |
⊢ ( 𝑀 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝑀 + 1 ) ≤ 𝑀 ) |
| 177 |
175 176
|
nsyl |
⊢ ( 𝜑 → ¬ 𝑀 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) |
| 178 |
|
difsn |
⊢ ( ¬ 𝑀 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∖ { 𝑀 } ) = ( ( 𝑀 + 1 ) ... 𝑁 ) ) |
| 179 |
177 178
|
syl |
⊢ ( 𝜑 → ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∖ { 𝑀 } ) = ( ( 𝑀 + 1 ) ... 𝑁 ) ) |
| 180 |
173 179
|
uneq12d |
⊢ ( 𝜑 → ( ( ( 1 ... 𝑀 ) ∖ { 𝑀 } ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∖ { 𝑀 } ) ) = ( ( 1 ... ( 𝑀 − 1 ) ) ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
| 181 |
155 180
|
eqtrid |
⊢ ( 𝜑 → ( ( ( 1 ... 𝑀 ) ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ∖ { 𝑀 } ) = ( ( 1 ... ( 𝑀 − 1 ) ) ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
| 182 |
154 181
|
eqtrd |
⊢ ( 𝜑 → ( ( 1 ... 𝑁 ) ∖ { 𝑀 } ) = ( ( 1 ... ( 𝑀 − 1 ) ) ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
| 183 |
182
|
imaeq2d |
⊢ ( 𝜑 → ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 1 ... 𝑁 ) ∖ { 𝑀 } ) ) = ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 1 ... ( 𝑀 − 1 ) ) ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) ) |
| 184 |
121
|
eqcomd |
⊢ ( 𝜑 → ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ { 𝑀 } ) = { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } ) |
| 185 |
106 184
|
difeq12d |
⊢ ( 𝜑 → ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑁 ) ) ∖ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ { 𝑀 } ) ) = ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } ) ) |
| 186 |
151 183 185
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 1 ... ( 𝑀 − 1 ) ) ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) = ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } ) ) |
| 187 |
149 186
|
eqtr3id |
⊢ ( 𝜑 → ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) ∪ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) = ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } ) ) |
| 188 |
187
|
fneq2d |
⊢ ( 𝜑 → ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) ∪ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) ↔ ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } ) ) ) |
| 189 |
148 188
|
mpbid |
⊢ ( 𝜑 → ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } ) ) |
| 190 |
|
eldifsn |
⊢ ( 𝑛 ∈ ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } ) ↔ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑛 ≠ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) ) |
| 191 |
190
|
biimpri |
⊢ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑛 ≠ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) → 𝑛 ∈ ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } ) ) |
| 192 |
191
|
ancoms |
⊢ ( ( 𝑛 ≠ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → 𝑛 ∈ ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } ) ) |
| 193 |
|
disjdif |
⊢ ( { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } ∩ ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } ) ) = ∅ |
| 194 |
|
fnconstg |
⊢ ( 0 ∈ V → ( { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } × { 0 } ) Fn { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } ) |
| 195 |
51 194
|
ax-mp |
⊢ ( { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } × { 0 } ) Fn { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } |
| 196 |
|
fvun2 |
⊢ ( ( ( { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } × { 0 } ) Fn { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } ∧ ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } ) ∧ ( ( { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } ∩ ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } ) ) = ∅ ∧ 𝑛 ∈ ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } ) ) ) → ( ( ( { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } × { 0 } ) ∪ ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) |
| 197 |
195 196
|
mp3an1 |
⊢ ( ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } ) ∧ ( ( { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } ∩ ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } ) ) = ∅ ∧ 𝑛 ∈ ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } ) ) ) → ( ( ( { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } × { 0 } ) ∪ ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) |
| 198 |
193 197
|
mpanr1 |
⊢ ( ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } ) ∧ 𝑛 ∈ ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } ) ) → ( ( ( { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } × { 0 } ) ∪ ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) |
| 199 |
189 192 198
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑛 ≠ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ) → ( ( ( { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } × { 0 } ) ∪ ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) |
| 200 |
199
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑛 ≠ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } × { 0 } ) ∪ ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) |
| 201 |
131 200
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ≠ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) |
| 202 |
47 110 111 111 112 113 201
|
ofval |
⊢ ( ( ( 𝜑 ∧ 𝑛 ≠ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑛 ) + ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) |
| 203 |
|
fnconstg |
⊢ ( 1 ∈ V → ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) Fn ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) ) |
| 204 |
48 203
|
ax-mp |
⊢ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) Fn ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) |
| 205 |
204 133
|
pm3.2i |
⊢ ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) Fn ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) ∧ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
| 206 |
|
imain |
⊢ ( Fun ◡ ( 2nd ‘ ( 1st ‘ 𝑇 ) ) → ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 1 ... 𝑀 ) ∩ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) = ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) ∩ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) ) |
| 207 |
57 206
|
syl |
⊢ ( 𝜑 → ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 1 ... 𝑀 ) ∩ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) = ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) ∩ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) ) |
| 208 |
|
fzdisj |
⊢ ( 𝑀 < ( 𝑀 + 1 ) → ( ( 1 ... 𝑀 ) ∩ ( ( 𝑀 + 1 ) ... 𝑁 ) ) = ∅ ) |
| 209 |
140 208
|
syl |
⊢ ( 𝜑 → ( ( 1 ... 𝑀 ) ∩ ( ( 𝑀 + 1 ) ... 𝑁 ) ) = ∅ ) |
| 210 |
209
|
imaeq2d |
⊢ ( 𝜑 → ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 1 ... 𝑀 ) ∩ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) = ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ∅ ) ) |
| 211 |
210 67
|
eqtrdi |
⊢ ( 𝜑 → ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 1 ... 𝑀 ) ∩ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) = ∅ ) |
| 212 |
207 211
|
eqtr3d |
⊢ ( 𝜑 → ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) ∩ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) = ∅ ) |
| 213 |
|
fnun |
⊢ ( ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) Fn ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) ∧ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) ∧ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) ∩ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) = ∅ ) → ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) ∪ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) ) |
| 214 |
205 212 213
|
sylancr |
⊢ ( 𝜑 → ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) ∪ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) ) |
| 215 |
153
|
imaeq2d |
⊢ ( 𝜑 → ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑁 ) ) = ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 1 ... 𝑀 ) ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) ) |
| 216 |
|
imaundi |
⊢ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 1 ... 𝑀 ) ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) = ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) ∪ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
| 217 |
215 216
|
eqtrdi |
⊢ ( 𝜑 → ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑁 ) ) = ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) ∪ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) ) |
| 218 |
217 106
|
eqtr3d |
⊢ ( 𝜑 → ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) ∪ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) = ( 1 ... 𝑁 ) ) |
| 219 |
218
|
fneq2d |
⊢ ( 𝜑 → ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) ∪ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) ↔ ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) ) |
| 220 |
214 219
|
mpbid |
⊢ ( 𝜑 → ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) |
| 221 |
220
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ≠ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) → ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) |
| 222 |
|
imaundi |
⊢ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 1 ... ( 𝑀 − 1 ) ) ∪ { 𝑀 } ) ) = ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) ∪ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ { 𝑀 } ) ) |
| 223 |
163
|
imaeq2d |
⊢ ( 𝜑 → ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) = ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 1 ... ( 𝑀 − 1 ) ) ∪ { 𝑀 } ) ) ) |
| 224 |
121
|
uneq2d |
⊢ ( 𝜑 → ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) ∪ { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } ) = ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) ∪ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ { 𝑀 } ) ) ) |
| 225 |
222 223 224
|
3eqtr4a |
⊢ ( 𝜑 → ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) = ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) ∪ { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } ) ) |
| 226 |
225
|
xpeq1d |
⊢ ( 𝜑 → ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) = ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) ∪ { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } ) × { 1 } ) ) |
| 227 |
|
xpundir |
⊢ ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) ∪ { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } ) × { 1 } ) = ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } × { 1 } ) ) |
| 228 |
226 227
|
eqtrdi |
⊢ ( 𝜑 → ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) = ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } × { 1 } ) ) ) |
| 229 |
228
|
uneq1d |
⊢ ( 𝜑 → ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } × { 1 } ) ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
| 230 |
|
un23 |
⊢ ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } × { 1 } ) ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } × { 1 } ) ) |
| 231 |
230
|
equncomi |
⊢ ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } × { 1 } ) ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
| 232 |
229 231
|
eqtrdi |
⊢ ( 𝜑 → ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 233 |
232
|
fveq1d |
⊢ ( 𝜑 → ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
| 234 |
233
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ≠ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
| 235 |
|
fnconstg |
⊢ ( 1 ∈ V → ( { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } × { 1 } ) Fn { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } ) |
| 236 |
48 235
|
ax-mp |
⊢ ( { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } × { 1 } ) Fn { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } |
| 237 |
|
fvun2 |
⊢ ( ( ( { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } × { 1 } ) Fn { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } ∧ ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } ) ∧ ( ( { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } ∩ ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } ) ) = ∅ ∧ 𝑛 ∈ ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } ) ) ) → ( ( ( { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) |
| 238 |
236 237
|
mp3an1 |
⊢ ( ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } ) ∧ ( ( { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } ∩ ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } ) ) = ∅ ∧ 𝑛 ∈ ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } ) ) ) → ( ( ( { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) |
| 239 |
193 238
|
mpanr1 |
⊢ ( ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } ) ∧ 𝑛 ∈ ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } ) ) → ( ( ( { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) |
| 240 |
189 192 239
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑛 ≠ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ) → ( ( ( { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) |
| 241 |
240
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑛 ≠ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( { ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) } × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) |
| 242 |
234 241
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ≠ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) |
| 243 |
47 221 111 111 112 113 242
|
ofval |
⊢ ( ( ( 𝜑 ∧ 𝑛 ≠ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑛 ) + ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) |
| 244 |
202 243
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ≠ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
| 245 |
244
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑛 ≠ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) → ( ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
| 246 |
245
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑛 ≠ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) ) → ( ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
| 247 |
|
fveq2 |
⊢ ( 𝑡 = 𝑇 → ( 2nd ‘ 𝑡 ) = ( 2nd ‘ 𝑇 ) ) |
| 248 |
247
|
breq2d |
⊢ ( 𝑡 = 𝑇 → ( 𝑦 < ( 2nd ‘ 𝑡 ) ↔ 𝑦 < ( 2nd ‘ 𝑇 ) ) ) |
| 249 |
248
|
ifbid |
⊢ ( 𝑡 = 𝑇 → if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) = if ( 𝑦 < ( 2nd ‘ 𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) ) |
| 250 |
249
|
csbeq1d |
⊢ ( 𝑡 = 𝑇 → ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ⦋ if ( 𝑦 < ( 2nd ‘ 𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 251 |
|
2fveq3 |
⊢ ( 𝑡 = 𝑇 → ( 1st ‘ ( 1st ‘ 𝑡 ) ) = ( 1st ‘ ( 1st ‘ 𝑇 ) ) ) |
| 252 |
|
2fveq3 |
⊢ ( 𝑡 = 𝑇 → ( 2nd ‘ ( 1st ‘ 𝑡 ) ) = ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ) |
| 253 |
252
|
imaeq1d |
⊢ ( 𝑡 = 𝑇 → ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑗 ) ) ) |
| 254 |
253
|
xpeq1d |
⊢ ( 𝑡 = 𝑇 → ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ) |
| 255 |
252
|
imaeq1d |
⊢ ( 𝑡 = 𝑇 → ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) ) |
| 256 |
255
|
xpeq1d |
⊢ ( 𝑡 = 𝑇 → ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) |
| 257 |
254 256
|
uneq12d |
⊢ ( 𝑡 = 𝑇 → ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
| 258 |
251 257
|
oveq12d |
⊢ ( 𝑡 = 𝑇 → ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 259 |
258
|
csbeq2dv |
⊢ ( 𝑡 = 𝑇 → ⦋ if ( 𝑦 < ( 2nd ‘ 𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ⦋ if ( 𝑦 < ( 2nd ‘ 𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 260 |
250 259
|
eqtrd |
⊢ ( 𝑡 = 𝑇 → ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ⦋ if ( 𝑦 < ( 2nd ‘ 𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 261 |
260
|
mpteq2dv |
⊢ ( 𝑡 = 𝑇 → ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) |
| 262 |
261
|
eqeq2d |
⊢ ( 𝑡 = 𝑇 → ( 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↔ 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) ) |
| 263 |
262 2
|
elrab2 |
⊢ ( 𝑇 ∈ 𝑆 ↔ ( 𝑇 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) ) |
| 264 |
263
|
simprbi |
⊢ ( 𝑇 ∈ 𝑆 → 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) |
| 265 |
3 264
|
syl |
⊢ ( 𝜑 → 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < ( 2nd ‘ 𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) |
| 266 |
|
breq1 |
⊢ ( 𝑦 = ( 𝑀 − 1 ) → ( 𝑦 < ( 2nd ‘ 𝑇 ) ↔ ( 𝑀 − 1 ) < ( 2nd ‘ 𝑇 ) ) ) |
| 267 |
|
id |
⊢ ( 𝑦 = ( 𝑀 − 1 ) → 𝑦 = ( 𝑀 − 1 ) ) |
| 268 |
266 267
|
ifbieq1d |
⊢ ( 𝑦 = ( 𝑀 − 1 ) → if ( 𝑦 < ( 2nd ‘ 𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) = if ( ( 𝑀 − 1 ) < ( 2nd ‘ 𝑇 ) , ( 𝑀 − 1 ) , ( 𝑦 + 1 ) ) ) |
| 269 |
26
|
ltm1d |
⊢ ( 𝜑 → ( ( 2nd ‘ 𝑇 ) − 1 ) < ( 2nd ‘ 𝑇 ) ) |
| 270 |
62 25 26 90 269
|
lelttrd |
⊢ ( 𝜑 → 𝑀 < ( 2nd ‘ 𝑇 ) ) |
| 271 |
137 62 26 63 270
|
lttrd |
⊢ ( 𝜑 → ( 𝑀 − 1 ) < ( 2nd ‘ 𝑇 ) ) |
| 272 |
271
|
iftrued |
⊢ ( 𝜑 → if ( ( 𝑀 − 1 ) < ( 2nd ‘ 𝑇 ) , ( 𝑀 − 1 ) , ( 𝑦 + 1 ) ) = ( 𝑀 − 1 ) ) |
| 273 |
268 272
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑀 − 1 ) ) → if ( 𝑦 < ( 2nd ‘ 𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) = ( 𝑀 − 1 ) ) |
| 274 |
273
|
csbeq1d |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑀 − 1 ) ) → ⦋ if ( 𝑦 < ( 2nd ‘ 𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ⦋ ( 𝑀 − 1 ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 275 |
|
oveq2 |
⊢ ( 𝑗 = ( 𝑀 − 1 ) → ( 1 ... 𝑗 ) = ( 1 ... ( 𝑀 − 1 ) ) ) |
| 276 |
275
|
imaeq2d |
⊢ ( 𝑗 = ( 𝑀 − 1 ) → ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) ) |
| 277 |
276
|
xpeq1d |
⊢ ( 𝑗 = ( 𝑀 − 1 ) → ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ) |
| 278 |
277
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 = ( 𝑀 − 1 ) ) → ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ) |
| 279 |
|
oveq1 |
⊢ ( 𝑗 = ( 𝑀 − 1 ) → ( 𝑗 + 1 ) = ( ( 𝑀 − 1 ) + 1 ) ) |
| 280 |
279 74
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑗 = ( 𝑀 − 1 ) ) → ( 𝑗 + 1 ) = 𝑀 ) |
| 281 |
280
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 = ( 𝑀 − 1 ) ) → ( ( 𝑗 + 1 ) ... 𝑁 ) = ( 𝑀 ... 𝑁 ) ) |
| 282 |
281
|
imaeq2d |
⊢ ( ( 𝜑 ∧ 𝑗 = ( 𝑀 − 1 ) ) → ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) ) |
| 283 |
282
|
xpeq1d |
⊢ ( ( 𝜑 ∧ 𝑗 = ( 𝑀 − 1 ) ) → ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) |
| 284 |
278 283
|
uneq12d |
⊢ ( ( 𝜑 ∧ 𝑗 = ( 𝑀 − 1 ) ) → ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ) |
| 285 |
284
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 = ( 𝑀 − 1 ) ) → ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 286 |
79 285
|
csbied |
⊢ ( 𝜑 → ⦋ ( 𝑀 − 1 ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 287 |
286
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑀 − 1 ) ) → ⦋ ( 𝑀 − 1 ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 288 |
274 287
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑀 − 1 ) ) → ⦋ if ( 𝑦 < ( 2nd ‘ 𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 289 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 290 |
62 27 289 91
|
lesub1dd |
⊢ ( 𝜑 → ( 𝑀 − 1 ) ≤ ( 𝑁 − 1 ) ) |
| 291 |
|
elfz2nn0 |
⊢ ( ( 𝑀 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ ( ( 𝑀 − 1 ) ∈ ℕ0 ∧ ( 𝑁 − 1 ) ∈ ℕ0 ∧ ( 𝑀 − 1 ) ≤ ( 𝑁 − 1 ) ) ) |
| 292 |
79 30 290 291
|
syl3anbrc |
⊢ ( 𝜑 → ( 𝑀 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
| 293 |
|
ovexd |
⊢ ( 𝜑 → ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ) ∈ V ) |
| 294 |
265 288 292 293
|
fvmptd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝑀 − 1 ) ) = ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 295 |
294
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) = ( ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
| 296 |
295
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑛 ≠ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) ) → ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) = ( ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
| 297 |
|
breq1 |
⊢ ( 𝑦 = 𝑀 → ( 𝑦 < ( 2nd ‘ 𝑇 ) ↔ 𝑀 < ( 2nd ‘ 𝑇 ) ) ) |
| 298 |
|
id |
⊢ ( 𝑦 = 𝑀 → 𝑦 = 𝑀 ) |
| 299 |
297 298
|
ifbieq1d |
⊢ ( 𝑦 = 𝑀 → if ( 𝑦 < ( 2nd ‘ 𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) = if ( 𝑀 < ( 2nd ‘ 𝑇 ) , 𝑀 , ( 𝑦 + 1 ) ) ) |
| 300 |
270
|
iftrued |
⊢ ( 𝜑 → if ( 𝑀 < ( 2nd ‘ 𝑇 ) , 𝑀 , ( 𝑦 + 1 ) ) = 𝑀 ) |
| 301 |
299 300
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝑀 ) → if ( 𝑦 < ( 2nd ‘ 𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) = 𝑀 ) |
| 302 |
301
|
csbeq1d |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝑀 ) → ⦋ if ( 𝑦 < ( 2nd ‘ 𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ⦋ 𝑀 / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 303 |
|
oveq2 |
⊢ ( 𝑗 = 𝑀 → ( 1 ... 𝑗 ) = ( 1 ... 𝑀 ) ) |
| 304 |
303
|
imaeq2d |
⊢ ( 𝑗 = 𝑀 → ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) ) |
| 305 |
304
|
xpeq1d |
⊢ ( 𝑗 = 𝑀 → ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) ) |
| 306 |
|
oveq1 |
⊢ ( 𝑗 = 𝑀 → ( 𝑗 + 1 ) = ( 𝑀 + 1 ) ) |
| 307 |
306
|
oveq1d |
⊢ ( 𝑗 = 𝑀 → ( ( 𝑗 + 1 ) ... 𝑁 ) = ( ( 𝑀 + 1 ) ... 𝑁 ) ) |
| 308 |
307
|
imaeq2d |
⊢ ( 𝑗 = 𝑀 → ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) |
| 309 |
308
|
xpeq1d |
⊢ ( 𝑗 = 𝑀 → ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) |
| 310 |
305 309
|
uneq12d |
⊢ ( 𝑗 = 𝑀 → ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
| 311 |
310
|
oveq2d |
⊢ ( 𝑗 = 𝑀 → ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 312 |
311
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 = 𝑀 ) → ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 313 |
5 312
|
csbied |
⊢ ( 𝜑 → ⦋ 𝑀 / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 314 |
313
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝑀 ) → ⦋ 𝑀 / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 315 |
302 314
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝑀 ) → ⦋ if ( 𝑦 < ( 2nd ‘ 𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 316 |
30
|
nn0zd |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℤ ) |
| 317 |
26 27 289 35
|
lesub1dd |
⊢ ( 𝜑 → ( ( 2nd ‘ 𝑇 ) − 1 ) ≤ ( 𝑁 − 1 ) ) |
| 318 |
|
eluz2 |
⊢ ( ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ ( ( 2nd ‘ 𝑇 ) − 1 ) ) ↔ ( ( ( 2nd ‘ 𝑇 ) − 1 ) ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℤ ∧ ( ( 2nd ‘ 𝑇 ) − 1 ) ≤ ( 𝑁 − 1 ) ) ) |
| 319 |
23 316 317 318
|
syl3anbrc |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ ( ( 2nd ‘ 𝑇 ) − 1 ) ) ) |
| 320 |
|
fzss2 |
⊢ ( ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ ( ( 2nd ‘ 𝑇 ) − 1 ) ) → ( 1 ... ( ( 2nd ‘ 𝑇 ) − 1 ) ) ⊆ ( 1 ... ( 𝑁 − 1 ) ) ) |
| 321 |
319 320
|
syl |
⊢ ( 𝜑 → ( 1 ... ( ( 2nd ‘ 𝑇 ) − 1 ) ) ⊆ ( 1 ... ( 𝑁 − 1 ) ) ) |
| 322 |
|
fz1ssfz0 |
⊢ ( 1 ... ( 𝑁 − 1 ) ) ⊆ ( 0 ... ( 𝑁 − 1 ) ) |
| 323 |
321 322
|
sstrdi |
⊢ ( 𝜑 → ( 1 ... ( ( 2nd ‘ 𝑇 ) − 1 ) ) ⊆ ( 0 ... ( 𝑁 − 1 ) ) ) |
| 324 |
323 5
|
sseldd |
⊢ ( 𝜑 → 𝑀 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
| 325 |
|
ovexd |
⊢ ( 𝜑 → ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∈ V ) |
| 326 |
265 315 324 325
|
fvmptd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) = ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 327 |
326
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
| 328 |
327
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑛 ≠ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) ) → ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
| 329 |
246 296 328
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑛 ≠ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) ) → ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ) |
| 330 |
329
|
expr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑛 ≠ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) → ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ) ) |
| 331 |
330
|
necon1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) → 𝑛 = ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) ) |
| 332 |
|
elmapi |
⊢ ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) → ( 1st ‘ ( 1st ‘ 𝑇 ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) ) |
| 333 |
44 332
|
syl |
⊢ ( 𝜑 → ( 1st ‘ ( 1st ‘ 𝑇 ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) ) |
| 334 |
333 42
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) ∈ ( 0 ..^ 𝐾 ) ) |
| 335 |
|
elfzonn0 |
⊢ ( ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) ∈ ( 0 ..^ 𝐾 ) → ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) ∈ ℕ0 ) |
| 336 |
334 335
|
syl |
⊢ ( 𝜑 → ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) ∈ ℕ0 ) |
| 337 |
336
|
nn0red |
⊢ ( 𝜑 → ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) ∈ ℝ ) |
| 338 |
337
|
ltp1d |
⊢ ( 𝜑 → ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) < ( ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) + 1 ) ) |
| 339 |
337 338
|
ltned |
⊢ ( 𝜑 → ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) ≠ ( ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) + 1 ) ) |
| 340 |
294
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) = ( ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) ) |
| 341 |
|
ovexd |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) ∈ V ) |
| 342 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ∈ ( 1 ... 𝑁 ) ) → ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) = ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) ) |
| 343 |
|
fzss1 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 1 ) → ( 𝑀 ... 𝑁 ) ⊆ ( 1 ... 𝑁 ) ) |
| 344 |
76 343
|
syl |
⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) ⊆ ( 1 ... 𝑁 ) ) |
| 345 |
|
eluzfz1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
| 346 |
93 345
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
| 347 |
|
fnfvima |
⊢ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) Fn ( 1 ... 𝑁 ) ∧ ( 𝑀 ... 𝑁 ) ⊆ ( 1 ... 𝑁 ) ∧ 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ∈ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) ) |
| 348 |
119 344 346 347
|
syl3anc |
⊢ ( 𝜑 → ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ∈ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) ) |
| 349 |
|
fvun2 |
⊢ ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) Fn ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) ∧ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) Fn ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) ∩ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) ) = ∅ ∧ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ∈ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) ) ) → ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) = ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) ) |
| 350 |
50 53 349
|
mp3an12 |
⊢ ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) ∩ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) ) = ∅ ∧ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ∈ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) ) → ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) = ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) ) |
| 351 |
69 348 350
|
syl2anc |
⊢ ( 𝜑 → ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) = ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) ) |
| 352 |
51
|
fvconst2 |
⊢ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ∈ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) → ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) = 0 ) |
| 353 |
348 352
|
syl |
⊢ ( 𝜑 → ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) = 0 ) |
| 354 |
351 353
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) = 0 ) |
| 355 |
354
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) = 0 ) |
| 356 |
46 109 341 341 112 342 355
|
ofval |
⊢ ( ( 𝜑 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) = ( ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) + 0 ) ) |
| 357 |
42 356
|
mpdan |
⊢ ( 𝜑 → ( ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) = ( ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) + 0 ) ) |
| 358 |
336
|
nn0cnd |
⊢ ( 𝜑 → ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) ∈ ℂ ) |
| 359 |
358
|
addridd |
⊢ ( 𝜑 → ( ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) + 0 ) = ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) ) |
| 360 |
340 357 359
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) = ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) ) |
| 361 |
326
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑀 ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) = ( ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) ) |
| 362 |
|
fzss2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 1 ... 𝑀 ) ⊆ ( 1 ... 𝑁 ) ) |
| 363 |
93 362
|
syl |
⊢ ( 𝜑 → ( 1 ... 𝑀 ) ⊆ ( 1 ... 𝑁 ) ) |
| 364 |
|
elfz1end |
⊢ ( 𝑀 ∈ ℕ ↔ 𝑀 ∈ ( 1 ... 𝑀 ) ) |
| 365 |
61 364
|
sylib |
⊢ ( 𝜑 → 𝑀 ∈ ( 1 ... 𝑀 ) ) |
| 366 |
|
fnfvima |
⊢ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) Fn ( 1 ... 𝑁 ) ∧ ( 1 ... 𝑀 ) ⊆ ( 1 ... 𝑁 ) ∧ 𝑀 ∈ ( 1 ... 𝑀 ) ) → ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ∈ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) ) |
| 367 |
119 363 365 366
|
syl3anc |
⊢ ( 𝜑 → ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ∈ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) ) |
| 368 |
|
fvun1 |
⊢ ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) Fn ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) ∧ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ∧ ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) ∩ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) = ∅ ∧ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ∈ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) ) ) → ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) = ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) ) |
| 369 |
204 133 368
|
mp3an12 |
⊢ ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) ∩ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) = ∅ ∧ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ∈ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) ) → ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) = ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) ) |
| 370 |
212 367 369
|
syl2anc |
⊢ ( 𝜑 → ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) = ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) ) |
| 371 |
48
|
fvconst2 |
⊢ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ∈ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) → ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) = 1 ) |
| 372 |
367 371
|
syl |
⊢ ( 𝜑 → ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) = 1 ) |
| 373 |
370 372
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) = 1 ) |
| 374 |
373
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) = 1 ) |
| 375 |
46 220 341 341 112 342 374
|
ofval |
⊢ ( ( 𝜑 ∧ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) = ( ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) + 1 ) ) |
| 376 |
42 375
|
mpdan |
⊢ ( 𝜑 → ( ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( 1 ... 𝑀 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) “ ( ( 𝑀 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) = ( ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) + 1 ) ) |
| 377 |
361 376
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑀 ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) = ( ( ( 1st ‘ ( 1st ‘ 𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) + 1 ) ) |
| 378 |
339 360 377
|
3netr4d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) ) |
| 379 |
|
fveq2 |
⊢ ( 𝑛 = ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) → ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) = ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) ) |
| 380 |
|
fveq2 |
⊢ ( 𝑛 = ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) → ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑀 ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) ) |
| 381 |
379 380
|
neeq12d |
⊢ ( 𝑛 = ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) → ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ↔ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) ) ) |
| 382 |
378 381
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑛 = ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) → ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ) ) |
| 383 |
382
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑛 = ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) → ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ) ) |
| 384 |
331 383
|
impbid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ↔ 𝑛 = ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) ) |
| 385 |
42 384
|
riota5 |
⊢ ( 𝜑 → ( ℩ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ) = ( ( 2nd ‘ ( 1st ‘ 𝑇 ) ) ‘ 𝑀 ) ) |