| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ubth.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
| 2 |
|
ubth.2 |
⊢ 𝑁 = ( normCV ‘ 𝑊 ) |
| 3 |
|
ubthlem.3 |
⊢ 𝐷 = ( IndMet ‘ 𝑈 ) |
| 4 |
|
ubthlem.4 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
| 5 |
|
ubthlem.5 |
⊢ 𝑈 ∈ CBan |
| 6 |
|
ubthlem.6 |
⊢ 𝑊 ∈ NrmCVec |
| 7 |
|
ubthlem.7 |
⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑈 BLnOp 𝑊 ) ) |
| 8 |
|
ubthlem.8 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∃ 𝑐 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 ) |
| 9 |
|
ubthlem.9 |
⊢ 𝐴 = ( 𝑘 ∈ ℕ ↦ { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ) |
| 10 |
|
rzal |
⊢ ( 𝑇 = ∅ → ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 ) |
| 11 |
10
|
ralrimivw |
⊢ ( 𝑇 = ∅ → ∀ 𝑧 ∈ 𝑋 ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 ) |
| 12 |
|
rabid2 |
⊢ ( 𝑋 = { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ↔ ∀ 𝑧 ∈ 𝑋 ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 ) |
| 13 |
11 12
|
sylibr |
⊢ ( 𝑇 = ∅ → 𝑋 = { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ) |
| 14 |
13
|
eqcomd |
⊢ ( 𝑇 = ∅ → { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } = 𝑋 ) |
| 15 |
14
|
eleq1d |
⊢ ( 𝑇 = ∅ → ( { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ∈ ( Clsd ‘ 𝐽 ) ↔ 𝑋 ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 16 |
|
iinrab |
⊢ ( 𝑇 ≠ ∅ → ∩ 𝑡 ∈ 𝑇 { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } = { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ) |
| 17 |
16
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑇 ≠ ∅ ) → ∩ 𝑡 ∈ 𝑇 { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } = { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ) |
| 18 |
|
id |
⊢ ( 𝑇 ≠ ∅ → 𝑇 ≠ ∅ ) |
| 19 |
7
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑡 ∈ ( 𝑈 BLnOp 𝑊 ) ) |
| 20 |
|
eqid |
⊢ ( IndMet ‘ 𝑊 ) = ( IndMet ‘ 𝑊 ) |
| 21 |
|
eqid |
⊢ ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) = ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) |
| 22 |
|
eqid |
⊢ ( 𝑈 BLnOp 𝑊 ) = ( 𝑈 BLnOp 𝑊 ) |
| 23 |
|
bnnv |
⊢ ( 𝑈 ∈ CBan → 𝑈 ∈ NrmCVec ) |
| 24 |
5 23
|
ax-mp |
⊢ 𝑈 ∈ NrmCVec |
| 25 |
3 20 4 21 22 24 6
|
blocn2 |
⊢ ( 𝑡 ∈ ( 𝑈 BLnOp 𝑊 ) → 𝑡 ∈ ( 𝐽 Cn ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ) ) |
| 26 |
1 3
|
cbncms |
⊢ ( 𝑈 ∈ CBan → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |
| 27 |
5 26
|
ax-mp |
⊢ 𝐷 ∈ ( CMet ‘ 𝑋 ) |
| 28 |
|
cmetmet |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 29 |
|
metxmet |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 30 |
27 28 29
|
mp2b |
⊢ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) |
| 31 |
4
|
mopntopon |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 32 |
30 31
|
ax-mp |
⊢ 𝐽 ∈ ( TopOn ‘ 𝑋 ) |
| 33 |
|
eqid |
⊢ ( BaseSet ‘ 𝑊 ) = ( BaseSet ‘ 𝑊 ) |
| 34 |
33 20
|
imsxmet |
⊢ ( 𝑊 ∈ NrmCVec → ( IndMet ‘ 𝑊 ) ∈ ( ∞Met ‘ ( BaseSet ‘ 𝑊 ) ) ) |
| 35 |
6 34
|
ax-mp |
⊢ ( IndMet ‘ 𝑊 ) ∈ ( ∞Met ‘ ( BaseSet ‘ 𝑊 ) ) |
| 36 |
21
|
mopntopon |
⊢ ( ( IndMet ‘ 𝑊 ) ∈ ( ∞Met ‘ ( BaseSet ‘ 𝑊 ) ) → ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ∈ ( TopOn ‘ ( BaseSet ‘ 𝑊 ) ) ) |
| 37 |
35 36
|
ax-mp |
⊢ ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ∈ ( TopOn ‘ ( BaseSet ‘ 𝑊 ) ) |
| 38 |
|
iscncl |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ∈ ( TopOn ‘ ( BaseSet ‘ 𝑊 ) ) ) → ( 𝑡 ∈ ( 𝐽 Cn ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ) ↔ ( 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ( Clsd ‘ ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ) ( ◡ 𝑡 “ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) ) ) |
| 39 |
32 37 38
|
mp2an |
⊢ ( 𝑡 ∈ ( 𝐽 Cn ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ) ↔ ( 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ( Clsd ‘ ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ) ( ◡ 𝑡 “ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 40 |
25 39
|
sylib |
⊢ ( 𝑡 ∈ ( 𝑈 BLnOp 𝑊 ) → ( 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ( Clsd ‘ ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ) ( ◡ 𝑡 “ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 41 |
19 40
|
syl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ( Clsd ‘ ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ) ( ◡ 𝑡 “ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 42 |
41
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ) |
| 43 |
42
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑡 ∈ 𝑇 ) → 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ) |
| 44 |
43
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑡 ‘ 𝑥 ) ∈ ( BaseSet ‘ 𝑊 ) ) |
| 45 |
44
|
biantrurd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 ↔ ( ( 𝑡 ‘ 𝑥 ) ∈ ( BaseSet ‘ 𝑊 ) ∧ ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 ) ) ) |
| 46 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑡 ‘ 𝑥 ) → ( 𝑁 ‘ 𝑦 ) = ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ) |
| 47 |
46
|
breq1d |
⊢ ( 𝑦 = ( 𝑡 ‘ 𝑥 ) → ( ( 𝑁 ‘ 𝑦 ) ≤ 𝑘 ↔ ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 ) ) |
| 48 |
47
|
elrab |
⊢ ( ( 𝑡 ‘ 𝑥 ) ∈ { 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ∣ ( 𝑁 ‘ 𝑦 ) ≤ 𝑘 } ↔ ( ( 𝑡 ‘ 𝑥 ) ∈ ( BaseSet ‘ 𝑊 ) ∧ ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 ) ) |
| 49 |
45 48
|
bitr4di |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 ↔ ( 𝑡 ‘ 𝑥 ) ∈ { 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ∣ ( 𝑁 ‘ 𝑦 ) ≤ 𝑘 } ) ) |
| 50 |
49
|
pm5.32da |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝑡 ‘ 𝑥 ) ∈ { 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ∣ ( 𝑁 ‘ 𝑦 ) ≤ 𝑘 } ) ) ) |
| 51 |
|
2fveq3 |
⊢ ( 𝑧 = 𝑥 → ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) = ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ) |
| 52 |
51
|
breq1d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 ↔ ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 ) ) |
| 53 |
52
|
elrab |
⊢ ( 𝑥 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 ) ) |
| 54 |
53
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝑥 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 ) ) ) |
| 55 |
|
ffn |
⊢ ( 𝑡 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) → 𝑡 Fn 𝑋 ) |
| 56 |
|
elpreima |
⊢ ( 𝑡 Fn 𝑋 → ( 𝑥 ∈ ( ◡ 𝑡 “ { 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ∣ ( 𝑁 ‘ 𝑦 ) ≤ 𝑘 } ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝑡 ‘ 𝑥 ) ∈ { 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ∣ ( 𝑁 ‘ 𝑦 ) ≤ 𝑘 } ) ) ) |
| 57 |
43 55 56
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝑥 ∈ ( ◡ 𝑡 “ { 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ∣ ( 𝑁 ‘ 𝑦 ) ≤ 𝑘 } ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝑡 ‘ 𝑥 ) ∈ { 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ∣ ( 𝑁 ‘ 𝑦 ) ≤ 𝑘 } ) ) ) |
| 58 |
50 54 57
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝑥 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ↔ 𝑥 ∈ ( ◡ 𝑡 “ { 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ∣ ( 𝑁 ‘ 𝑦 ) ≤ 𝑘 } ) ) ) |
| 59 |
58
|
eqrdv |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑡 ∈ 𝑇 ) → { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } = ( ◡ 𝑡 “ { 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ∣ ( 𝑁 ‘ 𝑦 ) ≤ 𝑘 } ) ) |
| 60 |
|
imaeq2 |
⊢ ( 𝑥 = { 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ∣ ( 𝑁 ‘ 𝑦 ) ≤ 𝑘 } → ( ◡ 𝑡 “ 𝑥 ) = ( ◡ 𝑡 “ { 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ∣ ( 𝑁 ‘ 𝑦 ) ≤ 𝑘 } ) ) |
| 61 |
60
|
eleq1d |
⊢ ( 𝑥 = { 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ∣ ( 𝑁 ‘ 𝑦 ) ≤ 𝑘 } → ( ( ◡ 𝑡 “ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ↔ ( ◡ 𝑡 “ { 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ∣ ( 𝑁 ‘ 𝑦 ) ≤ 𝑘 } ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 62 |
41
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ∀ 𝑥 ∈ ( Clsd ‘ ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ) ( ◡ 𝑡 “ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 63 |
62
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑡 ∈ 𝑇 ) → ∀ 𝑥 ∈ ( Clsd ‘ ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ) ( ◡ 𝑡 “ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 64 |
|
nnre |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ ) |
| 65 |
64
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑡 ∈ 𝑇 ) → 𝑘 ∈ ℝ ) |
| 66 |
65
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑡 ∈ 𝑇 ) → 𝑘 ∈ ℝ* ) |
| 67 |
|
eqid |
⊢ ( 0vec ‘ 𝑊 ) = ( 0vec ‘ 𝑊 ) |
| 68 |
33 67
|
nvzcl |
⊢ ( 𝑊 ∈ NrmCVec → ( 0vec ‘ 𝑊 ) ∈ ( BaseSet ‘ 𝑊 ) ) |
| 69 |
6 68
|
ax-mp |
⊢ ( 0vec ‘ 𝑊 ) ∈ ( BaseSet ‘ 𝑊 ) |
| 70 |
33 67 2 20
|
nvnd |
⊢ ( ( 𝑊 ∈ NrmCVec ∧ 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ) → ( 𝑁 ‘ 𝑦 ) = ( 𝑦 ( IndMet ‘ 𝑊 ) ( 0vec ‘ 𝑊 ) ) ) |
| 71 |
6 70
|
mpan |
⊢ ( 𝑦 ∈ ( BaseSet ‘ 𝑊 ) → ( 𝑁 ‘ 𝑦 ) = ( 𝑦 ( IndMet ‘ 𝑊 ) ( 0vec ‘ 𝑊 ) ) ) |
| 72 |
|
xmetsym |
⊢ ( ( ( IndMet ‘ 𝑊 ) ∈ ( ∞Met ‘ ( BaseSet ‘ 𝑊 ) ) ∧ ( 0vec ‘ 𝑊 ) ∈ ( BaseSet ‘ 𝑊 ) ∧ 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ) → ( ( 0vec ‘ 𝑊 ) ( IndMet ‘ 𝑊 ) 𝑦 ) = ( 𝑦 ( IndMet ‘ 𝑊 ) ( 0vec ‘ 𝑊 ) ) ) |
| 73 |
35 69 72
|
mp3an12 |
⊢ ( 𝑦 ∈ ( BaseSet ‘ 𝑊 ) → ( ( 0vec ‘ 𝑊 ) ( IndMet ‘ 𝑊 ) 𝑦 ) = ( 𝑦 ( IndMet ‘ 𝑊 ) ( 0vec ‘ 𝑊 ) ) ) |
| 74 |
71 73
|
eqtr4d |
⊢ ( 𝑦 ∈ ( BaseSet ‘ 𝑊 ) → ( 𝑁 ‘ 𝑦 ) = ( ( 0vec ‘ 𝑊 ) ( IndMet ‘ 𝑊 ) 𝑦 ) ) |
| 75 |
74
|
breq1d |
⊢ ( 𝑦 ∈ ( BaseSet ‘ 𝑊 ) → ( ( 𝑁 ‘ 𝑦 ) ≤ 𝑘 ↔ ( ( 0vec ‘ 𝑊 ) ( IndMet ‘ 𝑊 ) 𝑦 ) ≤ 𝑘 ) ) |
| 76 |
75
|
rabbiia |
⊢ { 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ∣ ( 𝑁 ‘ 𝑦 ) ≤ 𝑘 } = { 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ∣ ( ( 0vec ‘ 𝑊 ) ( IndMet ‘ 𝑊 ) 𝑦 ) ≤ 𝑘 } |
| 77 |
21 76
|
blcld |
⊢ ( ( ( IndMet ‘ 𝑊 ) ∈ ( ∞Met ‘ ( BaseSet ‘ 𝑊 ) ) ∧ ( 0vec ‘ 𝑊 ) ∈ ( BaseSet ‘ 𝑊 ) ∧ 𝑘 ∈ ℝ* ) → { 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ∣ ( 𝑁 ‘ 𝑦 ) ≤ 𝑘 } ∈ ( Clsd ‘ ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ) ) |
| 78 |
35 69 77
|
mp3an12 |
⊢ ( 𝑘 ∈ ℝ* → { 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ∣ ( 𝑁 ‘ 𝑦 ) ≤ 𝑘 } ∈ ( Clsd ‘ ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ) ) |
| 79 |
66 78
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑡 ∈ 𝑇 ) → { 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ∣ ( 𝑁 ‘ 𝑦 ) ≤ 𝑘 } ∈ ( Clsd ‘ ( MetOpen ‘ ( IndMet ‘ 𝑊 ) ) ) ) |
| 80 |
61 63 79
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑡 ∈ 𝑇 ) → ( ◡ 𝑡 “ { 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ∣ ( 𝑁 ‘ 𝑦 ) ≤ 𝑘 } ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 81 |
59 80
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑡 ∈ 𝑇 ) → { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ∈ ( Clsd ‘ 𝐽 ) ) |
| 82 |
81
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ∀ 𝑡 ∈ 𝑇 { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ∈ ( Clsd ‘ 𝐽 ) ) |
| 83 |
|
iincld |
⊢ ( ( 𝑇 ≠ ∅ ∧ ∀ 𝑡 ∈ 𝑇 { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ∈ ( Clsd ‘ 𝐽 ) ) → ∩ 𝑡 ∈ 𝑇 { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ∈ ( Clsd ‘ 𝐽 ) ) |
| 84 |
18 82 83
|
syl2anr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑇 ≠ ∅ ) → ∩ 𝑡 ∈ 𝑇 { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ∈ ( Clsd ‘ 𝐽 ) ) |
| 85 |
17 84
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑇 ≠ ∅ ) → { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ∈ ( Clsd ‘ 𝐽 ) ) |
| 86 |
4
|
mopntop |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 87 |
30 86
|
ax-mp |
⊢ 𝐽 ∈ Top |
| 88 |
32
|
toponunii |
⊢ 𝑋 = ∪ 𝐽 |
| 89 |
88
|
topcld |
⊢ ( 𝐽 ∈ Top → 𝑋 ∈ ( Clsd ‘ 𝐽 ) ) |
| 90 |
87 89
|
ax-mp |
⊢ 𝑋 ∈ ( Clsd ‘ 𝐽 ) |
| 91 |
90
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑋 ∈ ( Clsd ‘ 𝐽 ) ) |
| 92 |
15 85 91
|
pm2.61ne |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ∈ ( Clsd ‘ 𝐽 ) ) |
| 93 |
92 9
|
fmptd |
⊢ ( 𝜑 → 𝐴 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ) |
| 94 |
93
|
frnd |
⊢ ( 𝜑 → ran 𝐴 ⊆ ( Clsd ‘ 𝐽 ) ) |
| 95 |
88
|
cldss2 |
⊢ ( Clsd ‘ 𝐽 ) ⊆ 𝒫 𝑋 |
| 96 |
94 95
|
sstrdi |
⊢ ( 𝜑 → ran 𝐴 ⊆ 𝒫 𝑋 ) |
| 97 |
|
sspwuni |
⊢ ( ran 𝐴 ⊆ 𝒫 𝑋 ↔ ∪ ran 𝐴 ⊆ 𝑋 ) |
| 98 |
96 97
|
sylib |
⊢ ( 𝜑 → ∪ ran 𝐴 ⊆ 𝑋 ) |
| 99 |
|
arch |
⊢ ( 𝑐 ∈ ℝ → ∃ 𝑘 ∈ ℕ 𝑐 < 𝑘 ) |
| 100 |
99
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ℝ ) → ∃ 𝑘 ∈ ℕ 𝑐 < 𝑘 ) |
| 101 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ℝ ) → 𝑐 ∈ ℝ ) |
| 102 |
|
ltle |
⊢ ( ( 𝑐 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( 𝑐 < 𝑘 → 𝑐 ≤ 𝑘 ) ) |
| 103 |
101 64 102
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( 𝑐 < 𝑘 → 𝑐 ≤ 𝑘 ) ) |
| 104 |
103
|
impr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑐 < 𝑘 ) ) → 𝑐 ≤ 𝑘 ) |
| 105 |
104
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑐 < 𝑘 ) ) ∧ 𝑡 ∈ 𝑇 ) → 𝑐 ≤ 𝑘 ) |
| 106 |
42
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑡 ‘ 𝑥 ) ∈ ( BaseSet ‘ 𝑊 ) ) |
| 107 |
106
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝑡 ‘ 𝑥 ) ∈ ( BaseSet ‘ 𝑊 ) ) |
| 108 |
33 2
|
nvcl |
⊢ ( ( 𝑊 ∈ NrmCVec ∧ ( 𝑡 ‘ 𝑥 ) ∈ ( BaseSet ‘ 𝑊 ) ) → ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ∈ ℝ ) |
| 109 |
6 107 108
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ∈ ℝ ) |
| 110 |
109
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ℝ ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ∈ ℝ ) |
| 111 |
110
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑐 < 𝑘 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ∈ ℝ ) |
| 112 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑐 < 𝑘 ) ) ∧ 𝑡 ∈ 𝑇 ) → 𝑐 ∈ ℝ ) |
| 113 |
|
simplrl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑐 < 𝑘 ) ) ∧ 𝑡 ∈ 𝑇 ) → 𝑘 ∈ ℕ ) |
| 114 |
113 64
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑐 < 𝑘 ) ) ∧ 𝑡 ∈ 𝑇 ) → 𝑘 ∈ ℝ ) |
| 115 |
|
letr |
⊢ ( ( ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( ( ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 ∧ 𝑐 ≤ 𝑘 ) → ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 ) ) |
| 116 |
111 112 114 115
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑐 < 𝑘 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( ( ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 ∧ 𝑐 ≤ 𝑘 ) → ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 ) ) |
| 117 |
105 116
|
mpan2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑐 < 𝑘 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 → ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 ) ) |
| 118 |
117
|
ralimdva |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ℝ ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑐 < 𝑘 ) ) → ( ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 → ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 ) ) |
| 119 |
118
|
expr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( 𝑐 < 𝑘 → ( ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 → ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 ) ) ) |
| 120 |
1
|
fvexi |
⊢ 𝑋 ∈ V |
| 121 |
120
|
rabex |
⊢ { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ∈ V |
| 122 |
9
|
fvmpt2 |
⊢ ( ( 𝑘 ∈ ℕ ∧ { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ∈ V ) → ( 𝐴 ‘ 𝑘 ) = { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ) |
| 123 |
121 122
|
mpan2 |
⊢ ( 𝑘 ∈ ℕ → ( 𝐴 ‘ 𝑘 ) = { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ) |
| 124 |
123
|
eleq2d |
⊢ ( 𝑘 ∈ ℕ → ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) ↔ 𝑥 ∈ { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ) ) |
| 125 |
52
|
ralbidv |
⊢ ( 𝑧 = 𝑥 → ( ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 ↔ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 ) ) |
| 126 |
125
|
elrab |
⊢ ( 𝑥 ∈ { 𝑧 ∈ 𝑋 ∣ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑧 ) ) ≤ 𝑘 } ↔ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 ) ) |
| 127 |
124 126
|
bitrdi |
⊢ ( 𝑘 ∈ ℕ → ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 ) ) ) |
| 128 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
| 129 |
128
|
biantrurd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 ↔ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 ) ) ) |
| 130 |
129
|
bicomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 ) ↔ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 ) ) |
| 131 |
127 130
|
sylan9bbr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) ↔ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 ) ) |
| 132 |
93
|
ffnd |
⊢ ( 𝜑 → 𝐴 Fn ℕ ) |
| 133 |
132
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 Fn ℕ ) |
| 134 |
|
fnfvelrn |
⊢ ( ( 𝐴 Fn ℕ ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ‘ 𝑘 ) ∈ ran 𝐴 ) |
| 135 |
|
elssuni |
⊢ ( ( 𝐴 ‘ 𝑘 ) ∈ ran 𝐴 → ( 𝐴 ‘ 𝑘 ) ⊆ ∪ ran 𝐴 ) |
| 136 |
134 135
|
syl |
⊢ ( ( 𝐴 Fn ℕ ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ‘ 𝑘 ) ⊆ ∪ ran 𝐴 ) |
| 137 |
136
|
sseld |
⊢ ( ( 𝐴 Fn ℕ ∧ 𝑘 ∈ ℕ ) → ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) → 𝑥 ∈ ∪ ran 𝐴 ) ) |
| 138 |
133 137
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑥 ∈ ( 𝐴 ‘ 𝑘 ) → 𝑥 ∈ ∪ ran 𝐴 ) ) |
| 139 |
131 138
|
sylbird |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ ℕ ) → ( ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 → 𝑥 ∈ ∪ ran 𝐴 ) ) |
| 140 |
139
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑘 → 𝑥 ∈ ∪ ran 𝐴 ) ) |
| 141 |
119 140
|
syl6d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( 𝑐 < 𝑘 → ( ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 → 𝑥 ∈ ∪ ran 𝐴 ) ) ) |
| 142 |
141
|
rexlimdva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ℝ ) → ( ∃ 𝑘 ∈ ℕ 𝑐 < 𝑘 → ( ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 → 𝑥 ∈ ∪ ran 𝐴 ) ) ) |
| 143 |
100 142
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑐 ∈ ℝ ) → ( ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 → 𝑥 ∈ ∪ ran 𝐴 ) ) |
| 144 |
143
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ∃ 𝑐 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 → 𝑥 ∈ ∪ ran 𝐴 ) ) |
| 145 |
144
|
ralimdva |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑐 ∈ ℝ ∀ 𝑡 ∈ 𝑇 ( 𝑁 ‘ ( 𝑡 ‘ 𝑥 ) ) ≤ 𝑐 → ∀ 𝑥 ∈ 𝑋 𝑥 ∈ ∪ ran 𝐴 ) ) |
| 146 |
8 145
|
mpd |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 𝑥 ∈ ∪ ran 𝐴 ) |
| 147 |
|
dfss3 |
⊢ ( 𝑋 ⊆ ∪ ran 𝐴 ↔ ∀ 𝑥 ∈ 𝑋 𝑥 ∈ ∪ ran 𝐴 ) |
| 148 |
146 147
|
sylibr |
⊢ ( 𝜑 → 𝑋 ⊆ ∪ ran 𝐴 ) |
| 149 |
98 148
|
eqssd |
⊢ ( 𝜑 → ∪ ran 𝐴 = 𝑋 ) |
| 150 |
|
eqid |
⊢ ( 0vec ‘ 𝑈 ) = ( 0vec ‘ 𝑈 ) |
| 151 |
1 150
|
nvzcl |
⊢ ( 𝑈 ∈ NrmCVec → ( 0vec ‘ 𝑈 ) ∈ 𝑋 ) |
| 152 |
|
ne0i |
⊢ ( ( 0vec ‘ 𝑈 ) ∈ 𝑋 → 𝑋 ≠ ∅ ) |
| 153 |
24 151 152
|
mp2b |
⊢ 𝑋 ≠ ∅ |
| 154 |
4
|
bcth2 |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑋 ≠ ∅ ) ∧ ( 𝐴 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ ∪ ran 𝐴 = 𝑋 ) ) → ∃ 𝑛 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ≠ ∅ ) |
| 155 |
27 153 154
|
mpanl12 |
⊢ ( ( 𝐴 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ ∪ ran 𝐴 = 𝑋 ) → ∃ 𝑛 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ≠ ∅ ) |
| 156 |
93 149 155
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ≠ ∅ ) |
| 157 |
|
ffvelcdm |
⊢ ( ( 𝐴 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ‘ 𝑛 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 158 |
95 157
|
sselid |
⊢ ( ( 𝐴 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ‘ 𝑛 ) ∈ 𝒫 𝑋 ) |
| 159 |
158
|
elpwid |
⊢ ( ( 𝐴 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ‘ 𝑛 ) ⊆ 𝑋 ) |
| 160 |
93 159
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ‘ 𝑛 ) ⊆ 𝑋 ) |
| 161 |
88
|
ntrss3 |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 ‘ 𝑛 ) ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ⊆ 𝑋 ) |
| 162 |
87 160 161
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ⊆ 𝑋 ) |
| 163 |
162
|
sseld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) → 𝑦 ∈ 𝑋 ) ) |
| 164 |
88
|
ntropn |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 ‘ 𝑛 ) ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ 𝐽 ) |
| 165 |
87 160 164
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ 𝐽 ) |
| 166 |
4
|
mopni2 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ 𝐽 ∧ 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ) → ∃ 𝑥 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ) |
| 167 |
30 166
|
mp3an1 |
⊢ ( ( ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ 𝐽 ∧ 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ) → ∃ 𝑥 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ) |
| 168 |
165 167
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ) → ∃ 𝑥 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ) |
| 169 |
|
elssuni |
⊢ ( ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ 𝐽 → ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ⊆ ∪ 𝐽 ) |
| 170 |
169 88
|
sseqtrrdi |
⊢ ( ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ 𝐽 → ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ⊆ 𝑋 ) |
| 171 |
165 170
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ⊆ 𝑋 ) |
| 172 |
171
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ) → 𝑦 ∈ 𝑋 ) |
| 173 |
88
|
ntrss2 |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 ‘ 𝑛 ) ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ⊆ ( 𝐴 ‘ 𝑛 ) ) |
| 174 |
87 160 173
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ⊆ ( 𝐴 ‘ 𝑛 ) ) |
| 175 |
|
sstr2 |
⊢ ( ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) → ( ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ⊆ ( 𝐴 ‘ 𝑛 ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝐴 ‘ 𝑛 ) ) ) |
| 176 |
174 175
|
syl5com |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝐴 ‘ 𝑛 ) ) ) |
| 177 |
176
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝐴 ‘ 𝑛 ) ) ) |
| 178 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑋 ) → 𝑦 ∈ 𝑋 ) |
| 179 |
178 30
|
jctil |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ) |
| 180 |
|
rphalfcl |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 / 2 ) ∈ ℝ+ ) |
| 181 |
180
|
rpxrd |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 / 2 ) ∈ ℝ* ) |
| 182 |
|
rpxr |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ* ) |
| 183 |
|
rphalflt |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 / 2 ) < 𝑥 ) |
| 184 |
181 182 183
|
3jca |
⊢ ( 𝑥 ∈ ℝ+ → ( ( 𝑥 / 2 ) ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ ( 𝑥 / 2 ) < 𝑥 ) ) |
| 185 |
|
eqid |
⊢ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ ( 𝑥 / 2 ) } = { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ ( 𝑥 / 2 ) } |
| 186 |
4 185
|
blsscls2 |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( ( 𝑥 / 2 ) ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ ( 𝑥 / 2 ) < 𝑥 ) ) → { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ ( 𝑥 / 2 ) } ⊆ ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ) |
| 187 |
179 184 186
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) → { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ ( 𝑥 / 2 ) } ⊆ ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ) |
| 188 |
|
sstr2 |
⊢ ( { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ ( 𝑥 / 2 ) } ⊆ ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) → ( ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝐴 ‘ 𝑛 ) → { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ ( 𝑥 / 2 ) } ⊆ ( 𝐴 ‘ 𝑛 ) ) ) |
| 189 |
187 188
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝐴 ‘ 𝑛 ) → { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ ( 𝑥 / 2 ) } ⊆ ( 𝐴 ‘ 𝑛 ) ) ) |
| 190 |
180
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 / 2 ) ∈ ℝ+ ) |
| 191 |
|
breq2 |
⊢ ( 𝑟 = ( 𝑥 / 2 ) → ( ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 ↔ ( 𝑦 𝐷 𝑧 ) ≤ ( 𝑥 / 2 ) ) ) |
| 192 |
191
|
rabbidv |
⊢ ( 𝑟 = ( 𝑥 / 2 ) → { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } = { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ ( 𝑥 / 2 ) } ) |
| 193 |
192
|
sseq1d |
⊢ ( 𝑟 = ( 𝑥 / 2 ) → ( { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( 𝐴 ‘ 𝑛 ) ↔ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ ( 𝑥 / 2 ) } ⊆ ( 𝐴 ‘ 𝑛 ) ) ) |
| 194 |
193
|
rspcev |
⊢ ( ( ( 𝑥 / 2 ) ∈ ℝ+ ∧ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ ( 𝑥 / 2 ) } ⊆ ( 𝐴 ‘ 𝑛 ) ) → ∃ 𝑟 ∈ ℝ+ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( 𝐴 ‘ 𝑛 ) ) |
| 195 |
194
|
ex |
⊢ ( ( 𝑥 / 2 ) ∈ ℝ+ → ( { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ ( 𝑥 / 2 ) } ⊆ ( 𝐴 ‘ 𝑛 ) → ∃ 𝑟 ∈ ℝ+ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( 𝐴 ‘ 𝑛 ) ) ) |
| 196 |
190 195
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) → ( { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ ( 𝑥 / 2 ) } ⊆ ( 𝐴 ‘ 𝑛 ) → ∃ 𝑟 ∈ ℝ+ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( 𝐴 ‘ 𝑛 ) ) ) |
| 197 |
177 189 196
|
3syld |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) → ∃ 𝑟 ∈ ℝ+ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( 𝐴 ‘ 𝑛 ) ) ) |
| 198 |
197
|
rexlimdva |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ 𝑋 ) → ( ∃ 𝑥 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) → ∃ 𝑟 ∈ ℝ+ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( 𝐴 ‘ 𝑛 ) ) ) |
| 199 |
172 198
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ) → ( ∃ 𝑥 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) → ∃ 𝑟 ∈ ℝ+ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( 𝐴 ‘ 𝑛 ) ) ) |
| 200 |
168 199
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ) → ∃ 𝑟 ∈ ℝ+ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( 𝐴 ‘ 𝑛 ) ) |
| 201 |
200
|
ex |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) → ∃ 𝑟 ∈ ℝ+ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( 𝐴 ‘ 𝑛 ) ) ) |
| 202 |
163 201
|
jcad |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) → ( 𝑦 ∈ 𝑋 ∧ ∃ 𝑟 ∈ ℝ+ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( 𝐴 ‘ 𝑛 ) ) ) ) |
| 203 |
202
|
eximdv |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∃ 𝑦 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) → ∃ 𝑦 ( 𝑦 ∈ 𝑋 ∧ ∃ 𝑟 ∈ ℝ+ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( 𝐴 ‘ 𝑛 ) ) ) ) |
| 204 |
|
n0 |
⊢ ( ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ) |
| 205 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( 𝐴 ‘ 𝑛 ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝑋 ∧ ∃ 𝑟 ∈ ℝ+ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( 𝐴 ‘ 𝑛 ) ) ) |
| 206 |
203 204 205
|
3imtr4g |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ≠ ∅ → ∃ 𝑦 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( 𝐴 ‘ 𝑛 ) ) ) |
| 207 |
206
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑛 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝐴 ‘ 𝑛 ) ) ≠ ∅ → ∃ 𝑛 ∈ ℕ ∃ 𝑦 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( 𝐴 ‘ 𝑛 ) ) ) |
| 208 |
156 207
|
mpd |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ ∃ 𝑦 ∈ 𝑋 ∃ 𝑟 ∈ ℝ+ { 𝑧 ∈ 𝑋 ∣ ( 𝑦 𝐷 𝑧 ) ≤ 𝑟 } ⊆ ( 𝐴 ‘ 𝑛 ) ) |