| Step |
Hyp |
Ref |
Expression |
| 1 |
|
poimir.0 |
|- ( ph -> N e. NN ) |
| 2 |
|
poimirlem22.s |
|- S = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } |
| 3 |
|
poimirlem9.1 |
|- ( ph -> T e. S ) |
| 4 |
|
poimirlem9.2 |
|- ( ph -> ( 2nd ` T ) e. ( 1 ... ( N - 1 ) ) ) |
| 5 |
|
poimirlem7.3 |
|- ( ph -> M e. ( ( ( ( 2nd ` T ) + 1 ) + 1 ) ... N ) ) |
| 6 |
|
elrabi |
|- ( T e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) |
| 7 |
6 2
|
eleq2s |
|- ( T e. S -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) |
| 8 |
3 7
|
syl |
|- ( ph -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) |
| 9 |
|
xp1st |
|- ( T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
| 10 |
8 9
|
syl |
|- ( ph -> ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
| 11 |
|
xp2nd |
|- ( ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) |
| 12 |
10 11
|
syl |
|- ( ph -> ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) |
| 13 |
|
fvex |
|- ( 2nd ` ( 1st ` T ) ) e. _V |
| 14 |
|
f1oeq1 |
|- ( f = ( 2nd ` ( 1st ` T ) ) -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) |
| 15 |
13 14
|
elab |
|- ( ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
| 16 |
12 15
|
sylib |
|- ( ph -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
| 17 |
|
f1of |
|- ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) --> ( 1 ... N ) ) |
| 18 |
16 17
|
syl |
|- ( ph -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) --> ( 1 ... N ) ) |
| 19 |
|
elfznn |
|- ( ( 2nd ` T ) e. ( 1 ... ( N - 1 ) ) -> ( 2nd ` T ) e. NN ) |
| 20 |
4 19
|
syl |
|- ( ph -> ( 2nd ` T ) e. NN ) |
| 21 |
20
|
peano2nnd |
|- ( ph -> ( ( 2nd ` T ) + 1 ) e. NN ) |
| 22 |
21
|
peano2nnd |
|- ( ph -> ( ( ( 2nd ` T ) + 1 ) + 1 ) e. NN ) |
| 23 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 24 |
22 23
|
eleqtrdi |
|- ( ph -> ( ( ( 2nd ` T ) + 1 ) + 1 ) e. ( ZZ>= ` 1 ) ) |
| 25 |
|
fzss1 |
|- ( ( ( ( 2nd ` T ) + 1 ) + 1 ) e. ( ZZ>= ` 1 ) -> ( ( ( ( 2nd ` T ) + 1 ) + 1 ) ... N ) C_ ( 1 ... N ) ) |
| 26 |
24 25
|
syl |
|- ( ph -> ( ( ( ( 2nd ` T ) + 1 ) + 1 ) ... N ) C_ ( 1 ... N ) ) |
| 27 |
26 5
|
sseldd |
|- ( ph -> M e. ( 1 ... N ) ) |
| 28 |
18 27
|
ffvelcdmd |
|- ( ph -> ( ( 2nd ` ( 1st ` T ) ) ` M ) e. ( 1 ... N ) ) |
| 29 |
|
xp1st |
|- ( ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) ) |
| 30 |
10 29
|
syl |
|- ( ph -> ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) ) |
| 31 |
|
elmapfn |
|- ( ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) -> ( 1st ` ( 1st ` T ) ) Fn ( 1 ... N ) ) |
| 32 |
30 31
|
syl |
|- ( ph -> ( 1st ` ( 1st ` T ) ) Fn ( 1 ... N ) ) |
| 33 |
32
|
adantr |
|- ( ( ph /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) ) -> ( 1st ` ( 1st ` T ) ) Fn ( 1 ... N ) ) |
| 34 |
|
1ex |
|- 1 e. _V |
| 35 |
|
fnconstg |
|- ( 1 e. _V -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) ) |
| 36 |
34 35
|
ax-mp |
|- ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) |
| 37 |
|
c0ex |
|- 0 e. _V |
| 38 |
|
fnconstg |
|- ( 0 e. _V -> ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) ) |
| 39 |
37 38
|
ax-mp |
|- ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) |
| 40 |
36 39
|
pm3.2i |
|- ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) ) |
| 41 |
|
dff1o3 |
|- ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) /\ Fun `' ( 2nd ` ( 1st ` T ) ) ) ) |
| 42 |
41
|
simprbi |
|- ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> Fun `' ( 2nd ` ( 1st ` T ) ) ) |
| 43 |
16 42
|
syl |
|- ( ph -> Fun `' ( 2nd ` ( 1st ` T ) ) ) |
| 44 |
|
imain |
|- ( Fun `' ( 2nd ` ( 1st ` T ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( M - 1 ) ) i^i ( M ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) ) ) |
| 45 |
43 44
|
syl |
|- ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( M - 1 ) ) i^i ( M ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) ) ) |
| 46 |
5
|
elfzelzd |
|- ( ph -> M e. ZZ ) |
| 47 |
46
|
zred |
|- ( ph -> M e. RR ) |
| 48 |
47
|
ltm1d |
|- ( ph -> ( M - 1 ) < M ) |
| 49 |
|
fzdisj |
|- ( ( M - 1 ) < M -> ( ( 1 ... ( M - 1 ) ) i^i ( M ... N ) ) = (/) ) |
| 50 |
48 49
|
syl |
|- ( ph -> ( ( 1 ... ( M - 1 ) ) i^i ( M ... N ) ) = (/) ) |
| 51 |
50
|
imaeq2d |
|- ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( M - 1 ) ) i^i ( M ... N ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " (/) ) ) |
| 52 |
|
ima0 |
|- ( ( 2nd ` ( 1st ` T ) ) " (/) ) = (/) |
| 53 |
51 52
|
eqtrdi |
|- ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( M - 1 ) ) i^i ( M ... N ) ) ) = (/) ) |
| 54 |
45 53
|
eqtr3d |
|- ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) ) = (/) ) |
| 55 |
|
fnun |
|- ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) ) = (/) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) ) ) |
| 56 |
40 54 55
|
sylancr |
|- ( ph -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) ) ) |
| 57 |
46
|
zcnd |
|- ( ph -> M e. CC ) |
| 58 |
|
npcan1 |
|- ( M e. CC -> ( ( M - 1 ) + 1 ) = M ) |
| 59 |
57 58
|
syl |
|- ( ph -> ( ( M - 1 ) + 1 ) = M ) |
| 60 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 61 |
22
|
nnred |
|- ( ph -> ( ( ( 2nd ` T ) + 1 ) + 1 ) e. RR ) |
| 62 |
21
|
nnred |
|- ( ph -> ( ( 2nd ` T ) + 1 ) e. RR ) |
| 63 |
21
|
nnge1d |
|- ( ph -> 1 <_ ( ( 2nd ` T ) + 1 ) ) |
| 64 |
62
|
ltp1d |
|- ( ph -> ( ( 2nd ` T ) + 1 ) < ( ( ( 2nd ` T ) + 1 ) + 1 ) ) |
| 65 |
60 62 61 63 64
|
lelttrd |
|- ( ph -> 1 < ( ( ( 2nd ` T ) + 1 ) + 1 ) ) |
| 66 |
|
elfzle1 |
|- ( M e. ( ( ( ( 2nd ` T ) + 1 ) + 1 ) ... N ) -> ( ( ( 2nd ` T ) + 1 ) + 1 ) <_ M ) |
| 67 |
5 66
|
syl |
|- ( ph -> ( ( ( 2nd ` T ) + 1 ) + 1 ) <_ M ) |
| 68 |
60 61 47 65 67
|
ltletrd |
|- ( ph -> 1 < M ) |
| 69 |
60 47 68
|
ltled |
|- ( ph -> 1 <_ M ) |
| 70 |
|
elnnz1 |
|- ( M e. NN <-> ( M e. ZZ /\ 1 <_ M ) ) |
| 71 |
46 69 70
|
sylanbrc |
|- ( ph -> M e. NN ) |
| 72 |
71 23
|
eleqtrdi |
|- ( ph -> M e. ( ZZ>= ` 1 ) ) |
| 73 |
59 72
|
eqeltrd |
|- ( ph -> ( ( M - 1 ) + 1 ) e. ( ZZ>= ` 1 ) ) |
| 74 |
|
peano2zm |
|- ( M e. ZZ -> ( M - 1 ) e. ZZ ) |
| 75 |
46 74
|
syl |
|- ( ph -> ( M - 1 ) e. ZZ ) |
| 76 |
|
uzid |
|- ( ( M - 1 ) e. ZZ -> ( M - 1 ) e. ( ZZ>= ` ( M - 1 ) ) ) |
| 77 |
|
peano2uz |
|- ( ( M - 1 ) e. ( ZZ>= ` ( M - 1 ) ) -> ( ( M - 1 ) + 1 ) e. ( ZZ>= ` ( M - 1 ) ) ) |
| 78 |
75 76 77
|
3syl |
|- ( ph -> ( ( M - 1 ) + 1 ) e. ( ZZ>= ` ( M - 1 ) ) ) |
| 79 |
59 78
|
eqeltrrd |
|- ( ph -> M e. ( ZZ>= ` ( M - 1 ) ) ) |
| 80 |
|
uzss |
|- ( M e. ( ZZ>= ` ( M - 1 ) ) -> ( ZZ>= ` M ) C_ ( ZZ>= ` ( M - 1 ) ) ) |
| 81 |
79 80
|
syl |
|- ( ph -> ( ZZ>= ` M ) C_ ( ZZ>= ` ( M - 1 ) ) ) |
| 82 |
|
elfzuz3 |
|- ( M e. ( ( ( ( 2nd ` T ) + 1 ) + 1 ) ... N ) -> N e. ( ZZ>= ` M ) ) |
| 83 |
5 82
|
syl |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
| 84 |
81 83
|
sseldd |
|- ( ph -> N e. ( ZZ>= ` ( M - 1 ) ) ) |
| 85 |
|
fzsplit2 |
|- ( ( ( ( M - 1 ) + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` ( M - 1 ) ) ) -> ( 1 ... N ) = ( ( 1 ... ( M - 1 ) ) u. ( ( ( M - 1 ) + 1 ) ... N ) ) ) |
| 86 |
73 84 85
|
syl2anc |
|- ( ph -> ( 1 ... N ) = ( ( 1 ... ( M - 1 ) ) u. ( ( ( M - 1 ) + 1 ) ... N ) ) ) |
| 87 |
59
|
oveq1d |
|- ( ph -> ( ( ( M - 1 ) + 1 ) ... N ) = ( M ... N ) ) |
| 88 |
87
|
uneq2d |
|- ( ph -> ( ( 1 ... ( M - 1 ) ) u. ( ( ( M - 1 ) + 1 ) ... N ) ) = ( ( 1 ... ( M - 1 ) ) u. ( M ... N ) ) ) |
| 89 |
86 88
|
eqtrd |
|- ( ph -> ( 1 ... N ) = ( ( 1 ... ( M - 1 ) ) u. ( M ... N ) ) ) |
| 90 |
89
|
imaeq2d |
|- ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( M - 1 ) ) u. ( M ... N ) ) ) ) |
| 91 |
|
imaundi |
|- ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( M - 1 ) ) u. ( M ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) ) |
| 92 |
90 91
|
eqtrdi |
|- ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) ) ) |
| 93 |
|
f1ofo |
|- ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) ) |
| 94 |
16 93
|
syl |
|- ( ph -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) ) |
| 95 |
|
foima |
|- ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( 1 ... N ) ) |
| 96 |
94 95
|
syl |
|- ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( 1 ... N ) ) |
| 97 |
92 96
|
eqtr3d |
|- ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) ) = ( 1 ... N ) ) |
| 98 |
97
|
fneq2d |
|- ( ph -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) ) <-> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) ) |
| 99 |
56 98
|
mpbid |
|- ( ph -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) |
| 100 |
99
|
adantr |
|- ( ( ph /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) |
| 101 |
|
ovexd |
|- ( ( ph /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) ) -> ( 1 ... N ) e. _V ) |
| 102 |
|
inidm |
|- ( ( 1 ... N ) i^i ( 1 ... N ) ) = ( 1 ... N ) |
| 103 |
|
eqidd |
|- ( ( ( ph /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) ) /\ n e. ( 1 ... N ) ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) = ( ( 1st ` ( 1st ` T ) ) ` n ) ) |
| 104 |
|
imaundi |
|- ( ( 2nd ` ( 1st ` T ) ) " ( { M } u. ( ( M + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " { M } ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) |
| 105 |
|
fzpred |
|- ( N e. ( ZZ>= ` M ) -> ( M ... N ) = ( { M } u. ( ( M + 1 ) ... N ) ) ) |
| 106 |
83 105
|
syl |
|- ( ph -> ( M ... N ) = ( { M } u. ( ( M + 1 ) ... N ) ) ) |
| 107 |
106
|
imaeq2d |
|- ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( { M } u. ( ( M + 1 ) ... N ) ) ) ) |
| 108 |
|
f1ofn |
|- ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) ) |
| 109 |
16 108
|
syl |
|- ( ph -> ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) ) |
| 110 |
|
fnsnfv |
|- ( ( ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) /\ M e. ( 1 ... N ) ) -> { ( ( 2nd ` ( 1st ` T ) ) ` M ) } = ( ( 2nd ` ( 1st ` T ) ) " { M } ) ) |
| 111 |
109 27 110
|
syl2anc |
|- ( ph -> { ( ( 2nd ` ( 1st ` T ) ) ` M ) } = ( ( 2nd ` ( 1st ` T ) ) " { M } ) ) |
| 112 |
111
|
uneq1d |
|- ( ph -> ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } u. ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " { M } ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) ) |
| 113 |
104 107 112
|
3eqtr4a |
|- ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) = ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } u. ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) ) |
| 114 |
113
|
xpeq1d |
|- ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) = ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } u. ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) X. { 0 } ) ) |
| 115 |
|
xpundir |
|- ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } u. ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) X. { 0 } ) = ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 0 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) |
| 116 |
114 115
|
eqtrdi |
|- ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) = ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 0 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 117 |
116
|
uneq2d |
|- ( ph -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 0 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 118 |
|
un12 |
|- ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 0 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 0 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 119 |
117 118
|
eqtrdi |
|- ( ph -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) = ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 0 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 120 |
119
|
fveq1d |
|- ( ph -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 0 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) ) |
| 121 |
120
|
ad2antrr |
|- ( ( ( ph /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 0 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) ) |
| 122 |
|
fnconstg |
|- ( 0 e. _V -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) |
| 123 |
37 122
|
ax-mp |
|- ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) |
| 124 |
36 123
|
pm3.2i |
|- ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) |
| 125 |
|
imain |
|- ( Fun `' ( 2nd ` ( 1st ` T ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( M - 1 ) ) i^i ( ( M + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) ) |
| 126 |
43 125
|
syl |
|- ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( M - 1 ) ) i^i ( ( M + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) ) |
| 127 |
75
|
zred |
|- ( ph -> ( M - 1 ) e. RR ) |
| 128 |
|
peano2re |
|- ( M e. RR -> ( M + 1 ) e. RR ) |
| 129 |
47 128
|
syl |
|- ( ph -> ( M + 1 ) e. RR ) |
| 130 |
47
|
ltp1d |
|- ( ph -> M < ( M + 1 ) ) |
| 131 |
127 47 129 48 130
|
lttrd |
|- ( ph -> ( M - 1 ) < ( M + 1 ) ) |
| 132 |
|
fzdisj |
|- ( ( M - 1 ) < ( M + 1 ) -> ( ( 1 ... ( M - 1 ) ) i^i ( ( M + 1 ) ... N ) ) = (/) ) |
| 133 |
131 132
|
syl |
|- ( ph -> ( ( 1 ... ( M - 1 ) ) i^i ( ( M + 1 ) ... N ) ) = (/) ) |
| 134 |
133
|
imaeq2d |
|- ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( M - 1 ) ) i^i ( ( M + 1 ) ... N ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " (/) ) ) |
| 135 |
134 52
|
eqtrdi |
|- ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( M - 1 ) ) i^i ( ( M + 1 ) ... N ) ) ) = (/) ) |
| 136 |
126 135
|
eqtr3d |
|- ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) = (/) ) |
| 137 |
|
fnun |
|- ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) = (/) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) ) |
| 138 |
124 136 137
|
sylancr |
|- ( ph -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) ) |
| 139 |
|
imaundi |
|- ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( M - 1 ) ) u. ( ( M + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) |
| 140 |
|
imadif |
|- ( Fun `' ( 2nd ` ( 1st ` T ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... N ) \ { M } ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) \ ( ( 2nd ` ( 1st ` T ) ) " { M } ) ) ) |
| 141 |
43 140
|
syl |
|- ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... N ) \ { M } ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) \ ( ( 2nd ` ( 1st ` T ) ) " { M } ) ) ) |
| 142 |
|
fzsplit |
|- ( M e. ( 1 ... N ) -> ( 1 ... N ) = ( ( 1 ... M ) u. ( ( M + 1 ) ... N ) ) ) |
| 143 |
27 142
|
syl |
|- ( ph -> ( 1 ... N ) = ( ( 1 ... M ) u. ( ( M + 1 ) ... N ) ) ) |
| 144 |
143
|
difeq1d |
|- ( ph -> ( ( 1 ... N ) \ { M } ) = ( ( ( 1 ... M ) u. ( ( M + 1 ) ... N ) ) \ { M } ) ) |
| 145 |
|
difundir |
|- ( ( ( 1 ... M ) u. ( ( M + 1 ) ... N ) ) \ { M } ) = ( ( ( 1 ... M ) \ { M } ) u. ( ( ( M + 1 ) ... N ) \ { M } ) ) |
| 146 |
|
fzsplit2 |
|- ( ( ( ( M - 1 ) + 1 ) e. ( ZZ>= ` 1 ) /\ M e. ( ZZ>= ` ( M - 1 ) ) ) -> ( 1 ... M ) = ( ( 1 ... ( M - 1 ) ) u. ( ( ( M - 1 ) + 1 ) ... M ) ) ) |
| 147 |
73 79 146
|
syl2anc |
|- ( ph -> ( 1 ... M ) = ( ( 1 ... ( M - 1 ) ) u. ( ( ( M - 1 ) + 1 ) ... M ) ) ) |
| 148 |
59
|
oveq1d |
|- ( ph -> ( ( ( M - 1 ) + 1 ) ... M ) = ( M ... M ) ) |
| 149 |
|
fzsn |
|- ( M e. ZZ -> ( M ... M ) = { M } ) |
| 150 |
46 149
|
syl |
|- ( ph -> ( M ... M ) = { M } ) |
| 151 |
148 150
|
eqtrd |
|- ( ph -> ( ( ( M - 1 ) + 1 ) ... M ) = { M } ) |
| 152 |
151
|
uneq2d |
|- ( ph -> ( ( 1 ... ( M - 1 ) ) u. ( ( ( M - 1 ) + 1 ) ... M ) ) = ( ( 1 ... ( M - 1 ) ) u. { M } ) ) |
| 153 |
147 152
|
eqtrd |
|- ( ph -> ( 1 ... M ) = ( ( 1 ... ( M - 1 ) ) u. { M } ) ) |
| 154 |
153
|
difeq1d |
|- ( ph -> ( ( 1 ... M ) \ { M } ) = ( ( ( 1 ... ( M - 1 ) ) u. { M } ) \ { M } ) ) |
| 155 |
|
difun2 |
|- ( ( ( 1 ... ( M - 1 ) ) u. { M } ) \ { M } ) = ( ( 1 ... ( M - 1 ) ) \ { M } ) |
| 156 |
127 47
|
ltnled |
|- ( ph -> ( ( M - 1 ) < M <-> -. M <_ ( M - 1 ) ) ) |
| 157 |
48 156
|
mpbid |
|- ( ph -> -. M <_ ( M - 1 ) ) |
| 158 |
|
elfzle2 |
|- ( M e. ( 1 ... ( M - 1 ) ) -> M <_ ( M - 1 ) ) |
| 159 |
157 158
|
nsyl |
|- ( ph -> -. M e. ( 1 ... ( M - 1 ) ) ) |
| 160 |
|
difsn |
|- ( -. M e. ( 1 ... ( M - 1 ) ) -> ( ( 1 ... ( M - 1 ) ) \ { M } ) = ( 1 ... ( M - 1 ) ) ) |
| 161 |
159 160
|
syl |
|- ( ph -> ( ( 1 ... ( M - 1 ) ) \ { M } ) = ( 1 ... ( M - 1 ) ) ) |
| 162 |
155 161
|
eqtrid |
|- ( ph -> ( ( ( 1 ... ( M - 1 ) ) u. { M } ) \ { M } ) = ( 1 ... ( M - 1 ) ) ) |
| 163 |
154 162
|
eqtrd |
|- ( ph -> ( ( 1 ... M ) \ { M } ) = ( 1 ... ( M - 1 ) ) ) |
| 164 |
47 129
|
ltnled |
|- ( ph -> ( M < ( M + 1 ) <-> -. ( M + 1 ) <_ M ) ) |
| 165 |
130 164
|
mpbid |
|- ( ph -> -. ( M + 1 ) <_ M ) |
| 166 |
|
elfzle1 |
|- ( M e. ( ( M + 1 ) ... N ) -> ( M + 1 ) <_ M ) |
| 167 |
165 166
|
nsyl |
|- ( ph -> -. M e. ( ( M + 1 ) ... N ) ) |
| 168 |
|
difsn |
|- ( -. M e. ( ( M + 1 ) ... N ) -> ( ( ( M + 1 ) ... N ) \ { M } ) = ( ( M + 1 ) ... N ) ) |
| 169 |
167 168
|
syl |
|- ( ph -> ( ( ( M + 1 ) ... N ) \ { M } ) = ( ( M + 1 ) ... N ) ) |
| 170 |
163 169
|
uneq12d |
|- ( ph -> ( ( ( 1 ... M ) \ { M } ) u. ( ( ( M + 1 ) ... N ) \ { M } ) ) = ( ( 1 ... ( M - 1 ) ) u. ( ( M + 1 ) ... N ) ) ) |
| 171 |
145 170
|
eqtrid |
|- ( ph -> ( ( ( 1 ... M ) u. ( ( M + 1 ) ... N ) ) \ { M } ) = ( ( 1 ... ( M - 1 ) ) u. ( ( M + 1 ) ... N ) ) ) |
| 172 |
144 171
|
eqtrd |
|- ( ph -> ( ( 1 ... N ) \ { M } ) = ( ( 1 ... ( M - 1 ) ) u. ( ( M + 1 ) ... N ) ) ) |
| 173 |
172
|
imaeq2d |
|- ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... N ) \ { M } ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( M - 1 ) ) u. ( ( M + 1 ) ... N ) ) ) ) |
| 174 |
111
|
eqcomd |
|- ( ph -> ( ( 2nd ` ( 1st ` T ) ) " { M } ) = { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) |
| 175 |
96 174
|
difeq12d |
|- ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) \ ( ( 2nd ` ( 1st ` T ) ) " { M } ) ) = ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) ) |
| 176 |
141 173 175
|
3eqtr3d |
|- ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( M - 1 ) ) u. ( ( M + 1 ) ... N ) ) ) = ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) ) |
| 177 |
139 176
|
eqtr3id |
|- ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) = ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) ) |
| 178 |
177
|
fneq2d |
|- ( ph -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) <-> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) ) ) |
| 179 |
138 178
|
mpbid |
|- ( ph -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) ) |
| 180 |
|
eldifsn |
|- ( n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) <-> ( n e. ( 1 ... N ) /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) ) ) |
| 181 |
180
|
biimpri |
|- ( ( n e. ( 1 ... N ) /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) ) -> n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) ) |
| 182 |
181
|
ancoms |
|- ( ( n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) /\ n e. ( 1 ... N ) ) -> n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) ) |
| 183 |
|
disjdif |
|- ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } i^i ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) ) = (/) |
| 184 |
|
fnconstg |
|- ( 0 e. _V -> ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 0 } ) Fn { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) |
| 185 |
37 184
|
ax-mp |
|- ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 0 } ) Fn { ( ( 2nd ` ( 1st ` T ) ) ` M ) } |
| 186 |
|
fvun2 |
|- ( ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 0 } ) Fn { ( ( 2nd ` ( 1st ` T ) ) ` M ) } /\ ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) /\ ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } i^i ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) ) = (/) /\ n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) ) ) -> ( ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 0 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) |
| 187 |
185 186
|
mp3an1 |
|- ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) /\ ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } i^i ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) ) = (/) /\ n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) ) ) -> ( ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 0 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) |
| 188 |
183 187
|
mpanr1 |
|- ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) /\ n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) ) -> ( ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 0 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) |
| 189 |
179 182 188
|
syl2an |
|- ( ( ph /\ ( n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) /\ n e. ( 1 ... N ) ) ) -> ( ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 0 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) |
| 190 |
189
|
anassrs |
|- ( ( ( ph /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 0 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) |
| 191 |
121 190
|
eqtrd |
|- ( ( ( ph /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) |
| 192 |
33 100 101 101 102 103 191
|
ofval |
|- ( ( ( ph /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( ( 1st ` ( 1st ` T ) ) ` n ) + ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) |
| 193 |
|
fnconstg |
|- ( 1 e. _V -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) ) |
| 194 |
34 193
|
ax-mp |
|- ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) |
| 195 |
194 123
|
pm3.2i |
|- ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) |
| 196 |
|
imain |
|- ( Fun `' ( 2nd ` ( 1st ` T ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... M ) i^i ( ( M + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) ) |
| 197 |
43 196
|
syl |
|- ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... M ) i^i ( ( M + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) ) |
| 198 |
|
fzdisj |
|- ( M < ( M + 1 ) -> ( ( 1 ... M ) i^i ( ( M + 1 ) ... N ) ) = (/) ) |
| 199 |
130 198
|
syl |
|- ( ph -> ( ( 1 ... M ) i^i ( ( M + 1 ) ... N ) ) = (/) ) |
| 200 |
199
|
imaeq2d |
|- ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... M ) i^i ( ( M + 1 ) ... N ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " (/) ) ) |
| 201 |
200 52
|
eqtrdi |
|- ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... M ) i^i ( ( M + 1 ) ... N ) ) ) = (/) ) |
| 202 |
197 201
|
eqtr3d |
|- ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) = (/) ) |
| 203 |
|
fnun |
|- ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) = (/) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) ) |
| 204 |
195 202 203
|
sylancr |
|- ( ph -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) ) |
| 205 |
143
|
imaeq2d |
|- ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... M ) u. ( ( M + 1 ) ... N ) ) ) ) |
| 206 |
|
imaundi |
|- ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... M ) u. ( ( M + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) |
| 207 |
205 206
|
eqtrdi |
|- ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) ) |
| 208 |
207 96
|
eqtr3d |
|- ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) = ( 1 ... N ) ) |
| 209 |
208
|
fneq2d |
|- ( ph -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) <-> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) ) |
| 210 |
204 209
|
mpbid |
|- ( ph -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) |
| 211 |
210
|
adantr |
|- ( ( ph /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) |
| 212 |
|
imaundi |
|- ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( M - 1 ) ) u. { M } ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " { M } ) ) |
| 213 |
153
|
imaeq2d |
|- ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( M - 1 ) ) u. { M } ) ) ) |
| 214 |
111
|
uneq2d |
|- ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) u. { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " { M } ) ) ) |
| 215 |
212 213 214
|
3eqtr4a |
|- ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) u. { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) ) |
| 216 |
215
|
xpeq1d |
|- ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) u. { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) X. { 1 } ) ) |
| 217 |
|
xpundir |
|- ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) u. { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) X. { 1 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 1 } ) ) |
| 218 |
216 217
|
eqtrdi |
|- ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 1 } ) ) ) |
| 219 |
218
|
uneq1d |
|- ( ph -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 1 } ) ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 220 |
|
un23 |
|- ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 1 } ) ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 1 } ) ) |
| 221 |
220
|
equncomi |
|- ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 1 } ) ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) = ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 222 |
219 221
|
eqtrdi |
|- ( ph -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) = ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 223 |
222
|
fveq1d |
|- ( ph -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) ) |
| 224 |
223
|
ad2antrr |
|- ( ( ( ph /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) ) |
| 225 |
|
fnconstg |
|- ( 1 e. _V -> ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 1 } ) Fn { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) |
| 226 |
34 225
|
ax-mp |
|- ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 1 } ) Fn { ( ( 2nd ` ( 1st ` T ) ) ` M ) } |
| 227 |
|
fvun2 |
|- ( ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 1 } ) Fn { ( ( 2nd ` ( 1st ` T ) ) ` M ) } /\ ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) /\ ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } i^i ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) ) = (/) /\ n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) ) ) -> ( ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) |
| 228 |
226 227
|
mp3an1 |
|- ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) /\ ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } i^i ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) ) = (/) /\ n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) ) ) -> ( ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) |
| 229 |
183 228
|
mpanr1 |
|- ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) /\ n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) ) -> ( ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) |
| 230 |
179 182 229
|
syl2an |
|- ( ( ph /\ ( n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) /\ n e. ( 1 ... N ) ) ) -> ( ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) |
| 231 |
230
|
anassrs |
|- ( ( ( ph /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) |
| 232 |
224 231
|
eqtrd |
|- ( ( ( ph /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) |
| 233 |
33 211 101 101 102 103 232
|
ofval |
|- ( ( ( ph /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( ( 1st ` ( 1st ` T ) ) ` n ) + ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) |
| 234 |
192 233
|
eqtr4d |
|- ( ( ( ph /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) ) |
| 235 |
234
|
an32s |
|- ( ( ( ph /\ n e. ( 1 ... N ) ) /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) ) -> ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) ) |
| 236 |
235
|
anasss |
|- ( ( ph /\ ( n e. ( 1 ... N ) /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) ) ) -> ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) ) |
| 237 |
|
fveq2 |
|- ( t = T -> ( 2nd ` t ) = ( 2nd ` T ) ) |
| 238 |
237
|
breq2d |
|- ( t = T -> ( y < ( 2nd ` t ) <-> y < ( 2nd ` T ) ) ) |
| 239 |
238
|
ifbid |
|- ( t = T -> if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) = if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) ) |
| 240 |
239
|
csbeq1d |
|- ( t = T -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 241 |
|
2fveq3 |
|- ( t = T -> ( 1st ` ( 1st ` t ) ) = ( 1st ` ( 1st ` T ) ) ) |
| 242 |
|
2fveq3 |
|- ( t = T -> ( 2nd ` ( 1st ` t ) ) = ( 2nd ` ( 1st ` T ) ) ) |
| 243 |
242
|
imaeq1d |
|- ( t = T -> ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) ) |
| 244 |
243
|
xpeq1d |
|- ( t = T -> ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) ) |
| 245 |
242
|
imaeq1d |
|- ( t = T -> ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) ) |
| 246 |
245
|
xpeq1d |
|- ( t = T -> ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) |
| 247 |
244 246
|
uneq12d |
|- ( t = T -> ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 248 |
241 247
|
oveq12d |
|- ( t = T -> ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 249 |
248
|
csbeq2dv |
|- ( t = T -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 250 |
240 249
|
eqtrd |
|- ( t = T -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 251 |
250
|
mpteq2dv |
|- ( t = T -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
| 252 |
251
|
eqeq2d |
|- ( t = T -> ( F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) |
| 253 |
252 2
|
elrab2 |
|- ( T e. S <-> ( T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) |
| 254 |
253
|
simprbi |
|- ( T e. S -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
| 255 |
3 254
|
syl |
|- ( ph -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
| 256 |
|
breq1 |
|- ( y = ( M - 2 ) -> ( y < ( 2nd ` T ) <-> ( M - 2 ) < ( 2nd ` T ) ) ) |
| 257 |
256
|
adantl |
|- ( ( ph /\ y = ( M - 2 ) ) -> ( y < ( 2nd ` T ) <-> ( M - 2 ) < ( 2nd ` T ) ) ) |
| 258 |
|
oveq1 |
|- ( y = ( M - 2 ) -> ( y + 1 ) = ( ( M - 2 ) + 1 ) ) |
| 259 |
|
sub1m1 |
|- ( M e. CC -> ( ( M - 1 ) - 1 ) = ( M - 2 ) ) |
| 260 |
57 259
|
syl |
|- ( ph -> ( ( M - 1 ) - 1 ) = ( M - 2 ) ) |
| 261 |
260
|
oveq1d |
|- ( ph -> ( ( ( M - 1 ) - 1 ) + 1 ) = ( ( M - 2 ) + 1 ) ) |
| 262 |
75
|
zcnd |
|- ( ph -> ( M - 1 ) e. CC ) |
| 263 |
|
npcan1 |
|- ( ( M - 1 ) e. CC -> ( ( ( M - 1 ) - 1 ) + 1 ) = ( M - 1 ) ) |
| 264 |
262 263
|
syl |
|- ( ph -> ( ( ( M - 1 ) - 1 ) + 1 ) = ( M - 1 ) ) |
| 265 |
261 264
|
eqtr3d |
|- ( ph -> ( ( M - 2 ) + 1 ) = ( M - 1 ) ) |
| 266 |
258 265
|
sylan9eqr |
|- ( ( ph /\ y = ( M - 2 ) ) -> ( y + 1 ) = ( M - 1 ) ) |
| 267 |
257 266
|
ifbieq2d |
|- ( ( ph /\ y = ( M - 2 ) ) -> if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) = if ( ( M - 2 ) < ( 2nd ` T ) , y , ( M - 1 ) ) ) |
| 268 |
20
|
nncnd |
|- ( ph -> ( 2nd ` T ) e. CC ) |
| 269 |
|
add1p1 |
|- ( ( 2nd ` T ) e. CC -> ( ( ( 2nd ` T ) + 1 ) + 1 ) = ( ( 2nd ` T ) + 2 ) ) |
| 270 |
268 269
|
syl |
|- ( ph -> ( ( ( 2nd ` T ) + 1 ) + 1 ) = ( ( 2nd ` T ) + 2 ) ) |
| 271 |
270 67
|
eqbrtrrd |
|- ( ph -> ( ( 2nd ` T ) + 2 ) <_ M ) |
| 272 |
20
|
nnred |
|- ( ph -> ( 2nd ` T ) e. RR ) |
| 273 |
|
2re |
|- 2 e. RR |
| 274 |
|
leaddsub |
|- ( ( ( 2nd ` T ) e. RR /\ 2 e. RR /\ M e. RR ) -> ( ( ( 2nd ` T ) + 2 ) <_ M <-> ( 2nd ` T ) <_ ( M - 2 ) ) ) |
| 275 |
273 274
|
mp3an2 |
|- ( ( ( 2nd ` T ) e. RR /\ M e. RR ) -> ( ( ( 2nd ` T ) + 2 ) <_ M <-> ( 2nd ` T ) <_ ( M - 2 ) ) ) |
| 276 |
272 47 275
|
syl2anc |
|- ( ph -> ( ( ( 2nd ` T ) + 2 ) <_ M <-> ( 2nd ` T ) <_ ( M - 2 ) ) ) |
| 277 |
60 47
|
posdifd |
|- ( ph -> ( 1 < M <-> 0 < ( M - 1 ) ) ) |
| 278 |
68 277
|
mpbid |
|- ( ph -> 0 < ( M - 1 ) ) |
| 279 |
|
elnnz |
|- ( ( M - 1 ) e. NN <-> ( ( M - 1 ) e. ZZ /\ 0 < ( M - 1 ) ) ) |
| 280 |
75 278 279
|
sylanbrc |
|- ( ph -> ( M - 1 ) e. NN ) |
| 281 |
|
nnm1nn0 |
|- ( ( M - 1 ) e. NN -> ( ( M - 1 ) - 1 ) e. NN0 ) |
| 282 |
280 281
|
syl |
|- ( ph -> ( ( M - 1 ) - 1 ) e. NN0 ) |
| 283 |
260 282
|
eqeltrrd |
|- ( ph -> ( M - 2 ) e. NN0 ) |
| 284 |
283
|
nn0red |
|- ( ph -> ( M - 2 ) e. RR ) |
| 285 |
272 284
|
lenltd |
|- ( ph -> ( ( 2nd ` T ) <_ ( M - 2 ) <-> -. ( M - 2 ) < ( 2nd ` T ) ) ) |
| 286 |
276 285
|
bitrd |
|- ( ph -> ( ( ( 2nd ` T ) + 2 ) <_ M <-> -. ( M - 2 ) < ( 2nd ` T ) ) ) |
| 287 |
271 286
|
mpbid |
|- ( ph -> -. ( M - 2 ) < ( 2nd ` T ) ) |
| 288 |
287
|
iffalsed |
|- ( ph -> if ( ( M - 2 ) < ( 2nd ` T ) , y , ( M - 1 ) ) = ( M - 1 ) ) |
| 289 |
288
|
adantr |
|- ( ( ph /\ y = ( M - 2 ) ) -> if ( ( M - 2 ) < ( 2nd ` T ) , y , ( M - 1 ) ) = ( M - 1 ) ) |
| 290 |
267 289
|
eqtrd |
|- ( ( ph /\ y = ( M - 2 ) ) -> if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) = ( M - 1 ) ) |
| 291 |
290
|
csbeq1d |
|- ( ( ph /\ y = ( M - 2 ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ ( M - 1 ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 292 |
|
oveq2 |
|- ( j = ( M - 1 ) -> ( 1 ... j ) = ( 1 ... ( M - 1 ) ) ) |
| 293 |
292
|
imaeq2d |
|- ( j = ( M - 1 ) -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) ) |
| 294 |
293
|
xpeq1d |
|- ( j = ( M - 1 ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) ) |
| 295 |
294
|
adantl |
|- ( ( ph /\ j = ( M - 1 ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) ) |
| 296 |
|
oveq1 |
|- ( j = ( M - 1 ) -> ( j + 1 ) = ( ( M - 1 ) + 1 ) ) |
| 297 |
296 59
|
sylan9eqr |
|- ( ( ph /\ j = ( M - 1 ) ) -> ( j + 1 ) = M ) |
| 298 |
297
|
oveq1d |
|- ( ( ph /\ j = ( M - 1 ) ) -> ( ( j + 1 ) ... N ) = ( M ... N ) ) |
| 299 |
298
|
imaeq2d |
|- ( ( ph /\ j = ( M - 1 ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) ) |
| 300 |
299
|
xpeq1d |
|- ( ( ph /\ j = ( M - 1 ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) |
| 301 |
295 300
|
uneq12d |
|- ( ( ph /\ j = ( M - 1 ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ) |
| 302 |
301
|
oveq2d |
|- ( ( ph /\ j = ( M - 1 ) ) -> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ) ) |
| 303 |
75 302
|
csbied |
|- ( ph -> [_ ( M - 1 ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ) ) |
| 304 |
303
|
adantr |
|- ( ( ph /\ y = ( M - 2 ) ) -> [_ ( M - 1 ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ) ) |
| 305 |
291 304
|
eqtrd |
|- ( ( ph /\ y = ( M - 2 ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ) ) |
| 306 |
|
nnm1nn0 |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |
| 307 |
1 306
|
syl |
|- ( ph -> ( N - 1 ) e. NN0 ) |
| 308 |
1
|
nnred |
|- ( ph -> N e. RR ) |
| 309 |
47
|
lem1d |
|- ( ph -> ( M - 1 ) <_ M ) |
| 310 |
|
elfzle2 |
|- ( M e. ( ( ( ( 2nd ` T ) + 1 ) + 1 ) ... N ) -> M <_ N ) |
| 311 |
5 310
|
syl |
|- ( ph -> M <_ N ) |
| 312 |
127 47 308 309 311
|
letrd |
|- ( ph -> ( M - 1 ) <_ N ) |
| 313 |
127 308 60 312
|
lesub1dd |
|- ( ph -> ( ( M - 1 ) - 1 ) <_ ( N - 1 ) ) |
| 314 |
260 313
|
eqbrtrrd |
|- ( ph -> ( M - 2 ) <_ ( N - 1 ) ) |
| 315 |
|
elfz2nn0 |
|- ( ( M - 2 ) e. ( 0 ... ( N - 1 ) ) <-> ( ( M - 2 ) e. NN0 /\ ( N - 1 ) e. NN0 /\ ( M - 2 ) <_ ( N - 1 ) ) ) |
| 316 |
283 307 314 315
|
syl3anbrc |
|- ( ph -> ( M - 2 ) e. ( 0 ... ( N - 1 ) ) ) |
| 317 |
|
ovexd |
|- ( ph -> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ) e. _V ) |
| 318 |
255 305 316 317
|
fvmptd |
|- ( ph -> ( F ` ( M - 2 ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ) ) |
| 319 |
318
|
fveq1d |
|- ( ph -> ( ( F ` ( M - 2 ) ) ` n ) = ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ) ` n ) ) |
| 320 |
319
|
adantr |
|- ( ( ph /\ ( n e. ( 1 ... N ) /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) ) ) -> ( ( F ` ( M - 2 ) ) ` n ) = ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ) ` n ) ) |
| 321 |
|
breq1 |
|- ( y = ( M - 1 ) -> ( y < ( 2nd ` T ) <-> ( M - 1 ) < ( 2nd ` T ) ) ) |
| 322 |
321
|
adantl |
|- ( ( ph /\ y = ( M - 1 ) ) -> ( y < ( 2nd ` T ) <-> ( M - 1 ) < ( 2nd ` T ) ) ) |
| 323 |
|
oveq1 |
|- ( y = ( M - 1 ) -> ( y + 1 ) = ( ( M - 1 ) + 1 ) ) |
| 324 |
323 59
|
sylan9eqr |
|- ( ( ph /\ y = ( M - 1 ) ) -> ( y + 1 ) = M ) |
| 325 |
322 324
|
ifbieq2d |
|- ( ( ph /\ y = ( M - 1 ) ) -> if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) = if ( ( M - 1 ) < ( 2nd ` T ) , y , M ) ) |
| 326 |
62
|
lep1d |
|- ( ph -> ( ( 2nd ` T ) + 1 ) <_ ( ( ( 2nd ` T ) + 1 ) + 1 ) ) |
| 327 |
62 61 47 326 67
|
letrd |
|- ( ph -> ( ( 2nd ` T ) + 1 ) <_ M ) |
| 328 |
|
1re |
|- 1 e. RR |
| 329 |
|
leaddsub |
|- ( ( ( 2nd ` T ) e. RR /\ 1 e. RR /\ M e. RR ) -> ( ( ( 2nd ` T ) + 1 ) <_ M <-> ( 2nd ` T ) <_ ( M - 1 ) ) ) |
| 330 |
328 329
|
mp3an2 |
|- ( ( ( 2nd ` T ) e. RR /\ M e. RR ) -> ( ( ( 2nd ` T ) + 1 ) <_ M <-> ( 2nd ` T ) <_ ( M - 1 ) ) ) |
| 331 |
272 47 330
|
syl2anc |
|- ( ph -> ( ( ( 2nd ` T ) + 1 ) <_ M <-> ( 2nd ` T ) <_ ( M - 1 ) ) ) |
| 332 |
272 127
|
lenltd |
|- ( ph -> ( ( 2nd ` T ) <_ ( M - 1 ) <-> -. ( M - 1 ) < ( 2nd ` T ) ) ) |
| 333 |
331 332
|
bitrd |
|- ( ph -> ( ( ( 2nd ` T ) + 1 ) <_ M <-> -. ( M - 1 ) < ( 2nd ` T ) ) ) |
| 334 |
327 333
|
mpbid |
|- ( ph -> -. ( M - 1 ) < ( 2nd ` T ) ) |
| 335 |
334
|
iffalsed |
|- ( ph -> if ( ( M - 1 ) < ( 2nd ` T ) , y , M ) = M ) |
| 336 |
335
|
adantr |
|- ( ( ph /\ y = ( M - 1 ) ) -> if ( ( M - 1 ) < ( 2nd ` T ) , y , M ) = M ) |
| 337 |
325 336
|
eqtrd |
|- ( ( ph /\ y = ( M - 1 ) ) -> if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) = M ) |
| 338 |
337
|
csbeq1d |
|- ( ( ph /\ y = ( M - 1 ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ M / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 339 |
|
oveq2 |
|- ( j = M -> ( 1 ... j ) = ( 1 ... M ) ) |
| 340 |
339
|
imaeq2d |
|- ( j = M -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) ) |
| 341 |
340
|
xpeq1d |
|- ( j = M -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) ) |
| 342 |
|
oveq1 |
|- ( j = M -> ( j + 1 ) = ( M + 1 ) ) |
| 343 |
342
|
oveq1d |
|- ( j = M -> ( ( j + 1 ) ... N ) = ( ( M + 1 ) ... N ) ) |
| 344 |
343
|
imaeq2d |
|- ( j = M -> ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) |
| 345 |
344
|
xpeq1d |
|- ( j = M -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) |
| 346 |
341 345
|
uneq12d |
|- ( j = M -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 347 |
346
|
oveq2d |
|- ( j = M -> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 348 |
347
|
adantl |
|- ( ( ph /\ j = M ) -> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 349 |
5 348
|
csbied |
|- ( ph -> [_ M / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 350 |
349
|
adantr |
|- ( ( ph /\ y = ( M - 1 ) ) -> [_ M / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 351 |
338 350
|
eqtrd |
|- ( ( ph /\ y = ( M - 1 ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 352 |
280
|
nnnn0d |
|- ( ph -> ( M - 1 ) e. NN0 ) |
| 353 |
47 308 60 311
|
lesub1dd |
|- ( ph -> ( M - 1 ) <_ ( N - 1 ) ) |
| 354 |
|
elfz2nn0 |
|- ( ( M - 1 ) e. ( 0 ... ( N - 1 ) ) <-> ( ( M - 1 ) e. NN0 /\ ( N - 1 ) e. NN0 /\ ( M - 1 ) <_ ( N - 1 ) ) ) |
| 355 |
352 307 353 354
|
syl3anbrc |
|- ( ph -> ( M - 1 ) e. ( 0 ... ( N - 1 ) ) ) |
| 356 |
|
ovexd |
|- ( ph -> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) e. _V ) |
| 357 |
255 351 355 356
|
fvmptd |
|- ( ph -> ( F ` ( M - 1 ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 358 |
357
|
fveq1d |
|- ( ph -> ( ( F ` ( M - 1 ) ) ` n ) = ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) ) |
| 359 |
358
|
adantr |
|- ( ( ph /\ ( n e. ( 1 ... N ) /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) ) ) -> ( ( F ` ( M - 1 ) ) ` n ) = ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) ) |
| 360 |
236 320 359
|
3eqtr4d |
|- ( ( ph /\ ( n e. ( 1 ... N ) /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) ) ) -> ( ( F ` ( M - 2 ) ) ` n ) = ( ( F ` ( M - 1 ) ) ` n ) ) |
| 361 |
360
|
expr |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) -> ( ( F ` ( M - 2 ) ) ` n ) = ( ( F ` ( M - 1 ) ) ` n ) ) ) |
| 362 |
361
|
necon1d |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( ( F ` ( M - 2 ) ) ` n ) =/= ( ( F ` ( M - 1 ) ) ` n ) -> n = ( ( 2nd ` ( 1st ` T ) ) ` M ) ) ) |
| 363 |
|
elmapi |
|- ( ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) -> ( 1st ` ( 1st ` T ) ) : ( 1 ... N ) --> ( 0 ..^ K ) ) |
| 364 |
30 363
|
syl |
|- ( ph -> ( 1st ` ( 1st ` T ) ) : ( 1 ... N ) --> ( 0 ..^ K ) ) |
| 365 |
364 28
|
ffvelcdmd |
|- ( ph -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) e. ( 0 ..^ K ) ) |
| 366 |
|
elfzonn0 |
|- ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) e. ( 0 ..^ K ) -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) e. NN0 ) |
| 367 |
365 366
|
syl |
|- ( ph -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) e. NN0 ) |
| 368 |
367
|
nn0red |
|- ( ph -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) e. RR ) |
| 369 |
368
|
ltp1d |
|- ( ph -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) < ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) + 1 ) ) |
| 370 |
368 369
|
ltned |
|- ( ph -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) =/= ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) + 1 ) ) |
| 371 |
318
|
fveq1d |
|- ( ph -> ( ( F ` ( M - 2 ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) ) |
| 372 |
|
ovexd |
|- ( ph -> ( 1 ... N ) e. _V ) |
| 373 |
|
eqidd |
|- ( ( ph /\ ( ( 2nd ` ( 1st ` T ) ) ` M ) e. ( 1 ... N ) ) -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) ) |
| 374 |
|
fzss1 |
|- ( M e. ( ZZ>= ` 1 ) -> ( M ... N ) C_ ( 1 ... N ) ) |
| 375 |
72 374
|
syl |
|- ( ph -> ( M ... N ) C_ ( 1 ... N ) ) |
| 376 |
|
eluzfz1 |
|- ( N e. ( ZZ>= ` M ) -> M e. ( M ... N ) ) |
| 377 |
83 376
|
syl |
|- ( ph -> M e. ( M ... N ) ) |
| 378 |
|
fnfvima |
|- ( ( ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) /\ ( M ... N ) C_ ( 1 ... N ) /\ M e. ( M ... N ) ) -> ( ( 2nd ` ( 1st ` T ) ) ` M ) e. ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) ) |
| 379 |
109 375 377 378
|
syl3anc |
|- ( ph -> ( ( 2nd ` ( 1st ` T ) ) ` M ) e. ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) ) |
| 380 |
|
fvun2 |
|- ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) /\ ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) ) = (/) /\ ( ( 2nd ` ( 1st ` T ) ) ` M ) e. ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) ) |
| 381 |
36 39 380
|
mp3an12 |
|- ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) ) = (/) /\ ( ( 2nd ` ( 1st ` T ) ) ` M ) e. ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) ) |
| 382 |
54 379 381
|
syl2anc |
|- ( ph -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) ) |
| 383 |
37
|
fvconst2 |
|- ( ( ( 2nd ` ( 1st ` T ) ) ` M ) e. ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = 0 ) |
| 384 |
379 383
|
syl |
|- ( ph -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = 0 ) |
| 385 |
382 384
|
eqtrd |
|- ( ph -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = 0 ) |
| 386 |
385
|
adantr |
|- ( ( ph /\ ( ( 2nd ` ( 1st ` T ) ) ` M ) e. ( 1 ... N ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = 0 ) |
| 387 |
32 99 372 372 102 373 386
|
ofval |
|- ( ( ph /\ ( ( 2nd ` ( 1st ` T ) ) ` M ) e. ( 1 ... N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) + 0 ) ) |
| 388 |
28 387
|
mpdan |
|- ( ph -> ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) + 0 ) ) |
| 389 |
367
|
nn0cnd |
|- ( ph -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) e. CC ) |
| 390 |
389
|
addridd |
|- ( ph -> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) + 0 ) = ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) ) |
| 391 |
371 388 390
|
3eqtrd |
|- ( ph -> ( ( F ` ( M - 2 ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) ) |
| 392 |
357
|
fveq1d |
|- ( ph -> ( ( F ` ( M - 1 ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) ) |
| 393 |
|
fzss2 |
|- ( N e. ( ZZ>= ` M ) -> ( 1 ... M ) C_ ( 1 ... N ) ) |
| 394 |
83 393
|
syl |
|- ( ph -> ( 1 ... M ) C_ ( 1 ... N ) ) |
| 395 |
|
elfz1end |
|- ( M e. NN <-> M e. ( 1 ... M ) ) |
| 396 |
71 395
|
sylib |
|- ( ph -> M e. ( 1 ... M ) ) |
| 397 |
|
fnfvima |
|- ( ( ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) /\ ( 1 ... M ) C_ ( 1 ... N ) /\ M e. ( 1 ... M ) ) -> ( ( 2nd ` ( 1st ` T ) ) ` M ) e. ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) ) |
| 398 |
109 394 396 397
|
syl3anc |
|- ( ph -> ( ( 2nd ` ( 1st ` T ) ) ` M ) e. ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) ) |
| 399 |
|
fvun1 |
|- ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) /\ ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) = (/) /\ ( ( 2nd ` ( 1st ` T ) ) ` M ) e. ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) ) |
| 400 |
194 123 399
|
mp3an12 |
|- ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) = (/) /\ ( ( 2nd ` ( 1st ` T ) ) ` M ) e. ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) ) |
| 401 |
202 398 400
|
syl2anc |
|- ( ph -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) ) |
| 402 |
34
|
fvconst2 |
|- ( ( ( 2nd ` ( 1st ` T ) ) ` M ) e. ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = 1 ) |
| 403 |
398 402
|
syl |
|- ( ph -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = 1 ) |
| 404 |
401 403
|
eqtrd |
|- ( ph -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = 1 ) |
| 405 |
404
|
adantr |
|- ( ( ph /\ ( ( 2nd ` ( 1st ` T ) ) ` M ) e. ( 1 ... N ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = 1 ) |
| 406 |
32 210 372 372 102 373 405
|
ofval |
|- ( ( ph /\ ( ( 2nd ` ( 1st ` T ) ) ` M ) e. ( 1 ... N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) + 1 ) ) |
| 407 |
28 406
|
mpdan |
|- ( ph -> ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) + 1 ) ) |
| 408 |
392 407
|
eqtrd |
|- ( ph -> ( ( F ` ( M - 1 ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) + 1 ) ) |
| 409 |
370 391 408
|
3netr4d |
|- ( ph -> ( ( F ` ( M - 2 ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) =/= ( ( F ` ( M - 1 ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) ) |
| 410 |
|
fveq2 |
|- ( n = ( ( 2nd ` ( 1st ` T ) ) ` M ) -> ( ( F ` ( M - 2 ) ) ` n ) = ( ( F ` ( M - 2 ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) ) |
| 411 |
|
fveq2 |
|- ( n = ( ( 2nd ` ( 1st ` T ) ) ` M ) -> ( ( F ` ( M - 1 ) ) ` n ) = ( ( F ` ( M - 1 ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) ) |
| 412 |
410 411
|
neeq12d |
|- ( n = ( ( 2nd ` ( 1st ` T ) ) ` M ) -> ( ( ( F ` ( M - 2 ) ) ` n ) =/= ( ( F ` ( M - 1 ) ) ` n ) <-> ( ( F ` ( M - 2 ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) =/= ( ( F ` ( M - 1 ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) ) ) |
| 413 |
409 412
|
syl5ibrcom |
|- ( ph -> ( n = ( ( 2nd ` ( 1st ` T ) ) ` M ) -> ( ( F ` ( M - 2 ) ) ` n ) =/= ( ( F ` ( M - 1 ) ) ` n ) ) ) |
| 414 |
413
|
adantr |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( n = ( ( 2nd ` ( 1st ` T ) ) ` M ) -> ( ( F ` ( M - 2 ) ) ` n ) =/= ( ( F ` ( M - 1 ) ) ` n ) ) ) |
| 415 |
362 414
|
impbid |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( ( F ` ( M - 2 ) ) ` n ) =/= ( ( F ` ( M - 1 ) ) ` n ) <-> n = ( ( 2nd ` ( 1st ` T ) ) ` M ) ) ) |
| 416 |
28 415
|
riota5 |
|- ( ph -> ( iota_ n e. ( 1 ... N ) ( ( F ` ( M - 2 ) ) ` n ) =/= ( ( F ` ( M - 1 ) ) ` n ) ) = ( ( 2nd ` ( 1st ` T ) ) ` M ) ) |