Metamath Proof Explorer


Theorem poimirlem7

Description: Lemma for poimir , similar to poimirlem6 , but for vertices after the opposite vertex. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0
|- ( ph -> N e. NN )
poimirlem22.s
|- S = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) }
poimirlem9.1
|- ( ph -> T e. S )
poimirlem9.2
|- ( ph -> ( 2nd ` T ) e. ( 1 ... ( N - 1 ) ) )
poimirlem7.3
|- ( ph -> M e. ( ( ( ( 2nd ` T ) + 1 ) + 1 ) ... N ) )
Assertion poimirlem7
|- ( ph -> ( iota_ n e. ( 1 ... N ) ( ( F ` ( M - 2 ) ) ` n ) =/= ( ( F ` ( M - 1 ) ) ` n ) ) = ( ( 2nd ` ( 1st ` T ) ) ` M ) )

Proof

Step Hyp Ref Expression
1 poimir.0
 |-  ( ph -> N e. NN )
2 poimirlem22.s
 |-  S = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) }
3 poimirlem9.1
 |-  ( ph -> T e. S )
4 poimirlem9.2
 |-  ( ph -> ( 2nd ` T ) e. ( 1 ... ( N - 1 ) ) )
5 poimirlem7.3
 |-  ( ph -> M e. ( ( ( ( 2nd ` T ) + 1 ) + 1 ) ... N ) )
6 elrabi
 |-  ( T e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) )
7 6 2 eleq2s
 |-  ( T e. S -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) )
8 3 7 syl
 |-  ( ph -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) )
9 xp1st
 |-  ( T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
10 8 9 syl
 |-  ( ph -> ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
11 xp2nd
 |-  ( ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
12 10 11 syl
 |-  ( ph -> ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
13 fvex
 |-  ( 2nd ` ( 1st ` T ) ) e. _V
14 f1oeq1
 |-  ( f = ( 2nd ` ( 1st ` T ) ) -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) )
15 13 14 elab
 |-  ( ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
16 12 15 sylib
 |-  ( ph -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
17 f1of
 |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) --> ( 1 ... N ) )
18 16 17 syl
 |-  ( ph -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) --> ( 1 ... N ) )
19 elfznn
 |-  ( ( 2nd ` T ) e. ( 1 ... ( N - 1 ) ) -> ( 2nd ` T ) e. NN )
20 4 19 syl
 |-  ( ph -> ( 2nd ` T ) e. NN )
21 20 peano2nnd
 |-  ( ph -> ( ( 2nd ` T ) + 1 ) e. NN )
22 21 peano2nnd
 |-  ( ph -> ( ( ( 2nd ` T ) + 1 ) + 1 ) e. NN )
23 nnuz
 |-  NN = ( ZZ>= ` 1 )
24 22 23 eleqtrdi
 |-  ( ph -> ( ( ( 2nd ` T ) + 1 ) + 1 ) e. ( ZZ>= ` 1 ) )
25 fzss1
 |-  ( ( ( ( 2nd ` T ) + 1 ) + 1 ) e. ( ZZ>= ` 1 ) -> ( ( ( ( 2nd ` T ) + 1 ) + 1 ) ... N ) C_ ( 1 ... N ) )
26 24 25 syl
 |-  ( ph -> ( ( ( ( 2nd ` T ) + 1 ) + 1 ) ... N ) C_ ( 1 ... N ) )
27 26 5 sseldd
 |-  ( ph -> M e. ( 1 ... N ) )
28 18 27 ffvelrnd
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) ` M ) e. ( 1 ... N ) )
29 xp1st
 |-  ( ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) )
30 10 29 syl
 |-  ( ph -> ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) )
31 elmapfn
 |-  ( ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) -> ( 1st ` ( 1st ` T ) ) Fn ( 1 ... N ) )
32 30 31 syl
 |-  ( ph -> ( 1st ` ( 1st ` T ) ) Fn ( 1 ... N ) )
33 32 adantr
 |-  ( ( ph /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) ) -> ( 1st ` ( 1st ` T ) ) Fn ( 1 ... N ) )
34 1ex
 |-  1 e. _V
35 fnconstg
 |-  ( 1 e. _V -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) )
36 34 35 ax-mp
 |-  ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) )
37 c0ex
 |-  0 e. _V
38 fnconstg
 |-  ( 0 e. _V -> ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) )
39 37 38 ax-mp
 |-  ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) )
40 36 39 pm3.2i
 |-  ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) )
41 dff1o3
 |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) /\ Fun `' ( 2nd ` ( 1st ` T ) ) ) )
42 41 simprbi
 |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> Fun `' ( 2nd ` ( 1st ` T ) ) )
43 16 42 syl
 |-  ( ph -> Fun `' ( 2nd ` ( 1st ` T ) ) )
44 imain
 |-  ( Fun `' ( 2nd ` ( 1st ` T ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( M - 1 ) ) i^i ( M ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) ) )
45 43 44 syl
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( M - 1 ) ) i^i ( M ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) ) )
46 elfzelz
 |-  ( M e. ( ( ( ( 2nd ` T ) + 1 ) + 1 ) ... N ) -> M e. ZZ )
47 5 46 syl
 |-  ( ph -> M e. ZZ )
48 47 zred
 |-  ( ph -> M e. RR )
49 48 ltm1d
 |-  ( ph -> ( M - 1 ) < M )
50 fzdisj
 |-  ( ( M - 1 ) < M -> ( ( 1 ... ( M - 1 ) ) i^i ( M ... N ) ) = (/) )
51 49 50 syl
 |-  ( ph -> ( ( 1 ... ( M - 1 ) ) i^i ( M ... N ) ) = (/) )
52 51 imaeq2d
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( M - 1 ) ) i^i ( M ... N ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " (/) ) )
53 ima0
 |-  ( ( 2nd ` ( 1st ` T ) ) " (/) ) = (/)
54 52 53 eqtrdi
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( M - 1 ) ) i^i ( M ... N ) ) ) = (/) )
55 45 54 eqtr3d
 |-  ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) ) = (/) )
56 fnun
 |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) ) = (/) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) ) )
57 40 55 56 sylancr
 |-  ( ph -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) ) )
58 47 zcnd
 |-  ( ph -> M e. CC )
59 npcan1
 |-  ( M e. CC -> ( ( M - 1 ) + 1 ) = M )
60 58 59 syl
 |-  ( ph -> ( ( M - 1 ) + 1 ) = M )
61 1red
 |-  ( ph -> 1 e. RR )
62 22 nnred
 |-  ( ph -> ( ( ( 2nd ` T ) + 1 ) + 1 ) e. RR )
63 21 nnred
 |-  ( ph -> ( ( 2nd ` T ) + 1 ) e. RR )
64 21 nnge1d
 |-  ( ph -> 1 <_ ( ( 2nd ` T ) + 1 ) )
65 63 ltp1d
 |-  ( ph -> ( ( 2nd ` T ) + 1 ) < ( ( ( 2nd ` T ) + 1 ) + 1 ) )
66 61 63 62 64 65 lelttrd
 |-  ( ph -> 1 < ( ( ( 2nd ` T ) + 1 ) + 1 ) )
67 elfzle1
 |-  ( M e. ( ( ( ( 2nd ` T ) + 1 ) + 1 ) ... N ) -> ( ( ( 2nd ` T ) + 1 ) + 1 ) <_ M )
68 5 67 syl
 |-  ( ph -> ( ( ( 2nd ` T ) + 1 ) + 1 ) <_ M )
69 61 62 48 66 68 ltletrd
 |-  ( ph -> 1 < M )
70 61 48 69 ltled
 |-  ( ph -> 1 <_ M )
71 elnnz1
 |-  ( M e. NN <-> ( M e. ZZ /\ 1 <_ M ) )
72 47 70 71 sylanbrc
 |-  ( ph -> M e. NN )
73 72 23 eleqtrdi
 |-  ( ph -> M e. ( ZZ>= ` 1 ) )
74 60 73 eqeltrd
 |-  ( ph -> ( ( M - 1 ) + 1 ) e. ( ZZ>= ` 1 ) )
75 peano2zm
 |-  ( M e. ZZ -> ( M - 1 ) e. ZZ )
76 47 75 syl
 |-  ( ph -> ( M - 1 ) e. ZZ )
77 uzid
 |-  ( ( M - 1 ) e. ZZ -> ( M - 1 ) e. ( ZZ>= ` ( M - 1 ) ) )
78 peano2uz
 |-  ( ( M - 1 ) e. ( ZZ>= ` ( M - 1 ) ) -> ( ( M - 1 ) + 1 ) e. ( ZZ>= ` ( M - 1 ) ) )
79 76 77 78 3syl
 |-  ( ph -> ( ( M - 1 ) + 1 ) e. ( ZZ>= ` ( M - 1 ) ) )
80 60 79 eqeltrrd
 |-  ( ph -> M e. ( ZZ>= ` ( M - 1 ) ) )
81 uzss
 |-  ( M e. ( ZZ>= ` ( M - 1 ) ) -> ( ZZ>= ` M ) C_ ( ZZ>= ` ( M - 1 ) ) )
82 80 81 syl
 |-  ( ph -> ( ZZ>= ` M ) C_ ( ZZ>= ` ( M - 1 ) ) )
83 elfzuz3
 |-  ( M e. ( ( ( ( 2nd ` T ) + 1 ) + 1 ) ... N ) -> N e. ( ZZ>= ` M ) )
84 5 83 syl
 |-  ( ph -> N e. ( ZZ>= ` M ) )
85 82 84 sseldd
 |-  ( ph -> N e. ( ZZ>= ` ( M - 1 ) ) )
86 fzsplit2
 |-  ( ( ( ( M - 1 ) + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` ( M - 1 ) ) ) -> ( 1 ... N ) = ( ( 1 ... ( M - 1 ) ) u. ( ( ( M - 1 ) + 1 ) ... N ) ) )
87 74 85 86 syl2anc
 |-  ( ph -> ( 1 ... N ) = ( ( 1 ... ( M - 1 ) ) u. ( ( ( M - 1 ) + 1 ) ... N ) ) )
88 60 oveq1d
 |-  ( ph -> ( ( ( M - 1 ) + 1 ) ... N ) = ( M ... N ) )
89 88 uneq2d
 |-  ( ph -> ( ( 1 ... ( M - 1 ) ) u. ( ( ( M - 1 ) + 1 ) ... N ) ) = ( ( 1 ... ( M - 1 ) ) u. ( M ... N ) ) )
90 87 89 eqtrd
 |-  ( ph -> ( 1 ... N ) = ( ( 1 ... ( M - 1 ) ) u. ( M ... N ) ) )
91 90 imaeq2d
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( M - 1 ) ) u. ( M ... N ) ) ) )
92 imaundi
 |-  ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( M - 1 ) ) u. ( M ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) )
93 91 92 eqtrdi
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) ) )
94 f1ofo
 |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) )
95 16 94 syl
 |-  ( ph -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) )
96 foima
 |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( 1 ... N ) )
97 95 96 syl
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( 1 ... N ) )
98 93 97 eqtr3d
 |-  ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) ) = ( 1 ... N ) )
99 98 fneq2d
 |-  ( ph -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) ) <-> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) )
100 57 99 mpbid
 |-  ( ph -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) )
101 100 adantr
 |-  ( ( ph /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) )
102 ovexd
 |-  ( ( ph /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) ) -> ( 1 ... N ) e. _V )
103 inidm
 |-  ( ( 1 ... N ) i^i ( 1 ... N ) ) = ( 1 ... N )
104 eqidd
 |-  ( ( ( ph /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) ) /\ n e. ( 1 ... N ) ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) = ( ( 1st ` ( 1st ` T ) ) ` n ) )
105 imaundi
 |-  ( ( 2nd ` ( 1st ` T ) ) " ( { M } u. ( ( M + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " { M } ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) )
106 fzpred
 |-  ( N e. ( ZZ>= ` M ) -> ( M ... N ) = ( { M } u. ( ( M + 1 ) ... N ) ) )
107 84 106 syl
 |-  ( ph -> ( M ... N ) = ( { M } u. ( ( M + 1 ) ... N ) ) )
108 107 imaeq2d
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( { M } u. ( ( M + 1 ) ... N ) ) ) )
109 f1ofn
 |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) )
110 16 109 syl
 |-  ( ph -> ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) )
111 fnsnfv
 |-  ( ( ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) /\ M e. ( 1 ... N ) ) -> { ( ( 2nd ` ( 1st ` T ) ) ` M ) } = ( ( 2nd ` ( 1st ` T ) ) " { M } ) )
112 110 27 111 syl2anc
 |-  ( ph -> { ( ( 2nd ` ( 1st ` T ) ) ` M ) } = ( ( 2nd ` ( 1st ` T ) ) " { M } ) )
113 112 uneq1d
 |-  ( ph -> ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } u. ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " { M } ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) )
114 105 108 113 3eqtr4a
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) = ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } u. ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) )
115 114 xpeq1d
 |-  ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) = ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } u. ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) X. { 0 } ) )
116 xpundir
 |-  ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } u. ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) X. { 0 } ) = ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 0 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) )
117 115 116 eqtrdi
 |-  ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) = ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 0 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) )
118 117 uneq2d
 |-  ( ph -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 0 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) )
119 un12
 |-  ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 0 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 0 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) )
120 118 119 eqtrdi
 |-  ( ph -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) = ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 0 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) )
121 120 fveq1d
 |-  ( ph -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 0 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) )
122 121 ad2antrr
 |-  ( ( ( ph /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 0 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) )
123 fnconstg
 |-  ( 0 e. _V -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) )
124 37 123 ax-mp
 |-  ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) )
125 36 124 pm3.2i
 |-  ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) )
126 imain
 |-  ( Fun `' ( 2nd ` ( 1st ` T ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( M - 1 ) ) i^i ( ( M + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) )
127 43 126 syl
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( M - 1 ) ) i^i ( ( M + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) )
128 76 zred
 |-  ( ph -> ( M - 1 ) e. RR )
129 peano2re
 |-  ( M e. RR -> ( M + 1 ) e. RR )
130 48 129 syl
 |-  ( ph -> ( M + 1 ) e. RR )
131 48 ltp1d
 |-  ( ph -> M < ( M + 1 ) )
132 128 48 130 49 131 lttrd
 |-  ( ph -> ( M - 1 ) < ( M + 1 ) )
133 fzdisj
 |-  ( ( M - 1 ) < ( M + 1 ) -> ( ( 1 ... ( M - 1 ) ) i^i ( ( M + 1 ) ... N ) ) = (/) )
134 132 133 syl
 |-  ( ph -> ( ( 1 ... ( M - 1 ) ) i^i ( ( M + 1 ) ... N ) ) = (/) )
135 134 imaeq2d
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( M - 1 ) ) i^i ( ( M + 1 ) ... N ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " (/) ) )
136 135 53 eqtrdi
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( M - 1 ) ) i^i ( ( M + 1 ) ... N ) ) ) = (/) )
137 127 136 eqtr3d
 |-  ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) = (/) )
138 fnun
 |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) = (/) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) )
139 125 137 138 sylancr
 |-  ( ph -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) )
140 imaundi
 |-  ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( M - 1 ) ) u. ( ( M + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) )
141 imadif
 |-  ( Fun `' ( 2nd ` ( 1st ` T ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... N ) \ { M } ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) \ ( ( 2nd ` ( 1st ` T ) ) " { M } ) ) )
142 43 141 syl
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... N ) \ { M } ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) \ ( ( 2nd ` ( 1st ` T ) ) " { M } ) ) )
143 fzsplit
 |-  ( M e. ( 1 ... N ) -> ( 1 ... N ) = ( ( 1 ... M ) u. ( ( M + 1 ) ... N ) ) )
144 27 143 syl
 |-  ( ph -> ( 1 ... N ) = ( ( 1 ... M ) u. ( ( M + 1 ) ... N ) ) )
145 144 difeq1d
 |-  ( ph -> ( ( 1 ... N ) \ { M } ) = ( ( ( 1 ... M ) u. ( ( M + 1 ) ... N ) ) \ { M } ) )
146 difundir
 |-  ( ( ( 1 ... M ) u. ( ( M + 1 ) ... N ) ) \ { M } ) = ( ( ( 1 ... M ) \ { M } ) u. ( ( ( M + 1 ) ... N ) \ { M } ) )
147 fzsplit2
 |-  ( ( ( ( M - 1 ) + 1 ) e. ( ZZ>= ` 1 ) /\ M e. ( ZZ>= ` ( M - 1 ) ) ) -> ( 1 ... M ) = ( ( 1 ... ( M - 1 ) ) u. ( ( ( M - 1 ) + 1 ) ... M ) ) )
148 74 80 147 syl2anc
 |-  ( ph -> ( 1 ... M ) = ( ( 1 ... ( M - 1 ) ) u. ( ( ( M - 1 ) + 1 ) ... M ) ) )
149 60 oveq1d
 |-  ( ph -> ( ( ( M - 1 ) + 1 ) ... M ) = ( M ... M ) )
150 fzsn
 |-  ( M e. ZZ -> ( M ... M ) = { M } )
151 47 150 syl
 |-  ( ph -> ( M ... M ) = { M } )
152 149 151 eqtrd
 |-  ( ph -> ( ( ( M - 1 ) + 1 ) ... M ) = { M } )
153 152 uneq2d
 |-  ( ph -> ( ( 1 ... ( M - 1 ) ) u. ( ( ( M - 1 ) + 1 ) ... M ) ) = ( ( 1 ... ( M - 1 ) ) u. { M } ) )
154 148 153 eqtrd
 |-  ( ph -> ( 1 ... M ) = ( ( 1 ... ( M - 1 ) ) u. { M } ) )
155 154 difeq1d
 |-  ( ph -> ( ( 1 ... M ) \ { M } ) = ( ( ( 1 ... ( M - 1 ) ) u. { M } ) \ { M } ) )
156 difun2
 |-  ( ( ( 1 ... ( M - 1 ) ) u. { M } ) \ { M } ) = ( ( 1 ... ( M - 1 ) ) \ { M } )
157 128 48 ltnled
 |-  ( ph -> ( ( M - 1 ) < M <-> -. M <_ ( M - 1 ) ) )
158 49 157 mpbid
 |-  ( ph -> -. M <_ ( M - 1 ) )
159 elfzle2
 |-  ( M e. ( 1 ... ( M - 1 ) ) -> M <_ ( M - 1 ) )
160 158 159 nsyl
 |-  ( ph -> -. M e. ( 1 ... ( M - 1 ) ) )
161 difsn
 |-  ( -. M e. ( 1 ... ( M - 1 ) ) -> ( ( 1 ... ( M - 1 ) ) \ { M } ) = ( 1 ... ( M - 1 ) ) )
162 160 161 syl
 |-  ( ph -> ( ( 1 ... ( M - 1 ) ) \ { M } ) = ( 1 ... ( M - 1 ) ) )
163 156 162 syl5eq
 |-  ( ph -> ( ( ( 1 ... ( M - 1 ) ) u. { M } ) \ { M } ) = ( 1 ... ( M - 1 ) ) )
164 155 163 eqtrd
 |-  ( ph -> ( ( 1 ... M ) \ { M } ) = ( 1 ... ( M - 1 ) ) )
165 48 130 ltnled
 |-  ( ph -> ( M < ( M + 1 ) <-> -. ( M + 1 ) <_ M ) )
166 131 165 mpbid
 |-  ( ph -> -. ( M + 1 ) <_ M )
167 elfzle1
 |-  ( M e. ( ( M + 1 ) ... N ) -> ( M + 1 ) <_ M )
168 166 167 nsyl
 |-  ( ph -> -. M e. ( ( M + 1 ) ... N ) )
169 difsn
 |-  ( -. M e. ( ( M + 1 ) ... N ) -> ( ( ( M + 1 ) ... N ) \ { M } ) = ( ( M + 1 ) ... N ) )
170 168 169 syl
 |-  ( ph -> ( ( ( M + 1 ) ... N ) \ { M } ) = ( ( M + 1 ) ... N ) )
171 164 170 uneq12d
 |-  ( ph -> ( ( ( 1 ... M ) \ { M } ) u. ( ( ( M + 1 ) ... N ) \ { M } ) ) = ( ( 1 ... ( M - 1 ) ) u. ( ( M + 1 ) ... N ) ) )
172 146 171 syl5eq
 |-  ( ph -> ( ( ( 1 ... M ) u. ( ( M + 1 ) ... N ) ) \ { M } ) = ( ( 1 ... ( M - 1 ) ) u. ( ( M + 1 ) ... N ) ) )
173 145 172 eqtrd
 |-  ( ph -> ( ( 1 ... N ) \ { M } ) = ( ( 1 ... ( M - 1 ) ) u. ( ( M + 1 ) ... N ) ) )
174 173 imaeq2d
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... N ) \ { M } ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( M - 1 ) ) u. ( ( M + 1 ) ... N ) ) ) )
175 112 eqcomd
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " { M } ) = { ( ( 2nd ` ( 1st ` T ) ) ` M ) } )
176 97 175 difeq12d
 |-  ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) \ ( ( 2nd ` ( 1st ` T ) ) " { M } ) ) = ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) )
177 142 174 176 3eqtr3d
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( M - 1 ) ) u. ( ( M + 1 ) ... N ) ) ) = ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) )
178 140 177 eqtr3id
 |-  ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) = ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) )
179 178 fneq2d
 |-  ( ph -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) <-> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) ) )
180 139 179 mpbid
 |-  ( ph -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) )
181 eldifsn
 |-  ( n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) <-> ( n e. ( 1 ... N ) /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) ) )
182 181 biimpri
 |-  ( ( n e. ( 1 ... N ) /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) ) -> n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) )
183 182 ancoms
 |-  ( ( n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) /\ n e. ( 1 ... N ) ) -> n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) )
184 disjdif
 |-  ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } i^i ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) ) = (/)
185 fnconstg
 |-  ( 0 e. _V -> ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 0 } ) Fn { ( ( 2nd ` ( 1st ` T ) ) ` M ) } )
186 37 185 ax-mp
 |-  ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 0 } ) Fn { ( ( 2nd ` ( 1st ` T ) ) ` M ) }
187 fvun2
 |-  ( ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 0 } ) Fn { ( ( 2nd ` ( 1st ` T ) ) ` M ) } /\ ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) /\ ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } i^i ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) ) = (/) /\ n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) ) ) -> ( ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 0 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ` n ) )
188 186 187 mp3an1
 |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) /\ ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } i^i ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) ) = (/) /\ n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) ) ) -> ( ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 0 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ` n ) )
189 184 188 mpanr1
 |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) /\ n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) ) -> ( ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 0 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ` n ) )
190 180 183 189 syl2an
 |-  ( ( ph /\ ( n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) /\ n e. ( 1 ... N ) ) ) -> ( ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 0 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ` n ) )
191 190 anassrs
 |-  ( ( ( ph /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 0 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ` n ) )
192 122 191 eqtrd
 |-  ( ( ( ph /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ` n ) )
193 33 101 102 102 103 104 192 ofval
 |-  ( ( ( ph /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( ( 1st ` ( 1st ` T ) ) ` n ) + ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) )
194 fnconstg
 |-  ( 1 e. _V -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) )
195 34 194 ax-mp
 |-  ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) )
196 195 124 pm3.2i
 |-  ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) )
197 imain
 |-  ( Fun `' ( 2nd ` ( 1st ` T ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... M ) i^i ( ( M + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) )
198 43 197 syl
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... M ) i^i ( ( M + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) )
199 fzdisj
 |-  ( M < ( M + 1 ) -> ( ( 1 ... M ) i^i ( ( M + 1 ) ... N ) ) = (/) )
200 131 199 syl
 |-  ( ph -> ( ( 1 ... M ) i^i ( ( M + 1 ) ... N ) ) = (/) )
201 200 imaeq2d
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... M ) i^i ( ( M + 1 ) ... N ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " (/) ) )
202 201 53 eqtrdi
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... M ) i^i ( ( M + 1 ) ... N ) ) ) = (/) )
203 198 202 eqtr3d
 |-  ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) = (/) )
204 fnun
 |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) = (/) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) )
205 196 203 204 sylancr
 |-  ( ph -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) )
206 144 imaeq2d
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... M ) u. ( ( M + 1 ) ... N ) ) ) )
207 imaundi
 |-  ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... M ) u. ( ( M + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) )
208 206 207 eqtrdi
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) )
209 208 97 eqtr3d
 |-  ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) = ( 1 ... N ) )
210 209 fneq2d
 |-  ( ph -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) <-> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) )
211 205 210 mpbid
 |-  ( ph -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) )
212 211 adantr
 |-  ( ( ph /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) )
213 imaundi
 |-  ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( M - 1 ) ) u. { M } ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " { M } ) )
214 154 imaeq2d
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( M - 1 ) ) u. { M } ) ) )
215 112 uneq2d
 |-  ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) u. { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " { M } ) ) )
216 213 214 215 3eqtr4a
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) u. { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) )
217 216 xpeq1d
 |-  ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) u. { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) X. { 1 } ) )
218 xpundir
 |-  ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) u. { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) X. { 1 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 1 } ) )
219 217 218 eqtrdi
 |-  ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 1 } ) ) )
220 219 uneq1d
 |-  ( ph -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 1 } ) ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) )
221 un23
 |-  ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 1 } ) ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 1 } ) )
222 221 equncomi
 |-  ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 1 } ) ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) = ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) )
223 220 222 eqtrdi
 |-  ( ph -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) = ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) )
224 223 fveq1d
 |-  ( ph -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) )
225 224 ad2antrr
 |-  ( ( ( ph /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) )
226 fnconstg
 |-  ( 1 e. _V -> ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 1 } ) Fn { ( ( 2nd ` ( 1st ` T ) ) ` M ) } )
227 34 226 ax-mp
 |-  ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 1 } ) Fn { ( ( 2nd ` ( 1st ` T ) ) ` M ) }
228 fvun2
 |-  ( ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 1 } ) Fn { ( ( 2nd ` ( 1st ` T ) ) ` M ) } /\ ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) /\ ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } i^i ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) ) = (/) /\ n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) ) ) -> ( ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ` n ) )
229 227 228 mp3an1
 |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) /\ ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } i^i ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) ) = (/) /\ n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) ) ) -> ( ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ` n ) )
230 184 229 mpanr1
 |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) /\ n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` M ) } ) ) -> ( ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ` n ) )
231 180 183 230 syl2an
 |-  ( ( ph /\ ( n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) /\ n e. ( 1 ... N ) ) ) -> ( ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ` n ) )
232 231 anassrs
 |-  ( ( ( ph /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( { ( ( 2nd ` ( 1st ` T ) ) ` M ) } X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ` n ) )
233 225 232 eqtrd
 |-  ( ( ( ph /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ` n ) )
234 33 212 102 102 103 104 233 ofval
 |-  ( ( ( ph /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( ( 1st ` ( 1st ` T ) ) ` n ) + ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) )
235 193 234 eqtr4d
 |-  ( ( ( ph /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) )
236 235 an32s
 |-  ( ( ( ph /\ n e. ( 1 ... N ) ) /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) ) -> ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) )
237 236 anasss
 |-  ( ( ph /\ ( n e. ( 1 ... N ) /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) ) ) -> ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) )
238 fveq2
 |-  ( t = T -> ( 2nd ` t ) = ( 2nd ` T ) )
239 238 breq2d
 |-  ( t = T -> ( y < ( 2nd ` t ) <-> y < ( 2nd ` T ) ) )
240 239 ifbid
 |-  ( t = T -> if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) = if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) )
241 240 csbeq1d
 |-  ( t = T -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
242 2fveq3
 |-  ( t = T -> ( 1st ` ( 1st ` t ) ) = ( 1st ` ( 1st ` T ) ) )
243 2fveq3
 |-  ( t = T -> ( 2nd ` ( 1st ` t ) ) = ( 2nd ` ( 1st ` T ) ) )
244 243 imaeq1d
 |-  ( t = T -> ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) )
245 244 xpeq1d
 |-  ( t = T -> ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) )
246 243 imaeq1d
 |-  ( t = T -> ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) )
247 246 xpeq1d
 |-  ( t = T -> ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) )
248 245 247 uneq12d
 |-  ( t = T -> ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) )
249 242 248 oveq12d
 |-  ( t = T -> ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
250 249 csbeq2dv
 |-  ( t = T -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
251 241 250 eqtrd
 |-  ( t = T -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
252 251 mpteq2dv
 |-  ( t = T -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) )
253 252 eqeq2d
 |-  ( t = T -> ( F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) )
254 253 2 elrab2
 |-  ( T e. S <-> ( T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) )
255 254 simprbi
 |-  ( T e. S -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) )
256 3 255 syl
 |-  ( ph -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) )
257 breq1
 |-  ( y = ( M - 2 ) -> ( y < ( 2nd ` T ) <-> ( M - 2 ) < ( 2nd ` T ) ) )
258 257 adantl
 |-  ( ( ph /\ y = ( M - 2 ) ) -> ( y < ( 2nd ` T ) <-> ( M - 2 ) < ( 2nd ` T ) ) )
259 oveq1
 |-  ( y = ( M - 2 ) -> ( y + 1 ) = ( ( M - 2 ) + 1 ) )
260 sub1m1
 |-  ( M e. CC -> ( ( M - 1 ) - 1 ) = ( M - 2 ) )
261 58 260 syl
 |-  ( ph -> ( ( M - 1 ) - 1 ) = ( M - 2 ) )
262 261 oveq1d
 |-  ( ph -> ( ( ( M - 1 ) - 1 ) + 1 ) = ( ( M - 2 ) + 1 ) )
263 76 zcnd
 |-  ( ph -> ( M - 1 ) e. CC )
264 npcan1
 |-  ( ( M - 1 ) e. CC -> ( ( ( M - 1 ) - 1 ) + 1 ) = ( M - 1 ) )
265 263 264 syl
 |-  ( ph -> ( ( ( M - 1 ) - 1 ) + 1 ) = ( M - 1 ) )
266 262 265 eqtr3d
 |-  ( ph -> ( ( M - 2 ) + 1 ) = ( M - 1 ) )
267 259 266 sylan9eqr
 |-  ( ( ph /\ y = ( M - 2 ) ) -> ( y + 1 ) = ( M - 1 ) )
268 258 267 ifbieq2d
 |-  ( ( ph /\ y = ( M - 2 ) ) -> if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) = if ( ( M - 2 ) < ( 2nd ` T ) , y , ( M - 1 ) ) )
269 20 nncnd
 |-  ( ph -> ( 2nd ` T ) e. CC )
270 add1p1
 |-  ( ( 2nd ` T ) e. CC -> ( ( ( 2nd ` T ) + 1 ) + 1 ) = ( ( 2nd ` T ) + 2 ) )
271 269 270 syl
 |-  ( ph -> ( ( ( 2nd ` T ) + 1 ) + 1 ) = ( ( 2nd ` T ) + 2 ) )
272 271 68 eqbrtrrd
 |-  ( ph -> ( ( 2nd ` T ) + 2 ) <_ M )
273 20 nnred
 |-  ( ph -> ( 2nd ` T ) e. RR )
274 2re
 |-  2 e. RR
275 leaddsub
 |-  ( ( ( 2nd ` T ) e. RR /\ 2 e. RR /\ M e. RR ) -> ( ( ( 2nd ` T ) + 2 ) <_ M <-> ( 2nd ` T ) <_ ( M - 2 ) ) )
276 274 275 mp3an2
 |-  ( ( ( 2nd ` T ) e. RR /\ M e. RR ) -> ( ( ( 2nd ` T ) + 2 ) <_ M <-> ( 2nd ` T ) <_ ( M - 2 ) ) )
277 273 48 276 syl2anc
 |-  ( ph -> ( ( ( 2nd ` T ) + 2 ) <_ M <-> ( 2nd ` T ) <_ ( M - 2 ) ) )
278 61 48 posdifd
 |-  ( ph -> ( 1 < M <-> 0 < ( M - 1 ) ) )
279 69 278 mpbid
 |-  ( ph -> 0 < ( M - 1 ) )
280 elnnz
 |-  ( ( M - 1 ) e. NN <-> ( ( M - 1 ) e. ZZ /\ 0 < ( M - 1 ) ) )
281 76 279 280 sylanbrc
 |-  ( ph -> ( M - 1 ) e. NN )
282 nnm1nn0
 |-  ( ( M - 1 ) e. NN -> ( ( M - 1 ) - 1 ) e. NN0 )
283 281 282 syl
 |-  ( ph -> ( ( M - 1 ) - 1 ) e. NN0 )
284 261 283 eqeltrrd
 |-  ( ph -> ( M - 2 ) e. NN0 )
285 284 nn0red
 |-  ( ph -> ( M - 2 ) e. RR )
286 273 285 lenltd
 |-  ( ph -> ( ( 2nd ` T ) <_ ( M - 2 ) <-> -. ( M - 2 ) < ( 2nd ` T ) ) )
287 277 286 bitrd
 |-  ( ph -> ( ( ( 2nd ` T ) + 2 ) <_ M <-> -. ( M - 2 ) < ( 2nd ` T ) ) )
288 272 287 mpbid
 |-  ( ph -> -. ( M - 2 ) < ( 2nd ` T ) )
289 288 iffalsed
 |-  ( ph -> if ( ( M - 2 ) < ( 2nd ` T ) , y , ( M - 1 ) ) = ( M - 1 ) )
290 289 adantr
 |-  ( ( ph /\ y = ( M - 2 ) ) -> if ( ( M - 2 ) < ( 2nd ` T ) , y , ( M - 1 ) ) = ( M - 1 ) )
291 268 290 eqtrd
 |-  ( ( ph /\ y = ( M - 2 ) ) -> if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) = ( M - 1 ) )
292 291 csbeq1d
 |-  ( ( ph /\ y = ( M - 2 ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ ( M - 1 ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
293 oveq2
 |-  ( j = ( M - 1 ) -> ( 1 ... j ) = ( 1 ... ( M - 1 ) ) )
294 293 imaeq2d
 |-  ( j = ( M - 1 ) -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) )
295 294 xpeq1d
 |-  ( j = ( M - 1 ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) )
296 295 adantl
 |-  ( ( ph /\ j = ( M - 1 ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) )
297 oveq1
 |-  ( j = ( M - 1 ) -> ( j + 1 ) = ( ( M - 1 ) + 1 ) )
298 297 60 sylan9eqr
 |-  ( ( ph /\ j = ( M - 1 ) ) -> ( j + 1 ) = M )
299 298 oveq1d
 |-  ( ( ph /\ j = ( M - 1 ) ) -> ( ( j + 1 ) ... N ) = ( M ... N ) )
300 299 imaeq2d
 |-  ( ( ph /\ j = ( M - 1 ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) )
301 300 xpeq1d
 |-  ( ( ph /\ j = ( M - 1 ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) )
302 296 301 uneq12d
 |-  ( ( ph /\ j = ( M - 1 ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) )
303 302 oveq2d
 |-  ( ( ph /\ j = ( M - 1 ) ) -> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ) )
304 76 303 csbied
 |-  ( ph -> [_ ( M - 1 ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ) )
305 304 adantr
 |-  ( ( ph /\ y = ( M - 2 ) ) -> [_ ( M - 1 ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ) )
306 292 305 eqtrd
 |-  ( ( ph /\ y = ( M - 2 ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ) )
307 nnm1nn0
 |-  ( N e. NN -> ( N - 1 ) e. NN0 )
308 1 307 syl
 |-  ( ph -> ( N - 1 ) e. NN0 )
309 1 nnred
 |-  ( ph -> N e. RR )
310 48 lem1d
 |-  ( ph -> ( M - 1 ) <_ M )
311 elfzle2
 |-  ( M e. ( ( ( ( 2nd ` T ) + 1 ) + 1 ) ... N ) -> M <_ N )
312 5 311 syl
 |-  ( ph -> M <_ N )
313 128 48 309 310 312 letrd
 |-  ( ph -> ( M - 1 ) <_ N )
314 128 309 61 313 lesub1dd
 |-  ( ph -> ( ( M - 1 ) - 1 ) <_ ( N - 1 ) )
315 261 314 eqbrtrrd
 |-  ( ph -> ( M - 2 ) <_ ( N - 1 ) )
316 elfz2nn0
 |-  ( ( M - 2 ) e. ( 0 ... ( N - 1 ) ) <-> ( ( M - 2 ) e. NN0 /\ ( N - 1 ) e. NN0 /\ ( M - 2 ) <_ ( N - 1 ) ) )
317 284 308 315 316 syl3anbrc
 |-  ( ph -> ( M - 2 ) e. ( 0 ... ( N - 1 ) ) )
318 ovexd
 |-  ( ph -> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ) e. _V )
319 256 306 317 318 fvmptd
 |-  ( ph -> ( F ` ( M - 2 ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ) )
320 319 fveq1d
 |-  ( ph -> ( ( F ` ( M - 2 ) ) ` n ) = ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ) ` n ) )
321 320 adantr
 |-  ( ( ph /\ ( n e. ( 1 ... N ) /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) ) ) -> ( ( F ` ( M - 2 ) ) ` n ) = ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ) ` n ) )
322 breq1
 |-  ( y = ( M - 1 ) -> ( y < ( 2nd ` T ) <-> ( M - 1 ) < ( 2nd ` T ) ) )
323 322 adantl
 |-  ( ( ph /\ y = ( M - 1 ) ) -> ( y < ( 2nd ` T ) <-> ( M - 1 ) < ( 2nd ` T ) ) )
324 oveq1
 |-  ( y = ( M - 1 ) -> ( y + 1 ) = ( ( M - 1 ) + 1 ) )
325 324 60 sylan9eqr
 |-  ( ( ph /\ y = ( M - 1 ) ) -> ( y + 1 ) = M )
326 323 325 ifbieq2d
 |-  ( ( ph /\ y = ( M - 1 ) ) -> if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) = if ( ( M - 1 ) < ( 2nd ` T ) , y , M ) )
327 63 lep1d
 |-  ( ph -> ( ( 2nd ` T ) + 1 ) <_ ( ( ( 2nd ` T ) + 1 ) + 1 ) )
328 63 62 48 327 68 letrd
 |-  ( ph -> ( ( 2nd ` T ) + 1 ) <_ M )
329 1re
 |-  1 e. RR
330 leaddsub
 |-  ( ( ( 2nd ` T ) e. RR /\ 1 e. RR /\ M e. RR ) -> ( ( ( 2nd ` T ) + 1 ) <_ M <-> ( 2nd ` T ) <_ ( M - 1 ) ) )
331 329 330 mp3an2
 |-  ( ( ( 2nd ` T ) e. RR /\ M e. RR ) -> ( ( ( 2nd ` T ) + 1 ) <_ M <-> ( 2nd ` T ) <_ ( M - 1 ) ) )
332 273 48 331 syl2anc
 |-  ( ph -> ( ( ( 2nd ` T ) + 1 ) <_ M <-> ( 2nd ` T ) <_ ( M - 1 ) ) )
333 273 128 lenltd
 |-  ( ph -> ( ( 2nd ` T ) <_ ( M - 1 ) <-> -. ( M - 1 ) < ( 2nd ` T ) ) )
334 332 333 bitrd
 |-  ( ph -> ( ( ( 2nd ` T ) + 1 ) <_ M <-> -. ( M - 1 ) < ( 2nd ` T ) ) )
335 328 334 mpbid
 |-  ( ph -> -. ( M - 1 ) < ( 2nd ` T ) )
336 335 iffalsed
 |-  ( ph -> if ( ( M - 1 ) < ( 2nd ` T ) , y , M ) = M )
337 336 adantr
 |-  ( ( ph /\ y = ( M - 1 ) ) -> if ( ( M - 1 ) < ( 2nd ` T ) , y , M ) = M )
338 326 337 eqtrd
 |-  ( ( ph /\ y = ( M - 1 ) ) -> if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) = M )
339 338 csbeq1d
 |-  ( ( ph /\ y = ( M - 1 ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ M / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
340 oveq2
 |-  ( j = M -> ( 1 ... j ) = ( 1 ... M ) )
341 340 imaeq2d
 |-  ( j = M -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) )
342 341 xpeq1d
 |-  ( j = M -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) )
343 oveq1
 |-  ( j = M -> ( j + 1 ) = ( M + 1 ) )
344 343 oveq1d
 |-  ( j = M -> ( ( j + 1 ) ... N ) = ( ( M + 1 ) ... N ) )
345 344 imaeq2d
 |-  ( j = M -> ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) )
346 345 xpeq1d
 |-  ( j = M -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) )
347 342 346 uneq12d
 |-  ( j = M -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) )
348 347 oveq2d
 |-  ( j = M -> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) )
349 348 adantl
 |-  ( ( ph /\ j = M ) -> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) )
350 5 349 csbied
 |-  ( ph -> [_ M / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) )
351 350 adantr
 |-  ( ( ph /\ y = ( M - 1 ) ) -> [_ M / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) )
352 339 351 eqtrd
 |-  ( ( ph /\ y = ( M - 1 ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) )
353 281 nnnn0d
 |-  ( ph -> ( M - 1 ) e. NN0 )
354 48 309 61 312 lesub1dd
 |-  ( ph -> ( M - 1 ) <_ ( N - 1 ) )
355 elfz2nn0
 |-  ( ( M - 1 ) e. ( 0 ... ( N - 1 ) ) <-> ( ( M - 1 ) e. NN0 /\ ( N - 1 ) e. NN0 /\ ( M - 1 ) <_ ( N - 1 ) ) )
356 353 308 354 355 syl3anbrc
 |-  ( ph -> ( M - 1 ) e. ( 0 ... ( N - 1 ) ) )
357 ovexd
 |-  ( ph -> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) e. _V )
358 256 352 356 357 fvmptd
 |-  ( ph -> ( F ` ( M - 1 ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) )
359 358 fveq1d
 |-  ( ph -> ( ( F ` ( M - 1 ) ) ` n ) = ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) )
360 359 adantr
 |-  ( ( ph /\ ( n e. ( 1 ... N ) /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) ) ) -> ( ( F ` ( M - 1 ) ) ` n ) = ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) )
361 237 321 360 3eqtr4d
 |-  ( ( ph /\ ( n e. ( 1 ... N ) /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) ) ) -> ( ( F ` ( M - 2 ) ) ` n ) = ( ( F ` ( M - 1 ) ) ` n ) )
362 361 expr
 |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( n =/= ( ( 2nd ` ( 1st ` T ) ) ` M ) -> ( ( F ` ( M - 2 ) ) ` n ) = ( ( F ` ( M - 1 ) ) ` n ) ) )
363 362 necon1d
 |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( ( F ` ( M - 2 ) ) ` n ) =/= ( ( F ` ( M - 1 ) ) ` n ) -> n = ( ( 2nd ` ( 1st ` T ) ) ` M ) ) )
364 elmapi
 |-  ( ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) -> ( 1st ` ( 1st ` T ) ) : ( 1 ... N ) --> ( 0 ..^ K ) )
365 30 364 syl
 |-  ( ph -> ( 1st ` ( 1st ` T ) ) : ( 1 ... N ) --> ( 0 ..^ K ) )
366 365 28 ffvelrnd
 |-  ( ph -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) e. ( 0 ..^ K ) )
367 elfzonn0
 |-  ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) e. ( 0 ..^ K ) -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) e. NN0 )
368 366 367 syl
 |-  ( ph -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) e. NN0 )
369 368 nn0red
 |-  ( ph -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) e. RR )
370 369 ltp1d
 |-  ( ph -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) < ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) + 1 ) )
371 369 370 ltned
 |-  ( ph -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) =/= ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) + 1 ) )
372 319 fveq1d
 |-  ( ph -> ( ( F ` ( M - 2 ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) )
373 ovexd
 |-  ( ph -> ( 1 ... N ) e. _V )
374 eqidd
 |-  ( ( ph /\ ( ( 2nd ` ( 1st ` T ) ) ` M ) e. ( 1 ... N ) ) -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) )
375 fzss1
 |-  ( M e. ( ZZ>= ` 1 ) -> ( M ... N ) C_ ( 1 ... N ) )
376 73 375 syl
 |-  ( ph -> ( M ... N ) C_ ( 1 ... N ) )
377 eluzfz1
 |-  ( N e. ( ZZ>= ` M ) -> M e. ( M ... N ) )
378 84 377 syl
 |-  ( ph -> M e. ( M ... N ) )
379 fnfvima
 |-  ( ( ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) /\ ( M ... N ) C_ ( 1 ... N ) /\ M e. ( M ... N ) ) -> ( ( 2nd ` ( 1st ` T ) ) ` M ) e. ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) )
380 110 376 378 379 syl3anc
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) ` M ) e. ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) )
381 fvun2
 |-  ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) /\ ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) ) = (/) /\ ( ( 2nd ` ( 1st ` T ) ) ` M ) e. ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) )
382 36 39 381 mp3an12
 |-  ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) ) = (/) /\ ( ( 2nd ` ( 1st ` T ) ) ` M ) e. ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) )
383 55 380 382 syl2anc
 |-  ( ph -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) )
384 37 fvconst2
 |-  ( ( ( 2nd ` ( 1st ` T ) ) ` M ) e. ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = 0 )
385 380 384 syl
 |-  ( ph -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = 0 )
386 383 385 eqtrd
 |-  ( ph -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = 0 )
387 386 adantr
 |-  ( ( ph /\ ( ( 2nd ` ( 1st ` T ) ) ` M ) e. ( 1 ... N ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = 0 )
388 32 100 373 373 103 374 387 ofval
 |-  ( ( ph /\ ( ( 2nd ` ( 1st ` T ) ) ` M ) e. ( 1 ... N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) + 0 ) )
389 28 388 mpdan
 |-  ( ph -> ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( M ... N ) ) X. { 0 } ) ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) + 0 ) )
390 368 nn0cnd
 |-  ( ph -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) e. CC )
391 390 addid1d
 |-  ( ph -> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) + 0 ) = ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) )
392 372 389 391 3eqtrd
 |-  ( ph -> ( ( F ` ( M - 2 ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) )
393 358 fveq1d
 |-  ( ph -> ( ( F ` ( M - 1 ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) )
394 fzss2
 |-  ( N e. ( ZZ>= ` M ) -> ( 1 ... M ) C_ ( 1 ... N ) )
395 84 394 syl
 |-  ( ph -> ( 1 ... M ) C_ ( 1 ... N ) )
396 elfz1end
 |-  ( M e. NN <-> M e. ( 1 ... M ) )
397 72 396 sylib
 |-  ( ph -> M e. ( 1 ... M ) )
398 fnfvima
 |-  ( ( ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) /\ ( 1 ... M ) C_ ( 1 ... N ) /\ M e. ( 1 ... M ) ) -> ( ( 2nd ` ( 1st ` T ) ) ` M ) e. ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) )
399 110 395 397 398 syl3anc
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) ` M ) e. ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) )
400 fvun1
 |-  ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) /\ ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) = (/) /\ ( ( 2nd ` ( 1st ` T ) ) ` M ) e. ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) )
401 195 124 400 mp3an12
 |-  ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) ) = (/) /\ ( ( 2nd ` ( 1st ` T ) ) ` M ) e. ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) )
402 203 399 401 syl2anc
 |-  ( ph -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) )
403 34 fvconst2
 |-  ( ( ( 2nd ` ( 1st ` T ) ) ` M ) e. ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = 1 )
404 399 403 syl
 |-  ( ph -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = 1 )
405 402 404 eqtrd
 |-  ( ph -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = 1 )
406 405 adantr
 |-  ( ( ph /\ ( ( 2nd ` ( 1st ` T ) ) ` M ) e. ( 1 ... N ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = 1 )
407 32 211 373 373 103 374 406 ofval
 |-  ( ( ph /\ ( ( 2nd ` ( 1st ` T ) ) ` M ) e. ( 1 ... N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) + 1 ) )
408 28 407 mpdan
 |-  ( ph -> ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... M ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( M + 1 ) ... N ) ) X. { 0 } ) ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) + 1 ) )
409 393 408 eqtrd
 |-  ( ph -> ( ( F ` ( M - 1 ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) = ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) + 1 ) )
410 371 392 409 3netr4d
 |-  ( ph -> ( ( F ` ( M - 2 ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) =/= ( ( F ` ( M - 1 ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) )
411 fveq2
 |-  ( n = ( ( 2nd ` ( 1st ` T ) ) ` M ) -> ( ( F ` ( M - 2 ) ) ` n ) = ( ( F ` ( M - 2 ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) )
412 fveq2
 |-  ( n = ( ( 2nd ` ( 1st ` T ) ) ` M ) -> ( ( F ` ( M - 1 ) ) ` n ) = ( ( F ` ( M - 1 ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) )
413 411 412 neeq12d
 |-  ( n = ( ( 2nd ` ( 1st ` T ) ) ` M ) -> ( ( ( F ` ( M - 2 ) ) ` n ) =/= ( ( F ` ( M - 1 ) ) ` n ) <-> ( ( F ` ( M - 2 ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) =/= ( ( F ` ( M - 1 ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` M ) ) ) )
414 410 413 syl5ibrcom
 |-  ( ph -> ( n = ( ( 2nd ` ( 1st ` T ) ) ` M ) -> ( ( F ` ( M - 2 ) ) ` n ) =/= ( ( F ` ( M - 1 ) ) ` n ) ) )
415 414 adantr
 |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( n = ( ( 2nd ` ( 1st ` T ) ) ` M ) -> ( ( F ` ( M - 2 ) ) ` n ) =/= ( ( F ` ( M - 1 ) ) ` n ) ) )
416 363 415 impbid
 |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( ( F ` ( M - 2 ) ) ` n ) =/= ( ( F ` ( M - 1 ) ) ` n ) <-> n = ( ( 2nd ` ( 1st ` T ) ) ` M ) ) )
417 28 416 riota5
 |-  ( ph -> ( iota_ n e. ( 1 ... N ) ( ( F ` ( M - 2 ) ) ` n ) =/= ( ( F ` ( M - 1 ) ) ` n ) ) = ( ( 2nd ` ( 1st ` T ) ) ` M ) )