Metamath Proof Explorer


Theorem basellem4

Description: Lemma for basel . By basellem3 , the expression P ( ( cot x ) ^ 2 ) = sin ( N x ) / ( sin x ) ^ N goes to zero whenever x = n _pi / N for some n e. ( 1 ... M ) , so this function enumerates M distinct roots of a degree- M polynomial, which must therefore be all the roots by fta1 . (Contributed by Mario Carneiro, 28-Jul-2014)

Ref Expression
Hypotheses basel.n N=2 M+1
basel.p P=tj=0M(N2j)1Mjtj
basel.t T=n1MtannπN2
Assertion basellem4 MT:1M1-1 ontoP-10

Proof

Step Hyp Ref Expression
1 basel.n N=2 M+1
2 basel.p P=tj=0M(N2j)1Mjtj
3 basel.t T=n1MtannπN2
4 1 basellem1 Mn1MnπN0π2
5 tanrpcl nπN0π2tannπN+
6 4 5 syl Mn1MtannπN+
7 2z 2
8 znegcl 22
9 7 8 ax-mp 2
10 rpexpcl tannπN+2tannπN2+
11 6 9 10 sylancl Mn1MtannπN2+
12 11 rpcnd Mn1MtannπN2
13 1 2 basellem3 MnπN0π2PtannπN2=sinNnπNsinnπNN
14 4 13 syldan Mn1MPtannπN2=sinNnπNsinnπNN
15 elfzelz n1Mn
16 15 adantl Mn1Mn
17 16 zred Mn1Mn
18 pire π
19 remulcl nπnπ
20 17 18 19 sylancl Mn1Mnπ
21 20 recnd Mn1Mnπ
22 2nn 2
23 nnmulcl 2M2 M
24 22 23 mpan M2 M
25 24 peano2nnd M2 M+1
26 1 25 eqeltrid MN
27 26 adantr Mn1MN
28 27 nncnd Mn1MN
29 27 nnne0d Mn1MN0
30 21 28 29 divcan2d Mn1MNnπN=nπ
31 30 fveq2d Mn1MsinNnπN=sinnπ
32 sinkpi nsinnπ=0
33 16 32 syl Mn1Msinnπ=0
34 31 33 eqtrd Mn1MsinNnπN=0
35 34 oveq1d Mn1MsinNnπNsinnπNN=0sinnπNN
36 20 27 nndivred Mn1MnπN
37 36 resincld Mn1MsinnπN
38 37 recnd Mn1MsinnπN
39 27 nnnn0d Mn1MN0
40 38 39 expcld Mn1MsinnπNN
41 sincosq1sgn nπN0π20<sinnπN0<cosnπN
42 4 41 syl Mn1M0<sinnπN0<cosnπN
43 42 simpld Mn1M0<sinnπN
44 43 gt0ne0d Mn1MsinnπN0
45 27 nnzd Mn1MN
46 38 44 45 expne0d Mn1MsinnπNN0
47 40 46 div0d Mn1M0sinnπNN=0
48 14 35 47 3eqtrd Mn1MPtannπN2=0
49 1 2 basellem2 MPPolydegP=McoeffP=n0(N2n)1Mn
50 49 simp1d MPPoly
51 plyf PPolyP:
52 ffn P:PFn
53 50 51 52 3syl MPFn
54 53 adantr Mn1MPFn
55 fniniseg PFntannπN2P-10tannπN2PtannπN2=0
56 54 55 syl Mn1MtannπN2P-10tannπN2PtannπN2=0
57 12 48 56 mpbir2and Mn1MtannπN2P-10
58 57 3 fmptd MT:1MP-10
59 fveq2 k=mTk=Tm
60 fveq2 k=xTk=Tx
61 fveq2 k=yTk=Ty
62 15 zred n1Mn
63 62 ssriv 1M
64 11 rpred Mn1MtannπN2
65 64 3 fmptd MT:1M
66 65 ffvelcdmda Mk1MTk
67 simplr Mk<mk1Mm1Mk<m
68 63 sseli k1Mk
69 68 ad2antrl Mk<mk1Mm1Mk
70 63 sseli m1Mm
71 70 ad2antll Mk<mk1Mm1Mm
72 18 a1i Mk<mk1Mm1Mπ
73 pipos 0<π
74 73 a1i Mk<mk1Mm1M0<π
75 ltmul1 kmπ0<πk<mkπ<mπ
76 69 71 72 74 75 syl112anc Mk<mk1Mm1Mk<mkπ<mπ
77 67 76 mpbid Mk<mk1Mm1Mkπ<mπ
78 remulcl kπkπ
79 69 18 78 sylancl Mk<mk1Mm1Mkπ
80 remulcl mπmπ
81 71 18 80 sylancl Mk<mk1Mm1Mmπ
82 26 ad2antrr Mk<mk1Mm1MN
83 82 nnred Mk<mk1Mm1MN
84 82 nngt0d Mk<mk1Mm1M0<N
85 ltdiv1 kπmπN0<Nkπ<mπkπN<mπN
86 79 81 83 84 85 syl112anc Mk<mk1Mm1Mkπ<mπkπN<mπN
87 77 86 mpbid Mk<mk1Mm1MkπN<mπN
88 neghalfpirx π2*
89 pirp π+
90 rphalfcl π+π2+
91 rpge0 π2+0π2
92 89 90 91 mp2b 0π2
93 halfpire π2
94 le0neg2 π20π2π20
95 93 94 ax-mp 0π2π20
96 92 95 mpbi π20
97 iooss1 π2*π200π2π2π2
98 88 96 97 mp2an 0π2π2π2
99 1 basellem1 Mk1MkπN0π2
100 99 ad2ant2r Mk<mk1Mm1MkπN0π2
101 98 100 sselid Mk<mk1Mm1MkπNπ2π2
102 1 basellem1 Mm1MmπN0π2
103 102 ad2ant2rl Mk<mk1Mm1MmπN0π2
104 98 103 sselid Mk<mk1Mm1MmπNπ2π2
105 tanord kπNπ2π2mπNπ2π2kπN<mπNtankπN<tanmπN
106 101 104 105 syl2anc Mk<mk1Mm1MkπN<mπNtankπN<tanmπN
107 87 106 mpbid Mk<mk1Mm1MtankπN<tanmπN
108 tanrpcl kπN0π2tankπN+
109 100 108 syl Mk<mk1Mm1MtankπN+
110 tanrpcl mπN0π2tanmπN+
111 103 110 syl Mk<mk1Mm1MtanmπN+
112 rprege0 tankπN+tankπN0tankπN
113 rprege0 tanmπN+tanmπN0tanmπN
114 lt2sq tankπN0tankπNtanmπN0tanmπNtankπN<tanmπNtankπN2<tanmπN2
115 112 113 114 syl2an tankπN+tanmπN+tankπN<tanmπNtankπN2<tanmπN2
116 109 111 115 syl2anc Mk<mk1Mm1MtankπN<tanmπNtankπN2<tanmπN2
117 107 116 mpbid Mk<mk1Mm1MtankπN2<tanmπN2
118 rpexpcl tankπN+2tankπN2+
119 109 7 118 sylancl Mk<mk1Mm1MtankπN2+
120 rpexpcl tanmπN+2tanmπN2+
121 111 7 120 sylancl Mk<mk1Mm1MtanmπN2+
122 119 121 ltrecd Mk<mk1Mm1MtankπN2<tanmπN21tanmπN2<1tankπN2
123 117 122 mpbid Mk<mk1Mm1M1tanmπN2<1tankπN2
124 oveq1 n=mnπ=mπ
125 124 fvoveq1d n=mtannπN=tanmπN
126 125 oveq1d n=mtannπN2=tanmπN2
127 ovex tanmπN2V
128 126 3 127 fvmpt m1MTm=tanmπN2
129 128 ad2antll Mk<mk1Mm1MTm=tanmπN2
130 111 rpcnd Mk<mk1Mm1MtanmπN
131 2nn0 20
132 expneg tanmπN20tanmπN2=1tanmπN2
133 130 131 132 sylancl Mk<mk1Mm1MtanmπN2=1tanmπN2
134 129 133 eqtrd Mk<mk1Mm1MTm=1tanmπN2
135 oveq1 n=knπ=kπ
136 135 fvoveq1d n=ktannπN=tankπN
137 136 oveq1d n=ktannπN2=tankπN2
138 ovex tankπN2V
139 137 3 138 fvmpt k1MTk=tankπN2
140 139 ad2antrl Mk<mk1Mm1MTk=tankπN2
141 109 rpcnd Mk<mk1Mm1MtankπN
142 expneg tankπN20tankπN2=1tankπN2
143 141 131 142 sylancl Mk<mk1Mm1MtankπN2=1tankπN2
144 140 143 eqtrd Mk<mk1Mm1MTk=1tankπN2
145 123 134 144 3brtr4d Mk<mk1Mm1MTm<Tk
146 145 an32s Mk1Mm1Mk<mTm<Tk
147 146 ex Mk1Mm1Mk<mTm<Tk
148 59 60 61 63 66 147 eqord2 Mx1My1Mx=yTx=Ty
149 148 biimprd Mx1My1MTx=Tyx=y
150 149 ralrimivva Mx1My1MTx=Tyx=y
151 dff13 T:1M1-1P-10T:1MP-10x1My1MTx=Tyx=y
152 58 150 151 sylanbrc MT:1M1-1P-10
153 49 simp2d MdegP=M
154 nnne0 MM0
155 153 154 eqnetrd MdegP0
156 fveq2 P=0𝑝degP=deg0𝑝
157 dgr0 deg0𝑝=0
158 156 157 eqtrdi P=0𝑝degP=0
159 158 necon3i degP0P0𝑝
160 155 159 syl MP0𝑝
161 eqid P-10=P-10
162 161 fta1 PPolyP0𝑝P-10FinP-10degP
163 50 160 162 syl2anc MP-10FinP-10degP
164 163 simpld MP-10Fin
165 f1domg P-10FinT:1M1-1P-101MP-10
166 164 152 165 sylc M1MP-10
167 163 simprd MP-10degP
168 nnnn0 MM0
169 hashfz1 M01M=M
170 168 169 syl M1M=M
171 153 170 eqtr4d MdegP=1M
172 167 171 breqtrd MP-101M
173 fzfid M1MFin
174 hashdom P-10Fin1MFinP-101MP-101M
175 164 173 174 syl2anc MP-101MP-101M
176 172 175 mpbid MP-101M
177 sbth 1MP-10P-101M1MP-10
178 166 176 177 syl2anc M1MP-10
179 f1finf1o 1MP-10P-10FinT:1M1-1P-10T:1M1-1 ontoP-10
180 178 164 179 syl2anc MT:1M1-1P-10T:1M1-1 ontoP-10
181 152 180 mpbid MT:1M1-1 ontoP-10