Metamath Proof Explorer


Theorem clwlkclwwlklem2a4

Description: Lemma 4 for clwlkclwwlklem2a . (Contributed by Alexander van der Vekens, 21-Jun-2018) (Revised by AV, 11-Apr-2021)

Ref Expression
Hypothesis clwlkclwwlklem2.f F=x0..^P1ifx<P2E-1PxPx+1E-1PxP0
Assertion clwlkclwwlklem2a4 E:domE1-1RPWordV2PlastSP=P0I0..^P1PIPI+1ranEEFI=PIPI+1

Proof

Step Hyp Ref Expression
1 clwlkclwwlklem2.f F=x0..^P1ifx<P2E-1PxPx+1E-1PxP0
2 fveq2 I=P2FI=FP2
3 lencl PWordVP0
4 1 clwlkclwwlklem2fv2 P02PFP2=E-1PP2P0
5 3 4 sylan PWordV2PFP2=E-1PP2P0
6 2 5 sylan9eqr PWordV2PI=P2FI=E-1PP2P0
7 6 ex PWordV2PI=P2FI=E-1PP2P0
8 7 3adant1 E:domE1-1RPWordV2PI=P2FI=E-1PP2P0
9 8 ad2antrr E:domE1-1RPWordV2PlastSP=P0I0..^P1PIPI+1ranEI=P2FI=E-1PP2P0
10 9 impcom I=P2E:domE1-1RPWordV2PlastSP=P0I0..^P1PIPI+1ranEFI=E-1PP2P0
11 10 fveq2d I=P2E:domE1-1RPWordV2PlastSP=P0I0..^P1PIPI+1ranEEFI=EE-1PP2P0
12 f1f1orn E:domE1-1RE:domE1-1 ontoranE
13 12 3ad2ant1 E:domE1-1RPWordV2PE:domE1-1 ontoranE
14 13 ad2antrr E:domE1-1RPWordV2PlastSP=P0I0..^P1PIPI+1ranEE:domE1-1 ontoranE
15 lsw PWordVlastSP=PP1
16 15 eqeq1d PWordVlastSP=P0PP1=P0
17 nn0cn P0P
18 id PP
19 2cnd P2
20 1cnd P1
21 18 19 20 subsubd PP21=P-2+1
22 2m1e1 21=1
23 22 a1i P21=1
24 23 oveq2d PP21=P1
25 21 24 eqtr3d PP-2+1=P1
26 3 17 25 3syl PWordVP-2+1=P1
27 26 adantr PWordVPP1=P0P-2+1=P1
28 27 fveq2d PWordVPP1=P0PP-2+1=PP1
29 eqeq2 P0=PP1PP-2+1=P0PP-2+1=PP1
30 29 eqcoms PP1=P0PP-2+1=P0PP-2+1=PP1
31 30 adantl PWordVPP1=P0PP-2+1=P0PP-2+1=PP1
32 28 31 mpbird PWordVPP1=P0PP-2+1=P0
33 32 ex PWordVPP1=P0PP-2+1=P0
34 16 33 sylbid PWordVlastSP=P0PP-2+1=P0
35 34 3ad2ant2 E:domE1-1RPWordV2PlastSP=P0PP-2+1=P0
36 35 com12 lastSP=P0E:domE1-1RPWordV2PPP-2+1=P0
37 36 adantr lastSP=P0I0..^P1E:domE1-1RPWordV2PPP-2+1=P0
38 37 impcom E:domE1-1RPWordV2PlastSP=P0I0..^P1PP-2+1=P0
39 38 adantr E:domE1-1RPWordV2PlastSP=P0I0..^P1I=P2PP-2+1=P0
40 39 preq2d E:domE1-1RPWordV2PlastSP=P0I0..^P1I=P2PP2PP-2+1=PP2P0
41 fveq2 I=P2PI=PP2
42 fvoveq1 I=P2PI+1=PP-2+1
43 41 42 preq12d I=P2PIPI+1=PP2PP-2+1
44 43 eqeq1d I=P2PIPI+1=PP2P0PP2PP-2+1=PP2P0
45 44 adantl E:domE1-1RPWordV2PlastSP=P0I0..^P1I=P2PIPI+1=PP2P0PP2PP-2+1=PP2P0
46 40 45 mpbird E:domE1-1RPWordV2PlastSP=P0I0..^P1I=P2PIPI+1=PP2P0
47 46 eleq1d E:domE1-1RPWordV2PlastSP=P0I0..^P1I=P2PIPI+1ranEPP2P0ranE
48 47 biimpd E:domE1-1RPWordV2PlastSP=P0I0..^P1I=P2PIPI+1ranEPP2P0ranE
49 48 impancom E:domE1-1RPWordV2PlastSP=P0I0..^P1PIPI+1ranEI=P2PP2P0ranE
50 49 impcom I=P2E:domE1-1RPWordV2PlastSP=P0I0..^P1PIPI+1ranEPP2P0ranE
51 f1ocnvfv2 E:domE1-1 ontoranEPP2P0ranEEE-1PP2P0=PP2P0
52 14 50 51 syl2an2 I=P2E:domE1-1RPWordV2PlastSP=P0I0..^P1PIPI+1ranEEE-1PP2P0=PP2P0
53 eqcom PP1=P0P0=PP1
54 53 biimpi PP1=P0P0=PP1
55 1e2m1 1=21
56 55 a1i PWordV1=21
57 56 oveq2d PWordVP1=P21
58 3 17 syl PWordVP
59 2cnd PWordV2
60 1cnd PWordV1
61 58 59 60 subsubd PWordVP21=P-2+1
62 57 61 eqtrd PWordVP1=P-2+1
63 62 fveq2d PWordVPP1=PP-2+1
64 54 63 sylan9eqr PWordVPP1=P0P0=PP-2+1
65 64 ex PWordVPP1=P0P0=PP-2+1
66 16 65 sylbid PWordVlastSP=P0P0=PP-2+1
67 66 imp PWordVlastSP=P0P0=PP-2+1
68 67 preq2d PWordVlastSP=P0PP2P0=PP2PP-2+1
69 68 adantr PWordVlastSP=P0I=P2PP2P0=PP2PP-2+1
70 43 adantl PWordVlastSP=P0I=P2PIPI+1=PP2PP-2+1
71 69 70 eqtr4d PWordVlastSP=P0I=P2PP2P0=PIPI+1
72 71 exp31 PWordVlastSP=P0I=P2PP2P0=PIPI+1
73 72 3ad2ant2 E:domE1-1RPWordV2PlastSP=P0I=P2PP2P0=PIPI+1
74 73 com12 lastSP=P0E:domE1-1RPWordV2PI=P2PP2P0=PIPI+1
75 74 adantr lastSP=P0I0..^P1E:domE1-1RPWordV2PI=P2PP2P0=PIPI+1
76 75 impcom E:domE1-1RPWordV2PlastSP=P0I0..^P1I=P2PP2P0=PIPI+1
77 76 adantr E:domE1-1RPWordV2PlastSP=P0I0..^P1PIPI+1ranEI=P2PP2P0=PIPI+1
78 77 impcom I=P2E:domE1-1RPWordV2PlastSP=P0I0..^P1PIPI+1ranEPP2P0=PIPI+1
79 11 52 78 3eqtrd I=P2E:domE1-1RPWordV2PlastSP=P0I0..^P1PIPI+1ranEEFI=PIPI+1
80 simpll P02PI0..^P1¬I=P2P0
81 oveq1 P=2P1=21
82 81 22 eqtrdi P=2P1=1
83 82 oveq2d P=20..^P1=0..^1
84 83 eleq2d P=2I0..^P1I0..^1
85 oveq1 P=2P2=22
86 2cn 2
87 86 subidi 22=0
88 85 87 eqtrdi P=2P2=0
89 88 eqeq2d P=2I=P2I=0
90 89 notbid P=2¬I=P2¬I=0
91 84 90 anbi12d P=2I0..^P1¬I=P2I0..^1¬I=0
92 elsni I0I=0
93 92 pm2.24d I0¬I=0I0P2I<P2
94 fzo01 0..^1=0
95 93 94 eleq2s I0..^1¬I=0I0P2I<P2
96 95 imp I0..^1¬I=0I0P2I<P2
97 91 96 syl6bi P=2I0..^P1¬I=P2I0P2I<P2
98 97 adantld P=2P02PI0..^P1¬I=P2I0P2I<P2
99 df-ne P2¬P=2
100 2re 2
101 100 a1i P02P2
102 nn0re P0P
103 102 adantr P02PP
104 simpr P02P2P
105 101 103 104 leltned P02P2<PP2
106 elfzo0 I0..^P1I0P1I<P1
107 simp-4l I0P0¬I=P22<PI<P1I0
108 nn0z P0P
109 2z 2
110 109 a1i P02
111 108 110 zsubcld P0P2
112 111 adantr P02<PP2
113 100 a1i P02
114 113 102 posdifd P02<P0<P2
115 114 biimpa P02<P0<P2
116 elnnz P2P20<P2
117 112 115 116 sylanbrc P02<PP2
118 117 ad5ant24 I0P0¬I=P22<PI<P1P2
119 nn0z I0I
120 peano2zm PP1
121 108 120 syl P0P1
122 zltlem1 IP1I<P1IP-1-1
123 119 121 122 syl2an I0P0I<P1IP-1-1
124 17 adantl I0P0P
125 1cnd I0P01
126 124 125 125 subsub4d I0P0P-1-1=P1+1
127 1p1e2 1+1=2
128 127 a1i I0P01+1=2
129 128 oveq2d I0P0P1+1=P2
130 126 129 eqtrd I0P0P-1-1=P2
131 130 breq2d I0P0IP-1-1IP2
132 123 131 bitrd I0P0I<P1IP2
133 necom P2IIP2
134 df-ne IP2¬I=P2
135 133 134 bitr2i ¬I=P2P2I
136 nn0re I0I
137 136 ad2antrr I0P0IP2I
138 102 113 resubcld P0P2
139 138 ad2antlr I0P0IP2P2
140 simpr I0P0IP2IP2
141 leltne IP2IP2I<P2P2I
142 141 bicomd IP2IP2P2II<P2
143 137 139 140 142 syl3anc I0P0IP2P2II<P2
144 143 biimpd I0P0IP2P2II<P2
145 135 144 biimtrid I0P0IP2¬I=P2I<P2
146 145 ex I0P0IP2¬I=P2I<P2
147 132 146 sylbid I0P0I<P1¬I=P2I<P2
148 147 com23 I0P0¬I=P2I<P1I<P2
149 148 imp I0P0¬I=P2I<P1I<P2
150 149 adantr I0P0¬I=P22<PI<P1I<P2
151 150 imp I0P0¬I=P22<PI<P1I<P2
152 107 118 151 3jca I0P0¬I=P22<PI<P1I0P2I<P2
153 152 ex I0P0¬I=P22<PI<P1I0P2I<P2
154 153 exp41 I0P0¬I=P22<PI<P1I0P2I<P2
155 154 com25 I0I<P1¬I=P22<PP0I0P2I<P2
156 155 imp I0I<P1¬I=P22<PP0I0P2I<P2
157 156 3adant2 I0P1I<P1¬I=P22<PP0I0P2I<P2
158 106 157 sylbi I0..^P1¬I=P22<PP0I0P2I<P2
159 158 imp I0..^P1¬I=P22<PP0I0P2I<P2
160 159 com13 P02<PI0..^P1¬I=P2I0P2I<P2
161 160 adantr P02P2<PI0..^P1¬I=P2I0P2I<P2
162 105 161 sylbird P02PP2I0..^P1¬I=P2I0P2I<P2
163 99 162 biimtrrid P02P¬P=2I0..^P1¬I=P2I0P2I<P2
164 163 com23 P02PI0..^P1¬I=P2¬P=2I0P2I<P2
165 164 imp P02PI0..^P1¬I=P2¬P=2I0P2I<P2
166 165 com12 ¬P=2P02PI0..^P1¬I=P2I0P2I<P2
167 98 166 pm2.61i P02PI0..^P1¬I=P2I0P2I<P2
168 elfzo0 I0..^P2I0P2I<P2
169 167 168 sylibr P02PI0..^P1¬I=P2I0..^P2
170 80 169 jca P02PI0..^P1¬I=P2P0I0..^P2
171 170 exp31 P02PI0..^P1¬I=P2P0I0..^P2
172 3 171 syl PWordV2PI0..^P1¬I=P2P0I0..^P2
173 172 imp PWordV2PI0..^P1¬I=P2P0I0..^P2
174 173 3adant1 E:domE1-1RPWordV2PI0..^P1¬I=P2P0I0..^P2
175 174 expd E:domE1-1RPWordV2PI0..^P1¬I=P2P0I0..^P2
176 175 com12 I0..^P1E:domE1-1RPWordV2P¬I=P2P0I0..^P2
177 176 adantl lastSP=P0I0..^P1E:domE1-1RPWordV2P¬I=P2P0I0..^P2
178 177 impcom E:domE1-1RPWordV2PlastSP=P0I0..^P1¬I=P2P0I0..^P2
179 178 adantr E:domE1-1RPWordV2PlastSP=P0I0..^P1PIPI+1ranE¬I=P2P0I0..^P2
180 179 impcom ¬I=P2E:domE1-1RPWordV2PlastSP=P0I0..^P1PIPI+1ranEP0I0..^P2
181 1 clwlkclwwlklem2fv1 P0I0..^P2FI=E-1PIPI+1
182 180 181 syl ¬I=P2E:domE1-1RPWordV2PlastSP=P0I0..^P1PIPI+1ranEFI=E-1PIPI+1
183 182 fveq2d ¬I=P2E:domE1-1RPWordV2PlastSP=P0I0..^P1PIPI+1ranEEFI=EE-1PIPI+1
184 simprr ¬I=P2E:domE1-1RPWordV2PlastSP=P0I0..^P1PIPI+1ranEPIPI+1ranE
185 f1ocnvfv2 E:domE1-1 ontoranEPIPI+1ranEEE-1PIPI+1=PIPI+1
186 14 184 185 syl2an2 ¬I=P2E:domE1-1RPWordV2PlastSP=P0I0..^P1PIPI+1ranEEE-1PIPI+1=PIPI+1
187 183 186 eqtrd ¬I=P2E:domE1-1RPWordV2PlastSP=P0I0..^P1PIPI+1ranEEFI=PIPI+1
188 79 187 pm2.61ian E:domE1-1RPWordV2PlastSP=P0I0..^P1PIPI+1ranEEFI=PIPI+1
189 188 exp31 E:domE1-1RPWordV2PlastSP=P0I0..^P1PIPI+1ranEEFI=PIPI+1