Metamath Proof Explorer


Theorem colinearalg

Description: An algebraic characterization of colinearity. Note the similarity to brbtwn2 . (Contributed by Scott Fenton, 24-Jun-2013)

Ref Expression
Assertion colinearalg A𝔼NB𝔼NC𝔼NABtwnBCBBtwnCACBtwnABi1Nj1NBiAiCjAj=BjAjCiAi

Proof

Step Hyp Ref Expression
1 brbtwn2 A𝔼NB𝔼NC𝔼NABtwnBCi1NBiAiCiAi0i1Nj1NBiAiCjAj=BjAjCiAi
2 brbtwn2 B𝔼NC𝔼NA𝔼NBBtwnCAi1NCiBiAiBi0i1Nj1NCiBiAjBj=CjBjAiBi
3 2 3comr A𝔼NB𝔼NC𝔼NBBtwnCAi1NCiBiAiBi0i1Nj1NCiBiAjBj=CjBjAiBi
4 colinearalglem3 B𝔼NC𝔼NA𝔼Ni1Nj1NCiBiAjBj=CjBjAiBii1Nj1NBiAiCjAj=BjAjCiAi
5 4 3comr A𝔼NB𝔼NC𝔼Ni1Nj1NCiBiAjBj=CjBjAiBii1Nj1NBiAiCjAj=BjAjCiAi
6 5 anbi2d A𝔼NB𝔼NC𝔼Ni1NCiBiAiBi0i1Nj1NCiBiAjBj=CjBjAiBii1NCiBiAiBi0i1Nj1NBiAiCjAj=BjAjCiAi
7 3 6 bitrd A𝔼NB𝔼NC𝔼NBBtwnCAi1NCiBiAiBi0i1Nj1NBiAiCjAj=BjAjCiAi
8 brbtwn2 C𝔼NA𝔼NB𝔼NCBtwnABi1NAiCiBiCi0i1Nj1NAiCiBjCj=AjCjBiCi
9 colinearalglem2 C𝔼NA𝔼NB𝔼Ni1Nj1NAiCiBjCj=AjCjBiCii1Nj1NBiAiCjAj=BjAjCiAi
10 9 anbi2d C𝔼NA𝔼NB𝔼Ni1NAiCiBiCi0i1Nj1NAiCiBjCj=AjCjBiCii1NAiCiBiCi0i1Nj1NBiAiCjAj=BjAjCiAi
11 8 10 bitrd C𝔼NA𝔼NB𝔼NCBtwnABi1NAiCiBiCi0i1Nj1NBiAiCjAj=BjAjCiAi
12 11 3coml A𝔼NB𝔼NC𝔼NCBtwnABi1NAiCiBiCi0i1Nj1NBiAiCjAj=BjAjCiAi
13 1 7 12 3orbi123d A𝔼NB𝔼NC𝔼NABtwnBCBBtwnCACBtwnABi1NBiAiCiAi0i1Nj1NBiAiCjAj=BjAjCiAii1NCiBiAiBi0i1Nj1NBiAiCjAj=BjAjCiAii1NAiCiBiCi0i1Nj1NBiAiCjAj=BjAjCiAi
14 fveecn B𝔼Ni1NBi
15 fveecn C𝔼Ni1NCi
16 subid CiCiCi=0
17 16 oveq2d CiBiCiCiCi=BiCi0
18 17 adantl BiCiBiCiCiCi=BiCi0
19 subcl BiCiBiCi
20 19 mul01d BiCiBiCi0=0
21 18 20 eqtrd BiCiBiCiCiCi=0
22 14 15 21 syl2an B𝔼Ni1NC𝔼Ni1NBiCiCiCi=0
23 22 anandirs B𝔼NC𝔼Ni1NBiCiCiCi=0
24 0le0 00
25 23 24 eqbrtrdi B𝔼NC𝔼Ni1NBiCiCiCi0
26 25 ralrimiva B𝔼NC𝔼Ni1NBiCiCiCi0
27 26 3adant1 A𝔼NB𝔼NC𝔼Ni1NBiCiCiCi0
28 fveq1 C=ACi=Ai
29 28 oveq2d C=ABiCi=BiAi
30 28 oveq2d C=ACiCi=CiAi
31 29 30 oveq12d C=ABiCiCiCi=BiAiCiAi
32 31 breq1d C=ABiCiCiCi0BiAiCiAi0
33 32 ralbidv C=Ai1NBiCiCiCi0i1NBiAiCiAi0
34 27 33 syl5ibcom A𝔼NB𝔼NC𝔼NC=Ai1NBiAiCiAi0
35 3mix1 i1NBiAiCiAi0i1NBiAiCiAi0i1NCiBiAiBi0i1NAiCiBiCi0
36 34 35 syl6 A𝔼NB𝔼NC𝔼NC=Ai1NBiAiCiAi0i1NCiBiAiBi0i1NAiCiBiCi0
37 36 a1dd A𝔼NB𝔼NC𝔼NC=Ai1Nj1NBiAiCjAj=BjAjCiAii1NBiAiCiAi0i1NCiBiAiBi0i1NAiCiBiCi0
38 simp3 A𝔼NB𝔼NC𝔼NC𝔼N
39 simp1 A𝔼NB𝔼NC𝔼NA𝔼N
40 eqeefv C𝔼NA𝔼NC=Ap1NCp=Ap
41 38 39 40 syl2anc A𝔼NB𝔼NC𝔼NC=Ap1NCp=Ap
42 41 necon3abid A𝔼NB𝔼NC𝔼NCA¬p1NCp=Ap
43 df-ne CpAp¬Cp=Ap
44 43 rexbii p1NCpApp1N¬Cp=Ap
45 rexnal p1N¬Cp=Ap¬p1NCp=Ap
46 44 45 bitr2i ¬p1NCp=App1NCpAp
47 42 46 bitrdi A𝔼NB𝔼NC𝔼NCAp1NCpAp
48 ralcom i1Nj1NBiAiCjAj=BjAjCiAij1Ni1NBiAiCjAj=BjAjCiAi
49 fveq2 j=pCj=Cp
50 fveq2 j=pAj=Ap
51 49 50 oveq12d j=pCjAj=CpAp
52 51 oveq2d j=pBiAiCjAj=BiAiCpAp
53 fveq2 j=pBj=Bp
54 53 50 oveq12d j=pBjAj=BpAp
55 54 oveq1d j=pBjAjCiAi=BpApCiAi
56 52 55 eqeq12d j=pBiAiCjAj=BjAjCiAiBiAiCpAp=BpApCiAi
57 56 ralbidv j=pi1NBiAiCjAj=BjAjCiAii1NBiAiCpAp=BpApCiAi
58 57 rspcv p1Nj1Ni1NBiAiCjAj=BjAjCiAii1NBiAiCpAp=BpApCiAi
59 58 ad2antrl A𝔼NB𝔼NC𝔼Np1NCpApj1Ni1NBiAiCjAj=BjAjCiAii1NBiAiCpAp=BpApCiAi
60 fveere A𝔼Np1NAp
61 60 3ad2antl1 A𝔼NB𝔼NC𝔼Np1NAp
62 fveere B𝔼Np1NBp
63 62 3ad2antl2 A𝔼NB𝔼NC𝔼Np1NBp
64 fveere C𝔼Np1NCp
65 64 3ad2antl3 A𝔼NB𝔼NC𝔼Np1NCp
66 61 63 65 3jca A𝔼NB𝔼NC𝔼Np1NApBpCp
67 66 anim1i A𝔼NB𝔼NC𝔼Np1NCpApApBpCpCpAp
68 67 anasss A𝔼NB𝔼NC𝔼Np1NCpApApBpCpCpAp
69 fveecn A𝔼Ni1NAi
70 69 3ad2antl1 A𝔼NB𝔼NC𝔼Ni1NAi
71 14 3ad2antl2 A𝔼NB𝔼NC𝔼Ni1NBi
72 15 3ad2antl3 A𝔼NB𝔼NC𝔼Ni1NCi
73 70 71 72 3jca A𝔼NB𝔼NC𝔼Ni1NAiBiCi
74 73 adantlr A𝔼NB𝔼NC𝔼NApBpCpCpApi1NAiBiCi
75 recn ApAp
76 recn BpBp
77 recn CpCp
78 75 76 77 3anim123i ApBpCpApBpCp
79 78 adantr ApBpCpCpApApBpCp
80 79 ad2antlr A𝔼NB𝔼NC𝔼NApBpCpCpApi1NApBpCp
81 simplrr A𝔼NB𝔼NC𝔼NApBpCpCpApi1NCpAp
82 eqcom Bi=BpApCpApCiAi+AiBpApCpApCiAi+Ai=Bi
83 simp12 AiBiCiApBpCpCpApBi
84 simp11 AiBiCiApBpCpCpApAi
85 simp22 AiBiCiApBpCpCpApBp
86 simp21 AiBiCiApBpCpCpApAp
87 85 86 subcld AiBiCiApBpCpCpApBpAp
88 simp23 AiBiCiApBpCpCpApCp
89 88 86 subcld AiBiCiApBpCpCpApCpAp
90 simpr3 AiBiCiApBpCpCp
91 simpr1 AiBiCiApBpCpAp
92 90 91 subeq0ad AiBiCiApBpCpCpAp=0Cp=Ap
93 92 necon3bid AiBiCiApBpCpCpAp0CpAp
94 93 biimp3ar AiBiCiApBpCpCpApCpAp0
95 87 89 94 divcld AiBiCiApBpCpCpApBpApCpAp
96 simp13 AiBiCiApBpCpCpApCi
97 96 84 subcld AiBiCiApBpCpCpApCiAi
98 95 97 mulcld AiBiCiApBpCpCpApBpApCpApCiAi
99 subadd2 BiAiBpApCpApCiAiBiAi=BpApCpApCiAiBpApCpApCiAi+Ai=Bi
100 99 bicomd BiAiBpApCpApCiAiBpApCpApCiAi+Ai=BiBiAi=BpApCpApCiAi
101 83 84 98 100 syl3anc AiBiCiApBpCpCpApBpApCpApCiAi+Ai=BiBiAi=BpApCpApCiAi
102 87 97 89 94 div23d AiBiCiApBpCpCpApBpApCiAiCpAp=BpApCpApCiAi
103 102 eqeq2d AiBiCiApBpCpCpApBiAi=BpApCiAiCpApBiAi=BpApCpApCiAi
104 eqcom BiAi=BpApCiAiCpApBpApCiAiCpAp=BiAi
105 87 97 mulcld AiBiCiApBpCpCpApBpApCiAi
106 83 84 subcld AiBiCiApBpCpCpApBiAi
107 105 89 106 94 divmuld AiBiCiApBpCpCpApBpApCiAiCpAp=BiAiCpApBiAi=BpApCiAi
108 89 106 mulcomd AiBiCiApBpCpCpApCpApBiAi=BiAiCpAp
109 108 eqeq1d AiBiCiApBpCpCpApCpApBiAi=BpApCiAiBiAiCpAp=BpApCiAi
110 107 109 bitrd AiBiCiApBpCpCpApBpApCiAiCpAp=BiAiBiAiCpAp=BpApCiAi
111 104 110 bitrid AiBiCiApBpCpCpApBiAi=BpApCiAiCpApBiAiCpAp=BpApCiAi
112 101 103 111 3bitr2d AiBiCiApBpCpCpApBpApCpApCiAi+Ai=BiBiAiCpAp=BpApCiAi
113 82 112 bitrid AiBiCiApBpCpCpApBi=BpApCpApCiAi+AiBiAiCpAp=BpApCiAi
114 74 80 81 113 syl3anc A𝔼NB𝔼NC𝔼NApBpCpCpApi1NBi=BpApCpApCiAi+AiBiAiCpAp=BpApCiAi
115 114 ralbidva A𝔼NB𝔼NC𝔼NApBpCpCpApi1NBi=BpApCpApCiAi+Aii1NBiAiCpAp=BpApCiAi
116 3simpb A𝔼NB𝔼NC𝔼NA𝔼NC𝔼N
117 simpl2 ApBpCpCpApBp
118 simpl1 ApBpCpCpApAp
119 117 118 resubcld ApBpCpCpApBpAp
120 simpl3 ApBpCpCpApCp
121 120 118 resubcld ApBpCpCpApCpAp
122 simp3 ApBpCpCp
123 122 recnd ApBpCpCp
124 75 3ad2ant1 ApBpCpAp
125 123 124 subeq0ad ApBpCpCpAp=0Cp=Ap
126 125 necon3bid ApBpCpCpAp0CpAp
127 126 biimpar ApBpCpCpApCpAp0
128 119 121 127 redivcld ApBpCpCpApBpApCpAp
129 colinearalglem4 A𝔼NC𝔼NBpApCpApi1NBpApCpApCiAi+Ai-AiCiAi0i1NCiBpApCpApCiAi+AiAiBpApCpApCiAi+Ai0i1NAiCiBpApCpApCiAi+Ai-Ci0
130 oveq1 Bi=BpApCpApCiAi+AiBiAi=BpApCpApCiAi+Ai-Ai
131 130 oveq1d Bi=BpApCpApCiAi+AiBiAiCiAi=BpApCpApCiAi+Ai-AiCiAi
132 131 breq1d Bi=BpApCpApCiAi+AiBiAiCiAi0BpApCpApCiAi+Ai-AiCiAi0
133 132 ralimi i1NBi=BpApCpApCiAi+Aii1NBiAiCiAi0BpApCpApCiAi+Ai-AiCiAi0
134 ralbi i1NBiAiCiAi0BpApCpApCiAi+Ai-AiCiAi0i1NBiAiCiAi0i1NBpApCpApCiAi+Ai-AiCiAi0
135 133 134 syl i1NBi=BpApCpApCiAi+Aii1NBiAiCiAi0i1NBpApCpApCiAi+Ai-AiCiAi0
136 oveq2 Bi=BpApCpApCiAi+AiCiBi=CiBpApCpApCiAi+Ai
137 oveq2 Bi=BpApCpApCiAi+AiAiBi=AiBpApCpApCiAi+Ai
138 136 137 oveq12d Bi=BpApCpApCiAi+AiCiBiAiBi=CiBpApCpApCiAi+AiAiBpApCpApCiAi+Ai
139 138 breq1d Bi=BpApCpApCiAi+AiCiBiAiBi0CiBpApCpApCiAi+AiAiBpApCpApCiAi+Ai0
140 139 ralimi i1NBi=BpApCpApCiAi+Aii1NCiBiAiBi0CiBpApCpApCiAi+AiAiBpApCpApCiAi+Ai0
141 ralbi i1NCiBiAiBi0CiBpApCpApCiAi+AiAiBpApCpApCiAi+Ai0i1NCiBiAiBi0i1NCiBpApCpApCiAi+AiAiBpApCpApCiAi+Ai0
142 140 141 syl i1NBi=BpApCpApCiAi+Aii1NCiBiAiBi0i1NCiBpApCpApCiAi+AiAiBpApCpApCiAi+Ai0
143 oveq1 Bi=BpApCpApCiAi+AiBiCi=BpApCpApCiAi+Ai-Ci
144 143 oveq2d Bi=BpApCpApCiAi+AiAiCiBiCi=AiCiBpApCpApCiAi+Ai-Ci
145 144 breq1d Bi=BpApCpApCiAi+AiAiCiBiCi0AiCiBpApCpApCiAi+Ai-Ci0
146 145 ralimi i1NBi=BpApCpApCiAi+Aii1NAiCiBiCi0AiCiBpApCpApCiAi+Ai-Ci0
147 ralbi i1NAiCiBiCi0AiCiBpApCpApCiAi+Ai-Ci0i1NAiCiBiCi0i1NAiCiBpApCpApCiAi+Ai-Ci0
148 146 147 syl i1NBi=BpApCpApCiAi+Aii1NAiCiBiCi0i1NAiCiBpApCpApCiAi+Ai-Ci0
149 135 142 148 3orbi123d i1NBi=BpApCpApCiAi+Aii1NBiAiCiAi0i1NCiBiAiBi0i1NAiCiBiCi0i1NBpApCpApCiAi+Ai-AiCiAi0i1NCiBpApCpApCiAi+AiAiBpApCpApCiAi+Ai0i1NAiCiBpApCpApCiAi+Ai-Ci0
150 129 149 syl5ibrcom A𝔼NC𝔼NBpApCpApi1NBi=BpApCpApCiAi+Aii1NBiAiCiAi0i1NCiBiAiBi0i1NAiCiBiCi0
151 116 128 150 syl2an A𝔼NB𝔼NC𝔼NApBpCpCpApi1NBi=BpApCpApCiAi+Aii1NBiAiCiAi0i1NCiBiAiBi0i1NAiCiBiCi0
152 115 151 sylbird A𝔼NB𝔼NC𝔼NApBpCpCpApi1NBiAiCpAp=BpApCiAii1NBiAiCiAi0i1NCiBiAiBi0i1NAiCiBiCi0
153 68 152 syldan A𝔼NB𝔼NC𝔼Np1NCpApi1NBiAiCpAp=BpApCiAii1NBiAiCiAi0i1NCiBiAiBi0i1NAiCiBiCi0
154 59 153 syld A𝔼NB𝔼NC𝔼Np1NCpApj1Ni1NBiAiCjAj=BjAjCiAii1NBiAiCiAi0i1NCiBiAiBi0i1NAiCiBiCi0
155 48 154 biimtrid A𝔼NB𝔼NC𝔼Np1NCpApi1Nj1NBiAiCjAj=BjAjCiAii1NBiAiCiAi0i1NCiBiAiBi0i1NAiCiBiCi0
156 155 rexlimdvaa A𝔼NB𝔼NC𝔼Np1NCpApi1Nj1NBiAiCjAj=BjAjCiAii1NBiAiCiAi0i1NCiBiAiBi0i1NAiCiBiCi0
157 47 156 sylbid A𝔼NB𝔼NC𝔼NCAi1Nj1NBiAiCjAj=BjAjCiAii1NBiAiCiAi0i1NCiBiAiBi0i1NAiCiBiCi0
158 37 157 pm2.61dne A𝔼NB𝔼NC𝔼Ni1Nj1NBiAiCjAj=BjAjCiAii1NBiAiCiAi0i1NCiBiAiBi0i1NAiCiBiCi0
159 158 pm4.71rd A𝔼NB𝔼NC𝔼Ni1Nj1NBiAiCjAj=BjAjCiAii1NBiAiCiAi0i1NCiBiAiBi0i1NAiCiBiCi0i1Nj1NBiAiCjAj=BjAjCiAi
160 andir i1NBiAiCiAi0i1NCiBiAiBi0i1Nj1NBiAiCjAj=BjAjCiAii1NBiAiCiAi0i1Nj1NBiAiCjAj=BjAjCiAii1NCiBiAiBi0i1Nj1NBiAiCjAj=BjAjCiAi
161 160 orbi1i i1NBiAiCiAi0i1NCiBiAiBi0i1Nj1NBiAiCjAj=BjAjCiAii1NAiCiBiCi0i1Nj1NBiAiCjAj=BjAjCiAii1NBiAiCiAi0i1Nj1NBiAiCjAj=BjAjCiAii1NCiBiAiBi0i1Nj1NBiAiCjAj=BjAjCiAii1NAiCiBiCi0i1Nj1NBiAiCjAj=BjAjCiAi
162 df-3or i1NBiAiCiAi0i1NCiBiAiBi0i1NAiCiBiCi0i1NBiAiCiAi0i1NCiBiAiBi0i1NAiCiBiCi0
163 162 anbi1i i1NBiAiCiAi0i1NCiBiAiBi0i1NAiCiBiCi0i1Nj1NBiAiCjAj=BjAjCiAii1NBiAiCiAi0i1NCiBiAiBi0i1NAiCiBiCi0i1Nj1NBiAiCjAj=BjAjCiAi
164 andir i1NBiAiCiAi0i1NCiBiAiBi0i1NAiCiBiCi0i1Nj1NBiAiCjAj=BjAjCiAii1NBiAiCiAi0i1NCiBiAiBi0i1Nj1NBiAiCjAj=BjAjCiAii1NAiCiBiCi0i1Nj1NBiAiCjAj=BjAjCiAi
165 163 164 bitri i1NBiAiCiAi0i1NCiBiAiBi0i1NAiCiBiCi0i1Nj1NBiAiCjAj=BjAjCiAii1NBiAiCiAi0i1NCiBiAiBi0i1Nj1NBiAiCjAj=BjAjCiAii1NAiCiBiCi0i1Nj1NBiAiCjAj=BjAjCiAi
166 df-3or i1NBiAiCiAi0i1Nj1NBiAiCjAj=BjAjCiAii1NCiBiAiBi0i1Nj1NBiAiCjAj=BjAjCiAii1NAiCiBiCi0i1Nj1NBiAiCjAj=BjAjCiAii1NBiAiCiAi0i1Nj1NBiAiCjAj=BjAjCiAii1NCiBiAiBi0i1Nj1NBiAiCjAj=BjAjCiAii1NAiCiBiCi0i1Nj1NBiAiCjAj=BjAjCiAi
167 161 165 166 3bitr4i i1NBiAiCiAi0i1NCiBiAiBi0i1NAiCiBiCi0i1Nj1NBiAiCjAj=BjAjCiAii1NBiAiCiAi0i1Nj1NBiAiCjAj=BjAjCiAii1NCiBiAiBi0i1Nj1NBiAiCjAj=BjAjCiAii1NAiCiBiCi0i1Nj1NBiAiCjAj=BjAjCiAi
168 159 167 bitr2di A𝔼NB𝔼NC𝔼Ni1NBiAiCiAi0i1Nj1NBiAiCjAj=BjAjCiAii1NCiBiAiBi0i1Nj1NBiAiCjAj=BjAjCiAii1NAiCiBiCi0i1Nj1NBiAiCjAj=BjAjCiAii1Nj1NBiAiCjAj=BjAjCiAi
169 13 168 bitrd A𝔼NB𝔼NC𝔼NABtwnBCBBtwnCACBtwnABi1Nj1NBiAiCjAj=BjAjCiAi