Metamath Proof Explorer


Theorem dchrisum0fno1

Description: The sum sum_ k <_ x , F ( x ) / sqrt k is divergent (i.e. not eventually bounded). Equation 9.4.30 of Shapiro, p. 383. (Contributed by Mario Carneiro, 5-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z=/N
rpvmasum.l L=ℤRHomZ
rpvmasum.a φN
rpvmasum2.g G=DChrN
rpvmasum2.d D=BaseG
rpvmasum2.1 1˙=0G
dchrisum0f.f F=bvq|qbXLv
dchrisum0f.x φXD
dchrisum0flb.r φX:BaseZ
dchrisum0fno1.a φx+k=1xFkk𝑂1
Assertion dchrisum0fno1 ¬φ

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z=/N
2 rpvmasum.l L=ℤRHomZ
3 rpvmasum.a φN
4 rpvmasum2.g G=DChrN
5 rpvmasum2.d D=BaseG
6 rpvmasum2.1 1˙=0G
7 dchrisum0f.f F=bvq|qbXLv
8 dchrisum0f.x φXD
9 dchrisum0flb.r φX:BaseZ
10 dchrisum0fno1.a φx+k=1xFkk𝑂1
11 logno1 ¬x+logx𝑂1
12 relogcl x+logx
13 12 adantl φx+logx
14 13 recnd φx+logx
15 2cnd φx+2
16 2ne0 20
17 16 a1i φx+20
18 14 15 17 divcan2d φx+2logx2=logx
19 18 mpteq2dva φx+2logx2=x+logx
20 13 rehalfcld φx+logx2
21 20 recnd φx+logx2
22 rpssre +
23 2cn 2
24 o1const +2x+2𝑂1
25 22 23 24 mp2an x+2𝑂1
26 25 a1i φx+2𝑂1
27 1red φ1
28 sumex k=1xFkkV
29 28 a1i φx+k=1xFkkV
30 20 adantrr φx+1xlogx2
31 12 ad2antrl φx+1xlogx
32 log1 log1=0
33 simprr φx+1x1x
34 1rp 1+
35 simprl φx+1xx+
36 logleb 1+x+1xlog1logx
37 34 35 36 sylancr φx+1x1xlog1logx
38 33 37 mpbid φx+1xlog1logx
39 32 38 eqbrtrrid φx+1x0logx
40 2re 2
41 40 a1i φx+1x2
42 2pos 0<2
43 42 a1i φx+1x0<2
44 divge0 logx0logx20<20logx2
45 31 39 41 43 44 syl22anc φx+1x0logx2
46 30 45 absidd φx+1xlogx2=logx2
47 fzfid φx+1x1xFin
48 1 2 3 4 5 6 7 8 9 dchrisum0ff φF:
49 48 adantr φx+1xF:
50 elfznn k1xk
51 ffvelcdm F:kFk
52 49 50 51 syl2an φx+1xk1xFk
53 50 adantl φx+1xk1xk
54 53 nnrpd φx+1xk1xk+
55 54 rpsqrtcld φx+1xk1xk+
56 52 55 rerpdivcld φx+1xk1xFkk
57 47 56 fsumrecl φx+1xk=1xFkk
58 57 recnd φx+1xk=1xFkk
59 58 abscld φx+1xk=1xFkk
60 fzfid φx+1x1xFin
61 elfznn i1xi
62 61 adantl φx+1xi1xi
63 62 nnrecred φx+1xi1x1i
64 60 63 fsumrecl φx+1xi=1x1i
65 logsqrt x+logx=logx2
66 65 ad2antrl φx+1xlogx=logx2
67 rpsqrtcl x+x+
68 67 ad2antrl φx+1xx+
69 harmoniclbnd x+logxi=1x1i
70 68 69 syl φx+1xlogxi=1x1i
71 66 70 eqbrtrrd φx+1xlogx2i=1x1i
72 eqid m1xm2=m1xm2
73 ovex m2V
74 72 73 elrnmpti kranm1xm2m1xk=m2
75 elfznn m1xm
76 75 adantl φx+1xm1xm
77 76 nnrpd φx+1xm1xm+
78 77 rprege0d φx+1xm1xm0m
79 sqrtsq m0mm2=m
80 78 79 syl φx+1xm1xm2=m
81 80 76 eqeltrd φx+1xm1xm2
82 fveq2 k=m2k=m2
83 82 eleq1d k=m2km2
84 81 83 syl5ibrcom φx+1xm1xk=m2k
85 84 rexlimdva φx+1xm1xk=m2k
86 74 85 biimtrid φx+1xkranm1xm2k
87 86 imp φx+1xkranm1xm2k
88 87 iftrued φx+1xkranm1xm2ifk10=1
89 88 oveq1d φx+1xkranm1xm2ifk10k=1k
90 89 sumeq2dv φx+1xkranm1xm2ifk10k=kranm1xm21k
91 fveq2 k=i2k=i2
92 91 oveq2d k=i21k=1i2
93 76 nnsqcld φx+1xm1xm2
94 68 rpred φx+1xx
95 fznnfl xm1xmmx
96 94 95 syl φx+1xm1xmmx
97 96 simplbda φx+1xm1xmx
98 68 adantr φx+1xm1xx+
99 98 rprege0d φx+1xm1xx0x
100 le2sq m0mx0xmxm2x2
101 78 99 100 syl2anc φx+1xm1xmxm2x2
102 97 101 mpbid φx+1xm1xm2x2
103 35 rpred φx+1xx
104 103 adantr φx+1xm1xx
105 104 recnd φx+1xm1xx
106 105 sqsqrtd φx+1xm1xx2=x
107 102 106 breqtrd φx+1xm1xm2x
108 fznnfl xm21xm2m2x
109 104 108 syl φx+1xm1xm21xm2m2x
110 93 107 109 mpbir2and φx+1xm1xm21x
111 110 ex φx+1xm1xm21x
112 75 nnrpd m1xm+
113 112 rprege0d m1xm0m
114 61 nnrpd i1xi+
115 114 rprege0d i1xi0i
116 sq11 m0mi0im2=i2m=i
117 113 115 116 syl2an m1xi1xm2=i2m=i
118 117 a1i φx+1xm1xi1xm2=i2m=i
119 111 118 dom2lem φx+1xm1xm2:1x1-11x
120 f1f1orn m1xm2:1x1-11xm1xm2:1x1-1 ontoranm1xm2
121 119 120 syl φx+1xm1xm2:1x1-1 ontoranm1xm2
122 oveq1 m=im2=i2
123 122 72 73 fvmpt3i i1xm1xm2i=i2
124 123 adantl φx+1xi1xm1xm2i=i2
125 f1f m1xm2:1x1-11xm1xm2:1x1x
126 frn m1xm2:1x1xranm1xm21x
127 119 125 126 3syl φx+1xranm1xm21x
128 127 sselda φx+1xkranm1xm2k1x
129 1re 1
130 0re 0
131 129 130 ifcli ifk10
132 rerpdivcl ifk10k+ifk10k
133 131 55 132 sylancr φx+1xk1xifk10k
134 133 recnd φx+1xk1xifk10k
135 128 134 syldan φx+1xkranm1xm2ifk10k
136 89 135 eqeltrrd φx+1xkranm1xm21k
137 92 60 121 124 136 fsumf1o φx+1xkranm1xm21k=i=1x1i2
138 90 137 eqtrd φx+1xkranm1xm2ifk10k=i=1x1i2
139 eldif k1xranm1xm2k1x¬kranm1xm2
140 50 ad2antrl φx+1xk1xkk
141 140 nncnd φx+1xk1xkk
142 141 sqsqrtd φx+1xk1xkk2=k
143 simprr φx+1xk1xkk
144 fznnfl xk1xkkx
145 103 144 syl φx+1xk1xkkx
146 145 simplbda φx+1xk1xkx
147 146 adantrr φx+1xk1xkkx
148 140 nnrpd φx+1xk1xkk+
149 148 rprege0d φx+1xk1xkk0k
150 35 adantr φx+1xk1xkx+
151 150 rprege0d φx+1xk1xkx0x
152 sqrtle k0kx0xkxkx
153 149 151 152 syl2anc φx+1xk1xkkxkx
154 147 153 mpbid φx+1xk1xkkx
155 68 adantr φx+1xk1xkx+
156 155 rpred φx+1xk1xkx
157 fznnfl xk1xkkx
158 156 157 syl φx+1xk1xkk1xkkx
159 143 154 158 mpbir2and φx+1xk1xkk1x
160 142 140 eqeltrd φx+1xk1xkk2
161 oveq1 m=km2=k2
162 72 161 elrnmpt1s k1xk2k2ranm1xm2
163 159 160 162 syl2anc φx+1xk1xkk2ranm1xm2
164 142 163 eqeltrrd φx+1xk1xkkranm1xm2
165 164 expr φx+1xk1xkkranm1xm2
166 165 con3d φx+1xk1x¬kranm1xm2¬k
167 166 impr φx+1xk1x¬kranm1xm2¬k
168 139 167 sylan2b φx+1xk1xranm1xm2¬k
169 168 iffalsed φx+1xk1xranm1xm2ifk10=0
170 169 oveq1d φx+1xk1xranm1xm2ifk10k=0k
171 eldifi k1xranm1xm2k1x
172 171 55 sylan2 φx+1xk1xranm1xm2k+
173 172 rpcnne0d φx+1xk1xranm1xm2kk0
174 div0 kk00k=0
175 173 174 syl φx+1xk1xranm1xm20k=0
176 170 175 eqtrd φx+1xk1xranm1xm2ifk10k=0
177 127 135 176 47 fsumss φx+1xkranm1xm2ifk10k=k=1xifk10k
178 62 nnrpd φx+1xi1xi+
179 178 rprege0d φx+1xi1xi0i
180 sqrtsq i0ii2=i
181 179 180 syl φx+1xi1xi2=i
182 181 oveq2d φx+1xi1x1i2=1i
183 182 sumeq2dv φx+1xi=1x1i2=i=1x1i
184 138 177 183 3eqtr3d φx+1xk=1xifk10k=i=1x1i
185 131 a1i φx+1xk1xifk10
186 3 ad2antrr φx+1xk1xN
187 8 ad2antrr φx+1xk1xXD
188 9 ad2antrr φx+1xk1xX:BaseZ
189 1 2 186 4 5 6 7 187 188 53 dchrisum0flb φx+1xk1xifk10Fk
190 185 52 55 189 lediv1dd φx+1xk1xifk10kFkk
191 47 133 56 190 fsumle φx+1xk=1xifk10kk=1xFkk
192 184 191 eqbrtrrd φx+1xi=1x1ik=1xFkk
193 30 64 57 71 192 letrd φx+1xlogx2k=1xFkk
194 57 leabsd φx+1xk=1xFkkk=1xFkk
195 30 57 59 193 194 letrd φx+1xlogx2k=1xFkk
196 46 195 eqbrtrd φx+1xlogx2k=1xFkk
197 27 10 29 21 196 o1le φx+logx2𝑂1
198 15 21 26 197 o1mul2 φx+2logx2𝑂1
199 19 198 eqeltrrd φx+logx𝑂1
200 11 199 mto ¬φ