Metamath Proof Explorer


Theorem etransclem44

Description: The given finite sum is nonzero. This is the claim proved after equation (7) in Juillerat p. 12 . (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem44.a φA:0
etransclem44.a0 φA00
etransclem44.m φM0
etransclem44.p φP
etransclem44.ap φA0<P
etransclem44.mp φM!<P
etransclem44.f F=xxP1j=1MxjP
etransclem44.k K=k0M×0MP+P-1A1stkDnF2ndk1stkP1!
Assertion etransclem44 φK0

Proof

Step Hyp Ref Expression
1 etransclem44.a φA:0
2 etransclem44.a0 φA00
3 etransclem44.m φM0
4 etransclem44.p φP
5 etransclem44.ap φA0<P
6 etransclem44.mp φM!<P
7 etransclem44.f F=xxP1j=1MxjP
8 etransclem44.k K=k0M×0MP+P-1A1stkDnF2ndk1stkP1!
9 8 a1i φK=k0M×0MP+P-1A1stkDnF2ndk1stkP1!
10 nfv kφ
11 nfcv _kA0DnFP10
12 fzfi 0MFin
13 fzfi 0MP+P-1Fin
14 xpfi 0MFin0MP+P-1Fin0M×0MP+P-1Fin
15 12 13 14 mp2an 0M×0MP+P-1Fin
16 15 a1i φ0M×0MP+P-1Fin
17 1 adantr φk0M×0MP+P-1A:0
18 fzssnn0 0M0
19 xp1st k0M×0MP+P-11stk0M
20 18 19 sselid k0M×0MP+P-11stk0
21 20 adantl φk0M×0MP+P-11stk0
22 17 21 ffvelcdmd φk0M×0MP+P-1A1stk
23 reelprrecn
24 23 a1i φk0M×0MP+P-1
25 reopn topGenran.
26 eqid TopOpenfld=TopOpenfld
27 26 tgioo2 topGenran.=TopOpenfld𝑡
28 25 27 eleqtri TopOpenfld𝑡
29 28 a1i φk0M×0MP+P-1TopOpenfld𝑡
30 prmnn PP
31 4 30 syl φP
32 31 adantr φk0M×0MP+P-1P
33 3 adantr φk0M×0MP+P-1M0
34 xp2nd k0M×0MP+P-12ndk0MP+P-1
35 elfznn0 2ndk0MP+P-12ndk0
36 34 35 syl k0M×0MP+P-12ndk0
37 36 adantl φk0M×0MP+P-12ndk0
38 21 nn0red φk0M×0MP+P-11stk
39 21 nn0zd φk0M×0MP+P-11stk
40 24 29 32 33 7 37 38 39 etransclem42 φk0M×0MP+P-1DnF2ndk1stk
41 22 40 zmulcld φk0M×0MP+P-1A1stkDnF2ndk1stk
42 41 zcnd φk0M×0MP+P-1A1stkDnF2ndk1stk
43 nn0uz 0=0
44 3 43 eleqtrdi φM0
45 eluzfz1 M000M
46 44 45 syl φ00M
47 0zd φ0
48 3 nn0zd φM
49 31 nnzd φP
50 48 49 zmulcld φMP
51 nnm1nn0 PP10
52 31 51 syl φP10
53 52 nn0zd φP1
54 50 53 zaddcld φMP+P-1
55 52 nn0ge0d φ0P1
56 31 nnnn0d φP0
57 3 56 nn0mulcld φMP0
58 57 nn0ge0d φ0MP
59 52 nn0red φP1
60 50 zred φMP
61 59 60 addge02d φ0MPP1MP+P-1
62 58 61 mpbid φP1MP+P-1
63 47 54 53 55 62 elfzd φP10MP+P-1
64 opelxp 0P10M×0MP+P-100MP10MP+P-1
65 46 63 64 sylanbrc φ0P10M×0MP+P-1
66 fveq2 k=0P11stk=1st0P1
67 0re 0
68 ovex P1V
69 op1stg 0P1V1st0P1=0
70 67 68 69 mp2an 1st0P1=0
71 66 70 eqtrdi k=0P11stk=0
72 71 fveq2d k=0P1A1stk=A0
73 fveq2 k=0P12ndk=2nd0P1
74 op2ndg 0P1V2nd0P1=P1
75 67 68 74 mp2an 2nd0P1=P1
76 73 75 eqtrdi k=0P12ndk=P1
77 76 fveq2d k=0P1DnF2ndk=DnFP1
78 77 71 fveq12d k=0P1DnF2ndk1stk=DnFP10
79 72 78 oveq12d k=0P1A1stkDnF2ndk1stk=A0DnFP10
80 10 11 16 42 65 79 fsumsplit1 φk0M×0MP+P-1A1stkDnF2ndk1stk=A0DnFP10+k0M×0MP+P-10P1A1stkDnF2ndk1stk
81 80 oveq1d φk0M×0MP+P-1A1stkDnF2ndk1stkP1!=A0DnFP10+k0M×0MP+P-10P1A1stkDnF2ndk1stkP1!
82 18 46 sselid φ00
83 1 82 ffvelcdmd φA0
84 23 a1i φ
85 28 a1i φTopOpenfld𝑡
86 67 a1i φ0
87 84 85 31 3 7 52 86 47 etransclem42 φDnFP10
88 83 87 zmulcld φA0DnFP10
89 88 zcnd φA0DnFP10
90 difss 0M×0MP+P-10P10M×0MP+P-1
91 ssfi 0M×0MP+P-1Fin0M×0MP+P-10P10M×0MP+P-10M×0MP+P-10P1Fin
92 15 90 91 mp2an 0M×0MP+P-10P1Fin
93 92 a1i φ0M×0MP+P-10P1Fin
94 eldifi k0M×0MP+P-10P1k0M×0MP+P-1
95 94 41 sylan2 φk0M×0MP+P-10P1A1stkDnF2ndk1stk
96 93 95 fsumzcl φk0M×0MP+P-10P1A1stkDnF2ndk1stk
97 96 zcnd φk0M×0MP+P-10P1A1stkDnF2ndk1stk
98 52 faccld φP1!
99 98 nncnd φP1!
100 98 nnne0d φP1!0
101 89 97 99 100 divdird φA0DnFP10+k0M×0MP+P-10P1A1stkDnF2ndk1stkP1!=A0DnFP10P1!+k0M×0MP+P-10P1A1stkDnF2ndk1stkP1!
102 9 81 101 3eqtrd φK=A0DnFP10P1!+k0M×0MP+P-10P1A1stkDnF2ndk1stkP1!
103 31 nnne0d φP0
104 83 zcnd φA0
105 87 zcnd φDnFP10
106 104 105 99 100 divassd φA0DnFP10P1!=A0DnFP10P1!
107 etransclem5 k0Myykifk=0P1P=j0Mxxjifj=0P1P
108 etransclem11 m0d0m0M|k=0Mdk=m=n0c0n0M|j=0Mcj=n
109 84 85 31 3 7 52 107 108 46 86 etransclem37 φP1!DnFP10
110 98 nnzd φP1!
111 dvdsval2 P1!P1!0DnFP10P1!DnFP10DnFP10P1!
112 110 100 87 111 syl3anc φP1!DnFP10DnFP10P1!
113 109 112 mpbid φDnFP10P1!
114 83 113 zmulcld φA0DnFP10P1!
115 106 114 eqeltrd φA0DnFP10P1!
116 94 42 sylan2 φk0M×0MP+P-10P1A1stkDnF2ndk1stk
117 93 99 116 100 fsumdivc φk0M×0MP+P-10P1A1stkDnF2ndk1stkP1!=k0M×0MP+P-10P1A1stkDnF2ndk1stkP1!
118 22 zcnd φk0M×0MP+P-1A1stk
119 94 118 sylan2 φk0M×0MP+P-10P1A1stk
120 94 40 sylan2 φk0M×0MP+P-10P1DnF2ndk1stk
121 120 zcnd φk0M×0MP+P-10P1DnF2ndk1stk
122 99 adantr φk0M×0MP+P-10P1P1!
123 100 adantr φk0M×0MP+P-10P1P1!0
124 119 121 122 123 divassd φk0M×0MP+P-10P1A1stkDnF2ndk1stkP1!=A1stkDnF2ndk1stkP1!
125 94 22 sylan2 φk0M×0MP+P-10P1A1stk
126 23 a1i φk0M×0MP+P-10P1
127 28 a1i φk0M×0MP+P-10P1TopOpenfld𝑡
128 31 adantr φk0M×0MP+P-10P1P
129 3 adantr φk0M×0MP+P-10P1M0
130 94 adantl φk0M×0MP+P-10P1k0M×0MP+P-1
131 130 36 syl φk0M×0MP+P-10P12ndk0
132 130 19 syl φk0M×0MP+P-10P11stk0M
133 94 38 sylan2 φk0M×0MP+P-10P11stk
134 126 127 128 129 7 131 107 108 132 133 etransclem37 φk0M×0MP+P-10P1P1!DnF2ndk1stk
135 110 adantr φk0M×0MP+P-10P1P1!
136 dvdsval2 P1!P1!0DnF2ndk1stkP1!DnF2ndk1stkDnF2ndk1stkP1!
137 135 123 120 136 syl3anc φk0M×0MP+P-10P1P1!DnF2ndk1stkDnF2ndk1stkP1!
138 134 137 mpbid φk0M×0MP+P-10P1DnF2ndk1stkP1!
139 125 138 zmulcld φk0M×0MP+P-10P1A1stkDnF2ndk1stkP1!
140 124 139 eqeltrd φk0M×0MP+P-10P1A1stkDnF2ndk1stkP1!
141 93 140 fsumzcl φk0M×0MP+P-10P1A1stkDnF2ndk1stkP1!
142 117 141 eqeltrd φk0M×0MP+P-10P1A1stkDnF2ndk1stkP1!
143 1zzd φ1
144 zabscl A0A0
145 83 144 syl φA0
146 nn0abscl A0A00
147 83 146 syl φA00
148 104 2 absne0d φA00
149 elnnne0 A0A00A00
150 147 148 149 sylanbrc φA0
151 150 nnge1d φ1A0
152 zltlem1 A0PA0<PA0P1
153 145 49 152 syl2anc φA0<PA0P1
154 5 153 mpbid φA0P1
155 143 53 145 151 154 elfzd φA01P1
156 fzm1ndvds PA01P1¬PA0
157 31 155 156 syl2anc φ¬PA0
158 dvdsabsb PA0PA0PA0
159 49 83 158 syl2anc φPA0PA0
160 157 159 mtbird φ¬PA0
161 3 4 6 7 etransclem41 φ¬PDnFP10P1!
162 160 161 jca φ¬PA0¬PDnFP10P1!
163 pm4.56 ¬PA0¬PDnFP10P1!¬PA0PDnFP10P1!
164 162 163 sylib φ¬PA0PDnFP10P1!
165 euclemma PA0DnFP10P1!PA0DnFP10P1!PA0PDnFP10P1!
166 4 83 113 165 syl3anc φPA0DnFP10P1!PA0PDnFP10P1!
167 164 166 mtbird φ¬PA0DnFP10P1!
168 106 breq2d φPA0DnFP10P1!PA0DnFP10P1!
169 167 168 mtbird φ¬PA0DnFP10P1!
170 49 adantr φk0M×0MP+P-10P1P
171 170 125 138 3jca φk0M×0MP+P-10P1PA1stkDnF2ndk1stkP1!
172 eldifn k0M×0MP+P-10P1¬k0P1
173 94 adantr k0M×0MP+P-10P12ndk=P11stk=0k0M×0MP+P-1
174 1st2nd2 k0M×0MP+P-1k=1stk2ndk
175 173 174 syl k0M×0MP+P-10P12ndk=P11stk=0k=1stk2ndk
176 simpr 2ndk=P11stk=01stk=0
177 simpl 2ndk=P11stk=02ndk=P1
178 176 177 opeq12d 2ndk=P11stk=01stk2ndk=0P1
179 178 adantl k0M×0MP+P-10P12ndk=P11stk=01stk2ndk=0P1
180 175 179 eqtrd k0M×0MP+P-10P12ndk=P11stk=0k=0P1
181 velsn k0P1k=0P1
182 180 181 sylibr k0M×0MP+P-10P12ndk=P11stk=0k0P1
183 172 182 mtand k0M×0MP+P-10P1¬2ndk=P11stk=0
184 183 adantl φk0M×0MP+P-10P1¬2ndk=P11stk=0
185 128 129 7 131 132 184 108 etransclem38 φk0M×0MP+P-10P1PDnF2ndk1stkP1!
186 dvdsmultr2 PA1stkDnF2ndk1stkP1!PDnF2ndk1stkP1!PA1stkDnF2ndk1stkP1!
187 171 185 186 sylc φk0M×0MP+P-10P1PA1stkDnF2ndk1stkP1!
188 187 124 breqtrrd φk0M×0MP+P-10P1PA1stkDnF2ndk1stkP1!
189 93 49 140 188 fsumdvds φPk0M×0MP+P-10P1A1stkDnF2ndk1stkP1!
190 189 117 breqtrrd φPk0M×0MP+P-10P1A1stkDnF2ndk1stkP1!
191 49 103 115 142 169 190 etransclem9 φA0DnFP10P1!+k0M×0MP+P-10P1A1stkDnF2ndk1stkP1!0
192 102 191 eqnetrd φK0