Metamath Proof Explorer


Theorem etransclem44

Description: The given finite sum is nonzero. This is the claim proved after equation (7) in Juillerat p. 12 . (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem44.a φ A : 0
etransclem44.a0 φ A 0 0
etransclem44.m φ M 0
etransclem44.p φ P
etransclem44.ap φ A 0 < P
etransclem44.mp φ M ! < P
etransclem44.f F = x x P 1 j = 1 M x j P
etransclem44.k K = k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k P 1 !
Assertion etransclem44 φ K 0

Proof

Step Hyp Ref Expression
1 etransclem44.a φ A : 0
2 etransclem44.a0 φ A 0 0
3 etransclem44.m φ M 0
4 etransclem44.p φ P
5 etransclem44.ap φ A 0 < P
6 etransclem44.mp φ M ! < P
7 etransclem44.f F = x x P 1 j = 1 M x j P
8 etransclem44.k K = k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k P 1 !
9 8 a1i φ K = k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k P 1 !
10 nfv k φ
11 nfcv _ k A 0 D n F P 1 0
12 fzfi 0 M Fin
13 fzfi 0 M P + P - 1 Fin
14 xpfi 0 M Fin 0 M P + P - 1 Fin 0 M × 0 M P + P - 1 Fin
15 12 13 14 mp2an 0 M × 0 M P + P - 1 Fin
16 15 a1i φ 0 M × 0 M P + P - 1 Fin
17 1 adantr φ k 0 M × 0 M P + P - 1 A : 0
18 fzssnn0 0 M 0
19 xp1st k 0 M × 0 M P + P - 1 1 st k 0 M
20 18 19 sselid k 0 M × 0 M P + P - 1 1 st k 0
21 20 adantl φ k 0 M × 0 M P + P - 1 1 st k 0
22 17 21 ffvelcdmd φ k 0 M × 0 M P + P - 1 A 1 st k
23 reelprrecn
24 23 a1i φ k 0 M × 0 M P + P - 1
25 reopn topGen ran .
26 tgioo4 topGen ran . = TopOpen fld 𝑡
27 25 26 eleqtri TopOpen fld 𝑡
28 27 a1i φ k 0 M × 0 M P + P - 1 TopOpen fld 𝑡
29 prmnn P P
30 4 29 syl φ P
31 30 adantr φ k 0 M × 0 M P + P - 1 P
32 3 adantr φ k 0 M × 0 M P + P - 1 M 0
33 xp2nd k 0 M × 0 M P + P - 1 2 nd k 0 M P + P - 1
34 elfznn0 2 nd k 0 M P + P - 1 2 nd k 0
35 33 34 syl k 0 M × 0 M P + P - 1 2 nd k 0
36 35 adantl φ k 0 M × 0 M P + P - 1 2 nd k 0
37 21 nn0red φ k 0 M × 0 M P + P - 1 1 st k
38 21 nn0zd φ k 0 M × 0 M P + P - 1 1 st k
39 24 28 31 32 7 36 37 38 etransclem42 φ k 0 M × 0 M P + P - 1 D n F 2 nd k 1 st k
40 22 39 zmulcld φ k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k
41 40 zcnd φ k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k
42 nn0uz 0 = 0
43 3 42 eleqtrdi φ M 0
44 eluzfz1 M 0 0 0 M
45 43 44 syl φ 0 0 M
46 0zd φ 0
47 3 nn0zd φ M
48 30 nnzd φ P
49 47 48 zmulcld φ M P
50 nnm1nn0 P P 1 0
51 30 50 syl φ P 1 0
52 51 nn0zd φ P 1
53 49 52 zaddcld φ M P + P - 1
54 51 nn0ge0d φ 0 P 1
55 30 nnnn0d φ P 0
56 3 55 nn0mulcld φ M P 0
57 56 nn0ge0d φ 0 M P
58 51 nn0red φ P 1
59 49 zred φ M P
60 58 59 addge02d φ 0 M P P 1 M P + P - 1
61 57 60 mpbid φ P 1 M P + P - 1
62 46 53 52 54 61 elfzd φ P 1 0 M P + P - 1
63 opelxp 0 P 1 0 M × 0 M P + P - 1 0 0 M P 1 0 M P + P - 1
64 45 62 63 sylanbrc φ 0 P 1 0 M × 0 M P + P - 1
65 fveq2 k = 0 P 1 1 st k = 1 st 0 P 1
66 0re 0
67 ovex P 1 V
68 op1stg 0 P 1 V 1 st 0 P 1 = 0
69 66 67 68 mp2an 1 st 0 P 1 = 0
70 65 69 eqtrdi k = 0 P 1 1 st k = 0
71 70 fveq2d k = 0 P 1 A 1 st k = A 0
72 fveq2 k = 0 P 1 2 nd k = 2 nd 0 P 1
73 op2ndg 0 P 1 V 2 nd 0 P 1 = P 1
74 66 67 73 mp2an 2 nd 0 P 1 = P 1
75 72 74 eqtrdi k = 0 P 1 2 nd k = P 1
76 75 fveq2d k = 0 P 1 D n F 2 nd k = D n F P 1
77 76 70 fveq12d k = 0 P 1 D n F 2 nd k 1 st k = D n F P 1 0
78 71 77 oveq12d k = 0 P 1 A 1 st k D n F 2 nd k 1 st k = A 0 D n F P 1 0
79 10 11 16 41 64 78 fsumsplit1 φ k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k = A 0 D n F P 1 0 + k 0 M × 0 M P + P - 1 0 P 1 A 1 st k D n F 2 nd k 1 st k
80 79 oveq1d φ k 0 M × 0 M P + P - 1 A 1 st k D n F 2 nd k 1 st k P 1 ! = A 0 D n F P 1 0 + k 0 M × 0 M P + P - 1 0 P 1 A 1 st k D n F 2 nd k 1 st k P 1 !
81 18 45 sselid φ 0 0
82 1 81 ffvelcdmd φ A 0
83 23 a1i φ
84 27 a1i φ TopOpen fld 𝑡
85 66 a1i φ 0
86 83 84 30 3 7 51 85 46 etransclem42 φ D n F P 1 0
87 82 86 zmulcld φ A 0 D n F P 1 0
88 87 zcnd φ A 0 D n F P 1 0
89 difss 0 M × 0 M P + P - 1 0 P 1 0 M × 0 M P + P - 1
90 ssfi 0 M × 0 M P + P - 1 Fin 0 M × 0 M P + P - 1 0 P 1 0 M × 0 M P + P - 1 0 M × 0 M P + P - 1 0 P 1 Fin
91 15 89 90 mp2an 0 M × 0 M P + P - 1 0 P 1 Fin
92 91 a1i φ 0 M × 0 M P + P - 1 0 P 1 Fin
93 eldifi k 0 M × 0 M P + P - 1 0 P 1 k 0 M × 0 M P + P - 1
94 93 40 sylan2 φ k 0 M × 0 M P + P - 1 0 P 1 A 1 st k D n F 2 nd k 1 st k
95 92 94 fsumzcl φ k 0 M × 0 M P + P - 1 0 P 1 A 1 st k D n F 2 nd k 1 st k
96 95 zcnd φ k 0 M × 0 M P + P - 1 0 P 1 A 1 st k D n F 2 nd k 1 st k
97 51 faccld φ P 1 !
98 97 nncnd φ P 1 !
99 97 nnne0d φ P 1 ! 0
100 88 96 98 99 divdird φ A 0 D n F P 1 0 + k 0 M × 0 M P + P - 1 0 P 1 A 1 st k D n F 2 nd k 1 st k P 1 ! = A 0 D n F P 1 0 P 1 ! + k 0 M × 0 M P + P - 1 0 P 1 A 1 st k D n F 2 nd k 1 st k P 1 !
101 9 80 100 3eqtrd φ K = A 0 D n F P 1 0 P 1 ! + k 0 M × 0 M P + P - 1 0 P 1 A 1 st k D n F 2 nd k 1 st k P 1 !
102 30 nnne0d φ P 0
103 82 zcnd φ A 0
104 86 zcnd φ D n F P 1 0
105 103 104 98 99 divassd φ A 0 D n F P 1 0 P 1 ! = A 0 D n F P 1 0 P 1 !
106 etransclem5 k 0 M y y k if k = 0 P 1 P = j 0 M x x j if j = 0 P 1 P
107 etransclem11 m 0 d 0 m 0 M | k = 0 M d k = m = n 0 c 0 n 0 M | j = 0 M c j = n
108 83 84 30 3 7 51 106 107 45 85 etransclem37 φ P 1 ! D n F P 1 0
109 97 nnzd φ P 1 !
110 dvdsval2 P 1 ! P 1 ! 0 D n F P 1 0 P 1 ! D n F P 1 0 D n F P 1 0 P 1 !
111 109 99 86 110 syl3anc φ P 1 ! D n F P 1 0 D n F P 1 0 P 1 !
112 108 111 mpbid φ D n F P 1 0 P 1 !
113 82 112 zmulcld φ A 0 D n F P 1 0 P 1 !
114 105 113 eqeltrd φ A 0 D n F P 1 0 P 1 !
115 93 41 sylan2 φ k 0 M × 0 M P + P - 1 0 P 1 A 1 st k D n F 2 nd k 1 st k
116 92 98 115 99 fsumdivc φ k 0 M × 0 M P + P - 1 0 P 1 A 1 st k D n F 2 nd k 1 st k P 1 ! = k 0 M × 0 M P + P - 1 0 P 1 A 1 st k D n F 2 nd k 1 st k P 1 !
117 22 zcnd φ k 0 M × 0 M P + P - 1 A 1 st k
118 93 117 sylan2 φ k 0 M × 0 M P + P - 1 0 P 1 A 1 st k
119 93 39 sylan2 φ k 0 M × 0 M P + P - 1 0 P 1 D n F 2 nd k 1 st k
120 119 zcnd φ k 0 M × 0 M P + P - 1 0 P 1 D n F 2 nd k 1 st k
121 98 adantr φ k 0 M × 0 M P + P - 1 0 P 1 P 1 !
122 99 adantr φ k 0 M × 0 M P + P - 1 0 P 1 P 1 ! 0
123 118 120 121 122 divassd φ k 0 M × 0 M P + P - 1 0 P 1 A 1 st k D n F 2 nd k 1 st k P 1 ! = A 1 st k D n F 2 nd k 1 st k P 1 !
124 93 22 sylan2 φ k 0 M × 0 M P + P - 1 0 P 1 A 1 st k
125 23 a1i φ k 0 M × 0 M P + P - 1 0 P 1
126 27 a1i φ k 0 M × 0 M P + P - 1 0 P 1 TopOpen fld 𝑡
127 30 adantr φ k 0 M × 0 M P + P - 1 0 P 1 P
128 3 adantr φ k 0 M × 0 M P + P - 1 0 P 1 M 0
129 93 adantl φ k 0 M × 0 M P + P - 1 0 P 1 k 0 M × 0 M P + P - 1
130 129 35 syl φ k 0 M × 0 M P + P - 1 0 P 1 2 nd k 0
131 129 19 syl φ k 0 M × 0 M P + P - 1 0 P 1 1 st k 0 M
132 93 37 sylan2 φ k 0 M × 0 M P + P - 1 0 P 1 1 st k
133 125 126 127 128 7 130 106 107 131 132 etransclem37 φ k 0 M × 0 M P + P - 1 0 P 1 P 1 ! D n F 2 nd k 1 st k
134 109 adantr φ k 0 M × 0 M P + P - 1 0 P 1 P 1 !
135 dvdsval2 P 1 ! P 1 ! 0 D n F 2 nd k 1 st k P 1 ! D n F 2 nd k 1 st k D n F 2 nd k 1 st k P 1 !
136 134 122 119 135 syl3anc φ k 0 M × 0 M P + P - 1 0 P 1 P 1 ! D n F 2 nd k 1 st k D n F 2 nd k 1 st k P 1 !
137 133 136 mpbid φ k 0 M × 0 M P + P - 1 0 P 1 D n F 2 nd k 1 st k P 1 !
138 124 137 zmulcld φ k 0 M × 0 M P + P - 1 0 P 1 A 1 st k D n F 2 nd k 1 st k P 1 !
139 123 138 eqeltrd φ k 0 M × 0 M P + P - 1 0 P 1 A 1 st k D n F 2 nd k 1 st k P 1 !
140 92 139 fsumzcl φ k 0 M × 0 M P + P - 1 0 P 1 A 1 st k D n F 2 nd k 1 st k P 1 !
141 116 140 eqeltrd φ k 0 M × 0 M P + P - 1 0 P 1 A 1 st k D n F 2 nd k 1 st k P 1 !
142 1zzd φ 1
143 zabscl A 0 A 0
144 82 143 syl φ A 0
145 nn0abscl A 0 A 0 0
146 82 145 syl φ A 0 0
147 103 2 absne0d φ A 0 0
148 elnnne0 A 0 A 0 0 A 0 0
149 146 147 148 sylanbrc φ A 0
150 149 nnge1d φ 1 A 0
151 zltlem1 A 0 P A 0 < P A 0 P 1
152 144 48 151 syl2anc φ A 0 < P A 0 P 1
153 5 152 mpbid φ A 0 P 1
154 142 52 144 150 153 elfzd φ A 0 1 P 1
155 fzm1ndvds P A 0 1 P 1 ¬ P A 0
156 30 154 155 syl2anc φ ¬ P A 0
157 dvdsabsb P A 0 P A 0 P A 0
158 48 82 157 syl2anc φ P A 0 P A 0
159 156 158 mtbird φ ¬ P A 0
160 3 4 6 7 etransclem41 φ ¬ P D n F P 1 0 P 1 !
161 159 160 jca φ ¬ P A 0 ¬ P D n F P 1 0 P 1 !
162 pm4.56 ¬ P A 0 ¬ P D n F P 1 0 P 1 ! ¬ P A 0 P D n F P 1 0 P 1 !
163 161 162 sylib φ ¬ P A 0 P D n F P 1 0 P 1 !
164 euclemma P A 0 D n F P 1 0 P 1 ! P A 0 D n F P 1 0 P 1 ! P A 0 P D n F P 1 0 P 1 !
165 4 82 112 164 syl3anc φ P A 0 D n F P 1 0 P 1 ! P A 0 P D n F P 1 0 P 1 !
166 163 165 mtbird φ ¬ P A 0 D n F P 1 0 P 1 !
167 105 breq2d φ P A 0 D n F P 1 0 P 1 ! P A 0 D n F P 1 0 P 1 !
168 166 167 mtbird φ ¬ P A 0 D n F P 1 0 P 1 !
169 48 adantr φ k 0 M × 0 M P + P - 1 0 P 1 P
170 169 124 137 3jca φ k 0 M × 0 M P + P - 1 0 P 1 P A 1 st k D n F 2 nd k 1 st k P 1 !
171 eldifn k 0 M × 0 M P + P - 1 0 P 1 ¬ k 0 P 1
172 93 adantr k 0 M × 0 M P + P - 1 0 P 1 2 nd k = P 1 1 st k = 0 k 0 M × 0 M P + P - 1
173 1st2nd2 k 0 M × 0 M P + P - 1 k = 1 st k 2 nd k
174 172 173 syl k 0 M × 0 M P + P - 1 0 P 1 2 nd k = P 1 1 st k = 0 k = 1 st k 2 nd k
175 simpr 2 nd k = P 1 1 st k = 0 1 st k = 0
176 simpl 2 nd k = P 1 1 st k = 0 2 nd k = P 1
177 175 176 opeq12d 2 nd k = P 1 1 st k = 0 1 st k 2 nd k = 0 P 1
178 177 adantl k 0 M × 0 M P + P - 1 0 P 1 2 nd k = P 1 1 st k = 0 1 st k 2 nd k = 0 P 1
179 174 178 eqtrd k 0 M × 0 M P + P - 1 0 P 1 2 nd k = P 1 1 st k = 0 k = 0 P 1
180 velsn k 0 P 1 k = 0 P 1
181 179 180 sylibr k 0 M × 0 M P + P - 1 0 P 1 2 nd k = P 1 1 st k = 0 k 0 P 1
182 171 181 mtand k 0 M × 0 M P + P - 1 0 P 1 ¬ 2 nd k = P 1 1 st k = 0
183 182 adantl φ k 0 M × 0 M P + P - 1 0 P 1 ¬ 2 nd k = P 1 1 st k = 0
184 127 128 7 130 131 183 107 etransclem38 φ k 0 M × 0 M P + P - 1 0 P 1 P D n F 2 nd k 1 st k P 1 !
185 dvdsmultr2 P A 1 st k D n F 2 nd k 1 st k P 1 ! P D n F 2 nd k 1 st k P 1 ! P A 1 st k D n F 2 nd k 1 st k P 1 !
186 170 184 185 sylc φ k 0 M × 0 M P + P - 1 0 P 1 P A 1 st k D n F 2 nd k 1 st k P 1 !
187 186 123 breqtrrd φ k 0 M × 0 M P + P - 1 0 P 1 P A 1 st k D n F 2 nd k 1 st k P 1 !
188 92 48 139 187 fsumdvds φ P k 0 M × 0 M P + P - 1 0 P 1 A 1 st k D n F 2 nd k 1 st k P 1 !
189 188 116 breqtrrd φ P k 0 M × 0 M P + P - 1 0 P 1 A 1 st k D n F 2 nd k 1 st k P 1 !
190 48 102 114 141 168 189 etransclem9 φ A 0 D n F P 1 0 P 1 ! + k 0 M × 0 M P + P - 1 0 P 1 A 1 st k D n F 2 nd k 1 st k P 1 ! 0
191 101 190 eqnetrd φ K 0