Metamath Proof Explorer


Theorem evlslem2

Description: A linear function on the polynomial ring which is multiplicative on scaled monomials is generally multiplicative. (Contributed by Stefan O'Rear, 9-Mar-2015) (Revised by AV, 11-Apr-2024)

Ref Expression
Hypotheses evlslem2.p P=ImPolyR
evlslem2.b B=BaseP
evlslem2.m ·˙=S
evlslem2.z 0˙=0R
evlslem2.d D=h0I|h-1Fin
evlslem2.i φIW
evlslem2.r φRCRing
evlslem2.s φSCRing
evlslem2.e1 φEPGrpHomS
evlslem2.e2 φxByBjDiDEkDifk=j+fixjRyi0˙=EkDifk=jxj0˙·˙EkDifk=iyi0˙
Assertion evlslem2 φxByBExPy=Ex·˙Ey

Proof

Step Hyp Ref Expression
1 evlslem2.p P=ImPolyR
2 evlslem2.b B=BaseP
3 evlslem2.m ·˙=S
4 evlslem2.z 0˙=0R
5 evlslem2.d D=h0I|h-1Fin
6 evlslem2.i φIW
7 evlslem2.r φRCRing
8 evlslem2.s φSCRing
9 evlslem2.e1 φEPGrpHomS
10 evlslem2.e2 φxByBjDiDEkDifk=j+fixjRyi0˙=EkDifk=jxj0˙·˙EkDifk=iyi0˙
11 eqid P=P
12 eqid 0P=0P
13 ovex 0IV
14 5 13 rabex2 DV
15 14 a1i φxByBDV
16 crngring RCRingRRing
17 7 16 syl φRRing
18 1 mplring IWRRingPRing
19 6 17 18 syl2anc φPRing
20 19 adantr φxByBPRing
21 eqid BaseR=BaseR
22 6 ad2antrr φxByBjDIW
23 17 ad2antrr φxByBjDRRing
24 simprl φxByBxB
25 1 21 2 5 24 mplelf φxByBx:DBaseR
26 25 ffvelcdmda φxByBjDxjBaseR
27 simpr φxByBjDjD
28 1 5 4 21 22 23 2 26 27 mplmon2cl φxByBjDkDifk=jxj0˙B
29 6 ad2antrr φxByBiDIW
30 17 ad2antrr φxByBiDRRing
31 simprr φxByByB
32 1 21 2 5 31 mplelf φxByBy:DBaseR
33 32 ffvelcdmda φxByBiDyiBaseR
34 simpr φxByBiDiD
35 1 5 4 21 29 30 2 33 34 mplmon2cl φxByBiDkDifk=iyi0˙B
36 14 mptex jDkDifk=jyj0˙V
37 funmpt FunjDkDifk=jyj0˙
38 fvex 0PV
39 36 37 38 3pm3.2i jDkDifk=jyj0˙VFunjDkDifk=jyj0˙0PV
40 39 a1i φyBjDkDifk=jyj0˙VFunjDkDifk=jyj0˙0PV
41 simpr φyByB
42 7 adantr φyBRCRing
43 1 2 4 41 42 mplelsfi φyBfinSupp0˙y
44 43 fsuppimpd φyBysupp0˙Fin
45 1 21 2 5 41 mplelf φyBy:DBaseR
46 ssidd φyBysupp0˙ysupp0˙
47 14 a1i φyBDV
48 4 fvexi 0˙V
49 48 a1i φyB0˙V
50 45 46 47 49 suppssr φyBjDsupp0˙yyj=0˙
51 50 ifeq1d φyBjDsupp0˙yifk=jyj0˙=ifk=j0˙0˙
52 ifid ifk=j0˙0˙=0˙
53 51 52 eqtrdi φyBjDsupp0˙yifk=jyj0˙=0˙
54 53 mpteq2dv φyBjDsupp0˙ykDifk=jyj0˙=kD0˙
55 ringgrp RRingRGrp
56 17 55 syl φRGrp
57 1 5 4 12 6 56 mpl0 φ0P=D×0˙
58 fconstmpt D×0˙=kD0˙
59 57 58 eqtrdi φ0P=kD0˙
60 59 ad2antrr φyBjDsupp0˙y0P=kD0˙
61 54 60 eqtr4d φyBjDsupp0˙ykDifk=jyj0˙=0P
62 61 47 suppss2 φyBjDkDifk=jyj0˙supp0Pysupp0˙
63 suppssfifsupp jDkDifk=jyj0˙VFunjDkDifk=jyj0˙0PVysupp0˙FinjDkDifk=jyj0˙supp0Pysupp0˙finSupp0PjDkDifk=jyj0˙
64 40 44 62 63 syl12anc φyBfinSupp0PjDkDifk=jyj0˙
65 64 ralrimiva φyBfinSupp0PjDkDifk=jyj0˙
66 fveq1 y=xyj=xj
67 66 ifeq1d y=xifk=jyj0˙=ifk=jxj0˙
68 67 mpteq2dv y=xkDifk=jyj0˙=kDifk=jxj0˙
69 68 mpteq2dv y=xjDkDifk=jyj0˙=jDkDifk=jxj0˙
70 69 breq1d y=xfinSupp0PjDkDifk=jyj0˙finSupp0PjDkDifk=jxj0˙
71 70 cbvralvw yBfinSupp0PjDkDifk=jyj0˙xBfinSupp0PjDkDifk=jxj0˙
72 65 71 sylib φxBfinSupp0PjDkDifk=jxj0˙
73 72 r19.21bi φxBfinSupp0PjDkDifk=jxj0˙
74 73 adantrr φxByBfinSupp0PjDkDifk=jxj0˙
75 equequ2 i=jk=ik=j
76 fveq2 i=jyi=yj
77 75 76 ifbieq1d i=jifk=iyi0˙=ifk=jyj0˙
78 77 mpteq2dv i=jkDifk=iyi0˙=kDifk=jyj0˙
79 78 cbvmptv iDkDifk=iyi0˙=jDkDifk=jyj0˙
80 64 adantrl φxByBfinSupp0PjDkDifk=jyj0˙
81 79 80 eqbrtrid φxByBfinSupp0PiDkDifk=iyi0˙
82 2 11 12 15 15 20 28 35 74 81 gsumdixp φxByBPjDkDifk=jxj0˙PPiDkDifk=iyi0˙=PjD,iDkDifk=jxj0˙PkDifk=iyi0˙
83 82 fveq2d φxByBEPjDkDifk=jxj0˙PPiDkDifk=iyi0˙=EPjD,iDkDifk=jxj0˙PkDifk=iyi0˙
84 ringcmn PRingPCMnd
85 19 84 syl φPCMnd
86 85 adantr φxByBPCMnd
87 crngring SCRingSRing
88 8 87 syl φSRing
89 88 adantr φxByBSRing
90 ringmnd SRingSMnd
91 89 90 syl φxByBSMnd
92 14 14 xpex D×DV
93 92 a1i φxByBD×DV
94 ghmmhm EPGrpHomSEPMndHomS
95 9 94 syl φEPMndHomS
96 95 adantr φxByBEPMndHomS
97 19 ad2antrr φxByBjDiDPRing
98 28 adantrr φxByBjDiDkDifk=jxj0˙B
99 35 adantrl φxByBjDiDkDifk=iyi0˙B
100 2 11 ringcl PRingkDifk=jxj0˙BkDifk=iyi0˙BkDifk=jxj0˙PkDifk=iyi0˙B
101 97 98 99 100 syl3anc φxByBjDiDkDifk=jxj0˙PkDifk=iyi0˙B
102 101 ralrimivva φxByBjDiDkDifk=jxj0˙PkDifk=iyi0˙B
103 eqid jD,iDkDifk=jxj0˙PkDifk=iyi0˙=jD,iDkDifk=jxj0˙PkDifk=iyi0˙
104 103 fmpo jDiDkDifk=jxj0˙PkDifk=iyi0˙BjD,iDkDifk=jxj0˙PkDifk=iyi0˙:D×DB
105 102 104 sylib φxByBjD,iDkDifk=jxj0˙PkDifk=iyi0˙:D×DB
106 14 14 mpoex jD,iDkDifk=jxj0˙PkDifk=iyi0˙V
107 103 mpofun FunjD,iDkDifk=jxj0˙PkDifk=iyi0˙
108 106 107 38 3pm3.2i jD,iDkDifk=jxj0˙PkDifk=iyi0˙VFunjD,iDkDifk=jxj0˙PkDifk=iyi0˙0PV
109 108 a1i φxByBjD,iDkDifk=jxj0˙PkDifk=iyi0˙VFunjD,iDkDifk=jxj0˙PkDifk=iyi0˙0PV
110 74 fsuppimpd φxByBjDkDifk=jxj0˙supp0PFin
111 81 fsuppimpd φxByBiDkDifk=iyi0˙supp0PFin
112 xpfi jDkDifk=jxj0˙supp0PFiniDkDifk=iyi0˙supp0PFinsupp0PjDkDifk=jxj0˙×supp0PiDkDifk=iyi0˙Fin
113 110 111 112 syl2anc φxByBsupp0PjDkDifk=jxj0˙×supp0PiDkDifk=iyi0˙Fin
114 2 12 11 20 28 35 15 15 evlslem4 φxByBjD,iDkDifk=jxj0˙PkDifk=iyi0˙supp0Psupp0PjDkDifk=jxj0˙×supp0PiDkDifk=iyi0˙
115 suppssfifsupp jD,iDkDifk=jxj0˙PkDifk=iyi0˙VFunjD,iDkDifk=jxj0˙PkDifk=iyi0˙0PVsupp0PjDkDifk=jxj0˙×supp0PiDkDifk=iyi0˙FinjD,iDkDifk=jxj0˙PkDifk=iyi0˙supp0Psupp0PjDkDifk=jxj0˙×supp0PiDkDifk=iyi0˙finSupp0PjD,iDkDifk=jxj0˙PkDifk=iyi0˙
116 109 113 114 115 syl12anc φxByBfinSupp0PjD,iDkDifk=jxj0˙PkDifk=iyi0˙
117 2 12 86 91 93 96 105 116 gsummhm φxByBSEjD,iDkDifk=jxj0˙PkDifk=iyi0˙=EPjD,iDkDifk=jxj0˙PkDifk=iyi0˙
118 6 ad2antrr φxByBjDiDIW
119 7 ad2antrr φxByBjDiDRCRing
120 eqid R=R
121 simprl φxByBjDiDjD
122 simprr φxByBjDiDiD
123 26 adantrr φxByBjDiDxjBaseR
124 33 adantrl φxByBjDiDyiBaseR
125 1 5 4 21 118 119 11 120 121 122 123 124 mplmon2mul φxByBjDiDkDifk=jxj0˙PkDifk=iyi0˙=kDifk=j+fixjRyi0˙
126 125 fveq2d φxByBjDiDEkDifk=jxj0˙PkDifk=iyi0˙=EkDifk=j+fixjRyi0˙
127 10 anassrs φxByBjDiDEkDifk=j+fixjRyi0˙=EkDifk=jxj0˙·˙EkDifk=iyi0˙
128 126 127 eqtrd φxByBjDiDEkDifk=jxj0˙PkDifk=iyi0˙=EkDifk=jxj0˙·˙EkDifk=iyi0˙
129 128 3impb φxByBjDiDEkDifk=jxj0˙PkDifk=iyi0˙=EkDifk=jxj0˙·˙EkDifk=iyi0˙
130 129 mpoeq3dva φxByBjD,iDEkDifk=jxj0˙PkDifk=iyi0˙=jD,iDEkDifk=jxj0˙·˙EkDifk=iyi0˙
131 130 oveq2d φxByBSjD,iDEkDifk=jxj0˙PkDifk=iyi0˙=SjD,iDEkDifk=jxj0˙·˙EkDifk=iyi0˙
132 eqidd φxByBjD,iDkDifk=jxj0˙PkDifk=iyi0˙=jD,iDkDifk=jxj0˙PkDifk=iyi0˙
133 eqid BaseS=BaseS
134 2 133 ghmf EPGrpHomSE:BBaseS
135 9 134 syl φE:BBaseS
136 135 feqmptd φE=zBEz
137 136 adantr φxByBE=zBEz
138 fveq2 z=kDifk=jxj0˙PkDifk=iyi0˙Ez=EkDifk=jxj0˙PkDifk=iyi0˙
139 101 132 137 138 fmpoco φxByBEjD,iDkDifk=jxj0˙PkDifk=iyi0˙=jD,iDEkDifk=jxj0˙PkDifk=iyi0˙
140 139 oveq2d φxByBSEjD,iDkDifk=jxj0˙PkDifk=iyi0˙=SjD,iDEkDifk=jxj0˙PkDifk=iyi0˙
141 eqidd φxByBjDkDifk=jxj0˙=jDkDifk=jxj0˙
142 fveq2 z=kDifk=jxj0˙Ez=EkDifk=jxj0˙
143 28 141 137 142 fmptco φxByBEjDkDifk=jxj0˙=jDEkDifk=jxj0˙
144 143 oveq2d φxByBSEjDkDifk=jxj0˙=SjDEkDifk=jxj0˙
145 eqidd φxByBiDkDifk=iyi0˙=iDkDifk=iyi0˙
146 fveq2 z=kDifk=iyi0˙Ez=EkDifk=iyi0˙
147 35 145 137 146 fmptco φxByBEiDkDifk=iyi0˙=iDEkDifk=iyi0˙
148 147 oveq2d φxByBSEiDkDifk=iyi0˙=SiDEkDifk=iyi0˙
149 144 148 oveq12d φxByBSEjDkDifk=jxj0˙·˙SEiDkDifk=iyi0˙=SjDEkDifk=jxj0˙·˙SiDEkDifk=iyi0˙
150 eqid 0S=0S
151 135 ad2antrr φxByBjDE:BBaseS
152 151 28 ffvelcdmd φxByBjDEkDifk=jxj0˙BaseS
153 135 ad2antrr φxByBiDE:BBaseS
154 153 35 ffvelcdmd φxByBiDEkDifk=iyi0˙BaseS
155 14 mptex jDEkDifk=jxj0˙V
156 funmpt FunjDEkDifk=jxj0˙
157 fvex 0SV
158 155 156 157 3pm3.2i jDEkDifk=jxj0˙VFunjDEkDifk=jxj0˙0SV
159 158 a1i φxByBjDEkDifk=jxj0˙VFunjDEkDifk=jxj0˙0SV
160 ssidd φjDkDifk=jxj0˙supp0PjDkDifk=jxj0˙supp0P
161 12 150 ghmid EPGrpHomSE0P=0S
162 9 161 syl φE0P=0S
163 14 mptex kDifk=jxj0˙V
164 163 a1i φjDkDifk=jxj0˙V
165 38 a1i φ0PV
166 160 162 164 165 suppssfv φjDEkDifk=jxj0˙supp0SjDkDifk=jxj0˙supp0P
167 166 adantr φxByBjDEkDifk=jxj0˙supp0SjDkDifk=jxj0˙supp0P
168 suppssfifsupp jDEkDifk=jxj0˙VFunjDEkDifk=jxj0˙0SVjDkDifk=jxj0˙supp0PFinjDEkDifk=jxj0˙supp0SjDkDifk=jxj0˙supp0PfinSupp0SjDEkDifk=jxj0˙
169 159 110 167 168 syl12anc φxByBfinSupp0SjDEkDifk=jxj0˙
170 14 mptex iDEkDifk=iyi0˙V
171 funmpt FuniDEkDifk=iyi0˙
172 170 171 157 3pm3.2i iDEkDifk=iyi0˙VFuniDEkDifk=iyi0˙0SV
173 172 a1i φxByBiDEkDifk=iyi0˙VFuniDEkDifk=iyi0˙0SV
174 ssidd φiDkDifk=iyi0˙supp0PiDkDifk=iyi0˙supp0P
175 14 mptex kDifk=iyi0˙V
176 175 a1i φiDkDifk=iyi0˙V
177 174 162 176 165 suppssfv φiDEkDifk=iyi0˙supp0SiDkDifk=iyi0˙supp0P
178 177 adantr φxByBiDEkDifk=iyi0˙supp0SiDkDifk=iyi0˙supp0P
179 suppssfifsupp iDEkDifk=iyi0˙VFuniDEkDifk=iyi0˙0SViDkDifk=iyi0˙supp0PFiniDEkDifk=iyi0˙supp0SiDkDifk=iyi0˙supp0PfinSupp0SiDEkDifk=iyi0˙
180 173 111 178 179 syl12anc φxByBfinSupp0SiDEkDifk=iyi0˙
181 133 3 150 15 15 89 152 154 169 180 gsumdixp φxByBSjDEkDifk=jxj0˙·˙SiDEkDifk=iyi0˙=SjD,iDEkDifk=jxj0˙·˙EkDifk=iyi0˙
182 149 181 eqtrd φxByBSEjDkDifk=jxj0˙·˙SEiDkDifk=iyi0˙=SjD,iDEkDifk=jxj0˙·˙EkDifk=iyi0˙
183 131 140 182 3eqtr4d φxByBSEjD,iDkDifk=jxj0˙PkDifk=iyi0˙=SEjDkDifk=jxj0˙·˙SEiDkDifk=iyi0˙
184 83 117 183 3eqtr2d φxByBEPjDkDifk=jxj0˙PPiDkDifk=iyi0˙=SEjDkDifk=jxj0˙·˙SEiDkDifk=iyi0˙
185 6 adantr φxByBIW
186 17 adantr φxByBRRing
187 1 5 4 2 185 186 24 mplcoe4 φxByBx=PjDkDifk=jxj0˙
188 1 5 4 2 185 186 31 mplcoe4 φxByBy=PiDkDifk=iyi0˙
189 187 188 oveq12d φxByBxPy=PjDkDifk=jxj0˙PPiDkDifk=iyi0˙
190 189 fveq2d φxByBExPy=EPjDkDifk=jxj0˙PPiDkDifk=iyi0˙
191 187 fveq2d φxByBEx=EPjDkDifk=jxj0˙
192 28 fmpttd φxByBjDkDifk=jxj0˙:DB
193 2 12 86 91 15 96 192 74 gsummhm φxByBSEjDkDifk=jxj0˙=EPjDkDifk=jxj0˙
194 191 193 eqtr4d φxByBEx=SEjDkDifk=jxj0˙
195 188 fveq2d φxByBEy=EPiDkDifk=iyi0˙
196 35 fmpttd φxByBiDkDifk=iyi0˙:DB
197 2 12 86 91 15 96 196 81 gsummhm φxByBSEiDkDifk=iyi0˙=EPiDkDifk=iyi0˙
198 195 197 eqtr4d φxByBEy=SEiDkDifk=iyi0˙
199 194 198 oveq12d φxByBEx·˙Ey=SEjDkDifk=jxj0˙·˙SEiDkDifk=iyi0˙
200 184 190 199 3eqtr4d φxByBExPy=Ex·˙Ey