Database
BASIC REAL AND COMPLEX FUNCTIONS
Polynomials
The division algorithm for polynomials
fta1lem
Next ⟩
fta1
Metamath Proof Explorer
Ascii
Unicode
Theorem
fta1lem
Description:
Lemma for
fta1
.
(Contributed by
Mario Carneiro
, 26-Jul-2014)
Ref
Expression
Hypotheses
fta1.1
⊢
R
=
F
-1
0
fta1.2
⊢
φ
→
D
∈
ℕ
0
fta1.3
⊢
φ
→
F
∈
Poly
ℂ
∖
0
𝑝
fta1.4
⊢
φ
→
deg
F
=
D
+
1
fta1.5
⊢
φ
→
A
∈
F
-1
0
fta1.6
⊢
φ
→
∀
g
∈
Poly
ℂ
∖
0
𝑝
deg
g
=
D
→
g
-1
0
∈
Fin
∧
g
-1
0
≤
deg
g
Assertion
fta1lem
⊢
φ
→
R
∈
Fin
∧
R
≤
deg
F
Proof
Step
Hyp
Ref
Expression
1
fta1.1
⊢
R
=
F
-1
0
2
fta1.2
⊢
φ
→
D
∈
ℕ
0
3
fta1.3
⊢
φ
→
F
∈
Poly
ℂ
∖
0
𝑝
4
fta1.4
⊢
φ
→
deg
F
=
D
+
1
5
fta1.5
⊢
φ
→
A
∈
F
-1
0
6
fta1.6
⊢
φ
→
∀
g
∈
Poly
ℂ
∖
0
𝑝
deg
g
=
D
→
g
-1
0
∈
Fin
∧
g
-1
0
≤
deg
g
7
eldifsn
⊢
F
∈
Poly
ℂ
∖
0
𝑝
↔
F
∈
Poly
ℂ
∧
F
≠
0
𝑝
8
3
7
sylib
⊢
φ
→
F
∈
Poly
ℂ
∧
F
≠
0
𝑝
9
8
simpld
⊢
φ
→
F
∈
Poly
ℂ
10
plyf
⊢
F
∈
Poly
ℂ
→
F
:
ℂ
⟶
ℂ
11
ffn
⊢
F
:
ℂ
⟶
ℂ
→
F
Fn
ℂ
12
fniniseg
⊢
F
Fn
ℂ
→
A
∈
F
-1
0
↔
A
∈
ℂ
∧
F
A
=
0
13
9
10
11
12
4syl
⊢
φ
→
A
∈
F
-1
0
↔
A
∈
ℂ
∧
F
A
=
0
14
5
13
mpbid
⊢
φ
→
A
∈
ℂ
∧
F
A
=
0
15
14
simpld
⊢
φ
→
A
∈
ℂ
16
14
simprd
⊢
φ
→
F
A
=
0
17
eqid
⊢
X
p
−
f
ℂ
×
A
=
X
p
−
f
ℂ
×
A
18
17
facth
⊢
F
∈
Poly
ℂ
∧
A
∈
ℂ
∧
F
A
=
0
→
F
=
X
p
−
f
ℂ
×
A
×
f
F
quot
X
p
−
f
ℂ
×
A
19
9
15
16
18
syl3anc
⊢
φ
→
F
=
X
p
−
f
ℂ
×
A
×
f
F
quot
X
p
−
f
ℂ
×
A
20
19
cnveqd
⊢
φ
→
F
-1
=
X
p
−
f
ℂ
×
A
×
f
F
quot
X
p
−
f
ℂ
×
A
-1
21
20
imaeq1d
⊢
φ
→
F
-1
0
=
X
p
−
f
ℂ
×
A
×
f
F
quot
X
p
−
f
ℂ
×
A
-1
0
22
cnex
⊢
ℂ
∈
V
23
22
a1i
⊢
φ
→
ℂ
∈
V
24
ssid
⊢
ℂ
⊆
ℂ
25
ax-1cn
⊢
1
∈
ℂ
26
plyid
⊢
ℂ
⊆
ℂ
∧
1
∈
ℂ
→
X
p
∈
Poly
ℂ
27
24
25
26
mp2an
⊢
X
p
∈
Poly
ℂ
28
plyconst
⊢
ℂ
⊆
ℂ
∧
A
∈
ℂ
→
ℂ
×
A
∈
Poly
ℂ
29
24
15
28
sylancr
⊢
φ
→
ℂ
×
A
∈
Poly
ℂ
30
plysubcl
⊢
X
p
∈
Poly
ℂ
∧
ℂ
×
A
∈
Poly
ℂ
→
X
p
−
f
ℂ
×
A
∈
Poly
ℂ
31
27
29
30
sylancr
⊢
φ
→
X
p
−
f
ℂ
×
A
∈
Poly
ℂ
32
plyf
⊢
X
p
−
f
ℂ
×
A
∈
Poly
ℂ
→
X
p
−
f
ℂ
×
A
:
ℂ
⟶
ℂ
33
31
32
syl
⊢
φ
→
X
p
−
f
ℂ
×
A
:
ℂ
⟶
ℂ
34
17
plyremlem
⊢
A
∈
ℂ
→
X
p
−
f
ℂ
×
A
∈
Poly
ℂ
∧
deg
X
p
−
f
ℂ
×
A
=
1
∧
X
p
−
f
ℂ
×
A
-1
0
=
A
35
15
34
syl
⊢
φ
→
X
p
−
f
ℂ
×
A
∈
Poly
ℂ
∧
deg
X
p
−
f
ℂ
×
A
=
1
∧
X
p
−
f
ℂ
×
A
-1
0
=
A
36
35
simp2d
⊢
φ
→
deg
X
p
−
f
ℂ
×
A
=
1
37
ax-1ne0
⊢
1
≠
0
38
37
a1i
⊢
φ
→
1
≠
0
39
36
38
eqnetrd
⊢
φ
→
deg
X
p
−
f
ℂ
×
A
≠
0
40
fveq2
⊢
X
p
−
f
ℂ
×
A
=
0
𝑝
→
deg
X
p
−
f
ℂ
×
A
=
deg
0
𝑝
41
dgr0
⊢
deg
0
𝑝
=
0
42
40
41
eqtrdi
⊢
X
p
−
f
ℂ
×
A
=
0
𝑝
→
deg
X
p
−
f
ℂ
×
A
=
0
43
42
necon3i
⊢
deg
X
p
−
f
ℂ
×
A
≠
0
→
X
p
−
f
ℂ
×
A
≠
0
𝑝
44
39
43
syl
⊢
φ
→
X
p
−
f
ℂ
×
A
≠
0
𝑝
45
quotcl2
⊢
F
∈
Poly
ℂ
∧
X
p
−
f
ℂ
×
A
∈
Poly
ℂ
∧
X
p
−
f
ℂ
×
A
≠
0
𝑝
→
F
quot
X
p
−
f
ℂ
×
A
∈
Poly
ℂ
46
9
31
44
45
syl3anc
⊢
φ
→
F
quot
X
p
−
f
ℂ
×
A
∈
Poly
ℂ
47
plyf
⊢
F
quot
X
p
−
f
ℂ
×
A
∈
Poly
ℂ
→
F
quot
X
p
−
f
ℂ
×
A
:
ℂ
⟶
ℂ
48
46
47
syl
⊢
φ
→
F
quot
X
p
−
f
ℂ
×
A
:
ℂ
⟶
ℂ
49
ofmulrt
⊢
ℂ
∈
V
∧
X
p
−
f
ℂ
×
A
:
ℂ
⟶
ℂ
∧
F
quot
X
p
−
f
ℂ
×
A
:
ℂ
⟶
ℂ
→
X
p
−
f
ℂ
×
A
×
f
F
quot
X
p
−
f
ℂ
×
A
-1
0
=
X
p
−
f
ℂ
×
A
-1
0
∪
F
quot
X
p
−
f
ℂ
×
A
-1
0
50
23
33
48
49
syl3anc
⊢
φ
→
X
p
−
f
ℂ
×
A
×
f
F
quot
X
p
−
f
ℂ
×
A
-1
0
=
X
p
−
f
ℂ
×
A
-1
0
∪
F
quot
X
p
−
f
ℂ
×
A
-1
0
51
35
simp3d
⊢
φ
→
X
p
−
f
ℂ
×
A
-1
0
=
A
52
51
uneq1d
⊢
φ
→
X
p
−
f
ℂ
×
A
-1
0
∪
F
quot
X
p
−
f
ℂ
×
A
-1
0
=
A
∪
F
quot
X
p
−
f
ℂ
×
A
-1
0
53
21
50
52
3eqtrd
⊢
φ
→
F
-1
0
=
A
∪
F
quot
X
p
−
f
ℂ
×
A
-1
0
54
uncom
⊢
F
quot
X
p
−
f
ℂ
×
A
-1
0
∪
A
=
A
∪
F
quot
X
p
−
f
ℂ
×
A
-1
0
55
53
1
54
3eqtr4g
⊢
φ
→
R
=
F
quot
X
p
−
f
ℂ
×
A
-1
0
∪
A
56
25
a1i
⊢
φ
→
1
∈
ℂ
57
dgrcl
⊢
F
quot
X
p
−
f
ℂ
×
A
∈
Poly
ℂ
→
deg
F
quot
X
p
−
f
ℂ
×
A
∈
ℕ
0
58
46
57
syl
⊢
φ
→
deg
F
quot
X
p
−
f
ℂ
×
A
∈
ℕ
0
59
58
nn0cnd
⊢
φ
→
deg
F
quot
X
p
−
f
ℂ
×
A
∈
ℂ
60
2
nn0cnd
⊢
φ
→
D
∈
ℂ
61
addcom
⊢
1
∈
ℂ
∧
D
∈
ℂ
→
1
+
D
=
D
+
1
62
25
60
61
sylancr
⊢
φ
→
1
+
D
=
D
+
1
63
19
fveq2d
⊢
φ
→
deg
F
=
deg
X
p
−
f
ℂ
×
A
×
f
F
quot
X
p
−
f
ℂ
×
A
64
8
simprd
⊢
φ
→
F
≠
0
𝑝
65
19
eqcomd
⊢
φ
→
X
p
−
f
ℂ
×
A
×
f
F
quot
X
p
−
f
ℂ
×
A
=
F
66
0cnd
⊢
φ
→
0
∈
ℂ
67
mul01
⊢
x
∈
ℂ
→
x
⋅
0
=
0
68
67
adantl
⊢
φ
∧
x
∈
ℂ
→
x
⋅
0
=
0
69
23
33
66
66
68
caofid1
⊢
φ
→
X
p
−
f
ℂ
×
A
×
f
ℂ
×
0
=
ℂ
×
0
70
df-0p
⊢
0
𝑝
=
ℂ
×
0
71
70
oveq2i
⊢
X
p
−
f
ℂ
×
A
×
f
0
𝑝
=
X
p
−
f
ℂ
×
A
×
f
ℂ
×
0
72
69
71
70
3eqtr4g
⊢
φ
→
X
p
−
f
ℂ
×
A
×
f
0
𝑝
=
0
𝑝
73
64
65
72
3netr4d
⊢
φ
→
X
p
−
f
ℂ
×
A
×
f
F
quot
X
p
−
f
ℂ
×
A
≠
X
p
−
f
ℂ
×
A
×
f
0
𝑝
74
oveq2
⊢
F
quot
X
p
−
f
ℂ
×
A
=
0
𝑝
→
X
p
−
f
ℂ
×
A
×
f
F
quot
X
p
−
f
ℂ
×
A
=
X
p
−
f
ℂ
×
A
×
f
0
𝑝
75
74
necon3i
⊢
X
p
−
f
ℂ
×
A
×
f
F
quot
X
p
−
f
ℂ
×
A
≠
X
p
−
f
ℂ
×
A
×
f
0
𝑝
→
F
quot
X
p
−
f
ℂ
×
A
≠
0
𝑝
76
73
75
syl
⊢
φ
→
F
quot
X
p
−
f
ℂ
×
A
≠
0
𝑝
77
eqid
⊢
deg
X
p
−
f
ℂ
×
A
=
deg
X
p
−
f
ℂ
×
A
78
eqid
⊢
deg
F
quot
X
p
−
f
ℂ
×
A
=
deg
F
quot
X
p
−
f
ℂ
×
A
79
77
78
dgrmul
⊢
X
p
−
f
ℂ
×
A
∈
Poly
ℂ
∧
X
p
−
f
ℂ
×
A
≠
0
𝑝
∧
F
quot
X
p
−
f
ℂ
×
A
∈
Poly
ℂ
∧
F
quot
X
p
−
f
ℂ
×
A
≠
0
𝑝
→
deg
X
p
−
f
ℂ
×
A
×
f
F
quot
X
p
−
f
ℂ
×
A
=
deg
X
p
−
f
ℂ
×
A
+
deg
F
quot
X
p
−
f
ℂ
×
A
80
31
44
46
76
79
syl22anc
⊢
φ
→
deg
X
p
−
f
ℂ
×
A
×
f
F
quot
X
p
−
f
ℂ
×
A
=
deg
X
p
−
f
ℂ
×
A
+
deg
F
quot
X
p
−
f
ℂ
×
A
81
63
4
80
3eqtr3d
⊢
φ
→
D
+
1
=
deg
X
p
−
f
ℂ
×
A
+
deg
F
quot
X
p
−
f
ℂ
×
A
82
36
oveq1d
⊢
φ
→
deg
X
p
−
f
ℂ
×
A
+
deg
F
quot
X
p
−
f
ℂ
×
A
=
1
+
deg
F
quot
X
p
−
f
ℂ
×
A
83
62
81
82
3eqtrrd
⊢
φ
→
1
+
deg
F
quot
X
p
−
f
ℂ
×
A
=
1
+
D
84
56
59
60
83
addcanad
⊢
φ
→
deg
F
quot
X
p
−
f
ℂ
×
A
=
D
85
fveqeq2
⊢
g
=
F
quot
X
p
−
f
ℂ
×
A
→
deg
g
=
D
↔
deg
F
quot
X
p
−
f
ℂ
×
A
=
D
86
cnveq
⊢
g
=
F
quot
X
p
−
f
ℂ
×
A
→
g
-1
=
F
quot
X
p
−
f
ℂ
×
A
-1
87
86
imaeq1d
⊢
g
=
F
quot
X
p
−
f
ℂ
×
A
→
g
-1
0
=
F
quot
X
p
−
f
ℂ
×
A
-1
0
88
87
eleq1d
⊢
g
=
F
quot
X
p
−
f
ℂ
×
A
→
g
-1
0
∈
Fin
↔
F
quot
X
p
−
f
ℂ
×
A
-1
0
∈
Fin
89
87
fveq2d
⊢
g
=
F
quot
X
p
−
f
ℂ
×
A
→
g
-1
0
=
F
quot
X
p
−
f
ℂ
×
A
-1
0
90
fveq2
⊢
g
=
F
quot
X
p
−
f
ℂ
×
A
→
deg
g
=
deg
F
quot
X
p
−
f
ℂ
×
A
91
89
90
breq12d
⊢
g
=
F
quot
X
p
−
f
ℂ
×
A
→
g
-1
0
≤
deg
g
↔
F
quot
X
p
−
f
ℂ
×
A
-1
0
≤
deg
F
quot
X
p
−
f
ℂ
×
A
92
88
91
anbi12d
⊢
g
=
F
quot
X
p
−
f
ℂ
×
A
→
g
-1
0
∈
Fin
∧
g
-1
0
≤
deg
g
↔
F
quot
X
p
−
f
ℂ
×
A
-1
0
∈
Fin
∧
F
quot
X
p
−
f
ℂ
×
A
-1
0
≤
deg
F
quot
X
p
−
f
ℂ
×
A
93
85
92
imbi12d
⊢
g
=
F
quot
X
p
−
f
ℂ
×
A
→
deg
g
=
D
→
g
-1
0
∈
Fin
∧
g
-1
0
≤
deg
g
↔
deg
F
quot
X
p
−
f
ℂ
×
A
=
D
→
F
quot
X
p
−
f
ℂ
×
A
-1
0
∈
Fin
∧
F
quot
X
p
−
f
ℂ
×
A
-1
0
≤
deg
F
quot
X
p
−
f
ℂ
×
A
94
eldifsn
⊢
F
quot
X
p
−
f
ℂ
×
A
∈
Poly
ℂ
∖
0
𝑝
↔
F
quot
X
p
−
f
ℂ
×
A
∈
Poly
ℂ
∧
F
quot
X
p
−
f
ℂ
×
A
≠
0
𝑝
95
46
76
94
sylanbrc
⊢
φ
→
F
quot
X
p
−
f
ℂ
×
A
∈
Poly
ℂ
∖
0
𝑝
96
93
6
95
rspcdva
⊢
φ
→
deg
F
quot
X
p
−
f
ℂ
×
A
=
D
→
F
quot
X
p
−
f
ℂ
×
A
-1
0
∈
Fin
∧
F
quot
X
p
−
f
ℂ
×
A
-1
0
≤
deg
F
quot
X
p
−
f
ℂ
×
A
97
84
96
mpd
⊢
φ
→
F
quot
X
p
−
f
ℂ
×
A
-1
0
∈
Fin
∧
F
quot
X
p
−
f
ℂ
×
A
-1
0
≤
deg
F
quot
X
p
−
f
ℂ
×
A
98
97
simpld
⊢
φ
→
F
quot
X
p
−
f
ℂ
×
A
-1
0
∈
Fin
99
snfi
⊢
A
∈
Fin
100
unfi
⊢
F
quot
X
p
−
f
ℂ
×
A
-1
0
∈
Fin
∧
A
∈
Fin
→
F
quot
X
p
−
f
ℂ
×
A
-1
0
∪
A
∈
Fin
101
98
99
100
sylancl
⊢
φ
→
F
quot
X
p
−
f
ℂ
×
A
-1
0
∪
A
∈
Fin
102
55
101
eqeltrd
⊢
φ
→
R
∈
Fin
103
55
fveq2d
⊢
φ
→
R
=
F
quot
X
p
−
f
ℂ
×
A
-1
0
∪
A
104
hashcl
⊢
F
quot
X
p
−
f
ℂ
×
A
-1
0
∪
A
∈
Fin
→
F
quot
X
p
−
f
ℂ
×
A
-1
0
∪
A
∈
ℕ
0
105
101
104
syl
⊢
φ
→
F
quot
X
p
−
f
ℂ
×
A
-1
0
∪
A
∈
ℕ
0
106
105
nn0red
⊢
φ
→
F
quot
X
p
−
f
ℂ
×
A
-1
0
∪
A
∈
ℝ
107
hashcl
⊢
F
quot
X
p
−
f
ℂ
×
A
-1
0
∈
Fin
→
F
quot
X
p
−
f
ℂ
×
A
-1
0
∈
ℕ
0
108
98
107
syl
⊢
φ
→
F
quot
X
p
−
f
ℂ
×
A
-1
0
∈
ℕ
0
109
108
nn0red
⊢
φ
→
F
quot
X
p
−
f
ℂ
×
A
-1
0
∈
ℝ
110
peano2re
⊢
F
quot
X
p
−
f
ℂ
×
A
-1
0
∈
ℝ
→
F
quot
X
p
−
f
ℂ
×
A
-1
0
+
1
∈
ℝ
111
109
110
syl
⊢
φ
→
F
quot
X
p
−
f
ℂ
×
A
-1
0
+
1
∈
ℝ
112
dgrcl
⊢
F
∈
Poly
ℂ
→
deg
F
∈
ℕ
0
113
9
112
syl
⊢
φ
→
deg
F
∈
ℕ
0
114
113
nn0red
⊢
φ
→
deg
F
∈
ℝ
115
hashun2
⊢
F
quot
X
p
−
f
ℂ
×
A
-1
0
∈
Fin
∧
A
∈
Fin
→
F
quot
X
p
−
f
ℂ
×
A
-1
0
∪
A
≤
F
quot
X
p
−
f
ℂ
×
A
-1
0
+
A
116
98
99
115
sylancl
⊢
φ
→
F
quot
X
p
−
f
ℂ
×
A
-1
0
∪
A
≤
F
quot
X
p
−
f
ℂ
×
A
-1
0
+
A
117
hashsng
⊢
A
∈
ℂ
→
A
=
1
118
15
117
syl
⊢
φ
→
A
=
1
119
118
oveq2d
⊢
φ
→
F
quot
X
p
−
f
ℂ
×
A
-1
0
+
A
=
F
quot
X
p
−
f
ℂ
×
A
-1
0
+
1
120
116
119
breqtrd
⊢
φ
→
F
quot
X
p
−
f
ℂ
×
A
-1
0
∪
A
≤
F
quot
X
p
−
f
ℂ
×
A
-1
0
+
1
121
2
nn0red
⊢
φ
→
D
∈
ℝ
122
1red
⊢
φ
→
1
∈
ℝ
123
97
simprd
⊢
φ
→
F
quot
X
p
−
f
ℂ
×
A
-1
0
≤
deg
F
quot
X
p
−
f
ℂ
×
A
124
123
84
breqtrd
⊢
φ
→
F
quot
X
p
−
f
ℂ
×
A
-1
0
≤
D
125
109
121
122
124
leadd1dd
⊢
φ
→
F
quot
X
p
−
f
ℂ
×
A
-1
0
+
1
≤
D
+
1
126
125
4
breqtrrd
⊢
φ
→
F
quot
X
p
−
f
ℂ
×
A
-1
0
+
1
≤
deg
F
127
106
111
114
120
126
letrd
⊢
φ
→
F
quot
X
p
−
f
ℂ
×
A
-1
0
∪
A
≤
deg
F
128
103
127
eqbrtrd
⊢
φ
→
R
≤
deg
F
129
102
128
jca
⊢
φ
→
R
∈
Fin
∧
R
≤
deg
F