Metamath Proof Explorer


Theorem geomcau

Description: If the distance between consecutive points in a sequence is bounded by a geometric sequence, then the sequence is Cauchy. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 5-Jun-2014)

Ref Expression
Hypotheses lmclim2.2 φDMetX
lmclim2.3 φF:X
geomcau.4 φA
geomcau.5 φB+
geomcau.6 φB<1
geomcau.7 φkFkDFk+1ABk
Assertion geomcau φFCauD

Proof

Step Hyp Ref Expression
1 lmclim2.2 φDMetX
2 lmclim2.3 φF:X
3 geomcau.4 φA
4 geomcau.5 φB+
5 geomcau.6 φB<1
6 geomcau.7 φkFkDFk+1ABk
7 nnuz =1
8 1zzd φ1
9 4 rpcnd φB
10 4 rpred φB
11 4 rpge0d φ0B
12 10 11 absidd φB=B
13 12 5 eqbrtrd φB<1
14 9 13 expcnv φm0Bm0
15 1re 1
16 resubcl 1B1B
17 15 10 16 sylancr φ1B
18 posdif B1B<10<1B
19 10 15 18 sylancl φB<10<1B
20 5 19 mpbid φ0<1B
21 17 20 elrpd φ1B+
22 3 21 rerpdivcld φA1B
23 22 recnd φA1B
24 nnex V
25 24 mptex mBmA1BV
26 25 a1i φmBmA1BV
27 nnnn0 nn0
28 27 adantl φnn0
29 oveq2 m=nBm=Bn
30 eqid m0Bm=m0Bm
31 ovex BnV
32 29 30 31 fvmpt n0m0Bmn=Bn
33 28 32 syl φnm0Bmn=Bn
34 nnz nn
35 rpexpcl B+nBn+
36 4 34 35 syl2an φnBn+
37 36 rpcnd φnBn
38 33 37 eqeltrd φnm0Bmn
39 23 adantr φnA1B
40 37 39 mulcomd φnBnA1B=A1BBn
41 29 oveq1d m=nBmA1B=BnA1B
42 eqid mBmA1B=mBmA1B
43 ovex BnA1BV
44 41 42 43 fvmpt nmBmA1Bn=BnA1B
45 44 adantl φnmBmA1Bn=BnA1B
46 33 oveq2d φnA1Bm0Bmn=A1BBn
47 40 45 46 3eqtr4d φnmBmA1Bn=A1Bm0Bmn
48 7 8 14 23 26 38 47 climmulc2 φmBmA1BA1B0
49 23 mul01d φA1B0=0
50 48 49 breqtrd φmBmA1B0
51 36 rpred φnBn
52 22 adantr φnA1B
53 51 52 remulcld φnBnA1B
54 53 recnd φnBnA1B
55 7 8 26 45 54 clim0c φmBmA1B0x+jnjBnA1B<x
56 50 55 mpbid φx+jnjBnA1B<x
57 nnz jj
58 57 adantl φx+jj
59 uzid jjj
60 oveq2 n=jBn=Bj
61 60 fvoveq1d n=jBnA1B=BjA1B
62 61 breq1d n=jBnA1B<xBjA1B<x
63 62 rspcv jjnjBnA1B<xBjA1B<x
64 58 59 63 3syl φx+jnjBnA1B<xBjA1B<x
65 1 adantr φjnjDMetX
66 simpl jnjj
67 ffvelcdm F:XjFjX
68 2 66 67 syl2an φjnjFjX
69 eluznn jnjn
70 ffvelcdm F:XnFnX
71 2 69 70 syl2an φjnjFnX
72 metcl DMetXFjXFnXFjDFn
73 65 68 71 72 syl3anc φjnjFjDFn
74 eqid j=j
75 nnnn0 jj0
76 75 ad2antrl φjnjj0
77 76 nn0zd φjnjj
78 oveq2 m=kBm=Bk
79 78 oveq2d m=kABm=ABk
80 eqid mjABm=mjABm
81 ovex ABkV
82 79 80 81 fvmpt kjmjABmk=ABk
83 82 adantl φjnjkjmjABmk=ABk
84 3 ad2antrr φjnjkjA
85 10 ad2antrr φjnjkjB
86 eluznn0 j0kjk0
87 76 86 sylan φjnjkjk0
88 85 87 reexpcld φjnjkjBk
89 84 88 remulcld φjnjkjABk
90 89 recnd φjnjkjABk
91 3 recnd φA
92 91 adantr φjnjA
93 9 adantr φjnjB
94 13 adantr φjnjB<1
95 eqid mjBm=mjBm
96 ovex BkV
97 78 95 96 fvmpt kjmjBmk=Bk
98 97 adantl φjnjkjmjBmk=Bk
99 93 94 76 98 geolim2 φjnjseqj+mjBmBj1B
100 88 recnd φjnjkjBk
101 98 100 eqeltrd φjnjkjmjBmk
102 98 oveq2d φjnjkjAmjBmk=ABk
103 83 102 eqtr4d φjnjkjmjABmk=AmjBmk
104 74 77 92 99 101 103 isermulc2 φjnjseqj+mjABmABj1B
105 4 adantr φjnjB+
106 105 77 rpexpcld φjnjBj+
107 106 rpcnd φjnjBj
108 17 recnd φ1B
109 108 adantr φjnj1B
110 21 rpne0d φ1B0
111 110 adantr φjnj1B0
112 92 107 109 111 div12d φjnjABj1B=BjA1B
113 104 112 breqtrd φjnjseqj+mjABmBjA1B
114 74 77 83 90 113 isumclim φjnjkjABk=BjA1B
115 seqex seqj+mjABmV
116 ovex ABj1BV
117 115 116 breldm seqj+mjABmABj1Bseqj+mjABmdom
118 104 117 syl φjnjseqj+mjABmdom
119 74 77 83 89 118 isumrecl φjnjkjABk
120 114 119 eqeltrrd φjnjBjA1B
121 120 recnd φjnjBjA1B
122 121 abscld φjnjBjA1B
123 fzfid φjnjjn1Fin
124 simpll φjnjkjn1φ
125 elfzuz kjn1kj
126 simprl φjnjj
127 eluznn jkjk
128 126 127 sylan φjnjkjk
129 125 128 sylan2 φjnjkjn1k
130 1 adantr φkDMetX
131 2 ffvelcdmda φkFkX
132 peano2nn kk+1
133 ffvelcdm F:Xk+1Fk+1X
134 2 132 133 syl2an φkFk+1X
135 metcl DMetXFkXFk+1XFkDFk+1
136 130 131 134 135 syl3anc φkFkDFk+1
137 124 129 136 syl2anc φjnjkjn1FkDFk+1
138 123 137 fsumrecl φjnjk=jn1FkDFk+1
139 simprr φjnjnj
140 elfzuz kjnkj
141 simpll φjnjkjφ
142 141 128 131 syl2anc φjnjkjFkX
143 140 142 sylan2 φjnjkjnFkX
144 65 139 143 mettrifi φjnjFjDFnk=jn1FkDFk+1
145 125 89 sylan2 φjnjkjn1ABk
146 123 145 fsumrecl φjnjk=jn1ABk
147 124 129 6 syl2anc φjnjkjn1FkDFk+1ABk
148 123 137 145 147 fsumle φjnjk=jn1FkDFk+1k=jn1ABk
149 fzssuz jn1j
150 149 a1i φjnjjn1j
151 0red φk0
152 nnz kk
153 rpexpcl B+kBk+
154 4 152 153 syl2an φkBk+
155 136 154 rerpdivcld φkFkDFk+1Bk
156 3 adantr φkA
157 metge0 DMetXFkXFk+1X0FkDFk+1
158 130 131 134 157 syl3anc φk0FkDFk+1
159 136 154 158 divge0d φk0FkDFk+1Bk
160 136 156 154 ledivmul2d φkFkDFk+1BkAFkDFk+1ABk
161 6 160 mpbird φkFkDFk+1BkA
162 151 155 156 159 161 letrd φk0A
163 141 128 162 syl2anc φjnjkj0A
164 141 128 154 syl2anc φjnjkjBk+
165 164 rpge0d φjnjkj0Bk
166 84 88 163 165 mulge0d φjnjkj0ABk
167 74 77 123 150 83 89 166 118 isumless φjnjk=jn1ABkkjABk
168 138 146 119 148 167 letrd φjnjk=jn1FkDFk+1kjABk
169 73 138 119 144 168 letrd φjnjFjDFnkjABk
170 169 114 breqtrd φjnjFjDFnBjA1B
171 120 leabsd φjnjBjA1BBjA1B
172 73 120 122 170 171 letrd φjnjFjDFnBjA1B
173 172 adantlr φx+jnjFjDFnBjA1B
174 73 adantlr φx+jnjFjDFn
175 122 adantlr φx+jnjBjA1B
176 rpre x+x
177 176 ad2antlr φx+jnjx
178 lelttr FjDFnBjA1BxFjDFnBjA1BBjA1B<xFjDFn<x
179 174 175 177 178 syl3anc φx+jnjFjDFnBjA1BBjA1B<xFjDFn<x
180 173 179 mpand φx+jnjBjA1B<xFjDFn<x
181 180 anassrs φx+jnjBjA1B<xFjDFn<x
182 181 ralrimdva φx+jBjA1B<xnjFjDFn<x
183 64 182 syld φx+jnjBnA1B<xnjFjDFn<x
184 183 reximdva φx+jnjBnA1B<xjnjFjDFn<x
185 184 ralimdva φx+jnjBnA1B<xx+jnjFjDFn<x
186 56 185 mpd φx+jnjFjDFn<x
187 metxmet DMetXD∞MetX
188 1 187 syl φD∞MetX
189 eqidd φnFn=Fn
190 eqidd φjFj=Fj
191 7 188 8 189 190 2 iscauf φFCauDx+jnjFjDFn<x
192 186 191 mpbird φFCauD