Metamath Proof Explorer


Theorem maducoeval2

Description: An entry of the adjunct (cofactor) matrix. (Contributed by SO, 17-Jul-2018)

Ref Expression
Hypotheses madufval.a A=NMatR
madufval.d D=NmaDetR
madufval.j J=NmaAdjuR
madufval.b B=BaseA
madufval.o 1˙=1R
madufval.z 0˙=0R
Assertion maducoeval2 RCRingMBINHNIJMH=DkN,lNifk=Hl=Iifl=Ik=H1˙0˙kMl

Proof

Step Hyp Ref Expression
1 madufval.a A=NMatR
2 madufval.d D=NmaDetR
3 madufval.j J=NmaAdjuR
4 madufval.b B=BaseA
5 madufval.o 1˙=1R
6 madufval.z 0˙=0R
7 eleq2 m=kmk
8 7 ifbid m=ifkmifl=I0˙kMlkMl=ifkifl=I0˙kMlkMl
9 8 ifeq2d m=ifk=Hifl=I1˙0˙ifkmifl=I0˙kMlkMl=ifk=Hifl=I1˙0˙ifkifl=I0˙kMlkMl
10 9 mpoeq3dv m=kN,lNifk=Hifl=I1˙0˙ifkmifl=I0˙kMlkMl=kN,lNifk=Hifl=I1˙0˙ifkifl=I0˙kMlkMl
11 10 fveq2d m=DkN,lNifk=Hifl=I1˙0˙ifkmifl=I0˙kMlkMl=DkN,lNifk=Hifl=I1˙0˙ifkifl=I0˙kMlkMl
12 11 eqeq2d m=IJMH=DkN,lNifk=Hifl=I1˙0˙ifkmifl=I0˙kMlkMlIJMH=DkN,lNifk=Hifl=I1˙0˙ifkifl=I0˙kMlkMl
13 eleq2 m=nkmkn
14 13 ifbid m=nifkmifl=I0˙kMlkMl=ifknifl=I0˙kMlkMl
15 14 ifeq2d m=nifk=Hifl=I1˙0˙ifkmifl=I0˙kMlkMl=ifk=Hifl=I1˙0˙ifknifl=I0˙kMlkMl
16 15 mpoeq3dv m=nkN,lNifk=Hifl=I1˙0˙ifkmifl=I0˙kMlkMl=kN,lNifk=Hifl=I1˙0˙ifknifl=I0˙kMlkMl
17 16 fveq2d m=nDkN,lNifk=Hifl=I1˙0˙ifkmifl=I0˙kMlkMl=DkN,lNifk=Hifl=I1˙0˙ifknifl=I0˙kMlkMl
18 17 eqeq2d m=nIJMH=DkN,lNifk=Hifl=I1˙0˙ifkmifl=I0˙kMlkMlIJMH=DkN,lNifk=Hifl=I1˙0˙ifknifl=I0˙kMlkMl
19 eleq2 m=nrkmknr
20 19 ifbid m=nrifkmifl=I0˙kMlkMl=ifknrifl=I0˙kMlkMl
21 20 ifeq2d m=nrifk=Hifl=I1˙0˙ifkmifl=I0˙kMlkMl=ifk=Hifl=I1˙0˙ifknrifl=I0˙kMlkMl
22 21 mpoeq3dv m=nrkN,lNifk=Hifl=I1˙0˙ifkmifl=I0˙kMlkMl=kN,lNifk=Hifl=I1˙0˙ifknrifl=I0˙kMlkMl
23 22 fveq2d m=nrDkN,lNifk=Hifl=I1˙0˙ifkmifl=I0˙kMlkMl=DkN,lNifk=Hifl=I1˙0˙ifknrifl=I0˙kMlkMl
24 23 eqeq2d m=nrIJMH=DkN,lNifk=Hifl=I1˙0˙ifkmifl=I0˙kMlkMlIJMH=DkN,lNifk=Hifl=I1˙0˙ifknrifl=I0˙kMlkMl
25 eleq2 m=NHkmkNH
26 25 ifbid m=NHifkmifl=I0˙kMlkMl=ifkNHifl=I0˙kMlkMl
27 26 ifeq2d m=NHifk=Hifl=I1˙0˙ifkmifl=I0˙kMlkMl=ifk=Hifl=I1˙0˙ifkNHifl=I0˙kMlkMl
28 27 mpoeq3dv m=NHkN,lNifk=Hifl=I1˙0˙ifkmifl=I0˙kMlkMl=kN,lNifk=Hifl=I1˙0˙ifkNHifl=I0˙kMlkMl
29 28 fveq2d m=NHDkN,lNifk=Hifl=I1˙0˙ifkmifl=I0˙kMlkMl=DkN,lNifk=Hifl=I1˙0˙ifkNHifl=I0˙kMlkMl
30 29 eqeq2d m=NHIJMH=DkN,lNifk=Hifl=I1˙0˙ifkmifl=I0˙kMlkMlIJMH=DkN,lNifk=Hifl=I1˙0˙ifkNHifl=I0˙kMlkMl
31 1 2 3 4 5 6 maducoeval MBINHNIJMH=DkN,lNifk=Hifl=I1˙0˙kMl
32 31 3adant1l RCRingMBINHNIJMH=DkN,lNifk=Hifl=I1˙0˙kMl
33 noel ¬k
34 iffalse ¬kifkifl=I0˙kMlkMl=kMl
35 33 34 mp1i kNlNifkifl=I0˙kMlkMl=kMl
36 35 ifeq2d kNlNifk=Hifl=I1˙0˙ifkifl=I0˙kMlkMl=ifk=Hifl=I1˙0˙kMl
37 36 mpoeq3ia kN,lNifk=Hifl=I1˙0˙ifkifl=I0˙kMlkMl=kN,lNifk=Hifl=I1˙0˙kMl
38 37 fveq2i DkN,lNifk=Hifl=I1˙0˙ifkifl=I0˙kMlkMl=DkN,lNifk=Hifl=I1˙0˙kMl
39 32 38 eqtr4di RCRingMBINHNIJMH=DkN,lNifk=Hifl=I1˙0˙ifkifl=I0˙kMlkMl
40 eqid BaseR=BaseR
41 eqid +R=+R
42 eqid R=R
43 simpl1l RCRingMBINHNnNHrNHnRCRing
44 simp1r RCRingMBINHNMB
45 1 4 matrcl MBNFinRV
46 45 simpld MBNFin
47 44 46 syl RCRingMBINHNNFin
48 47 adantr RCRingMBINHNnNHrNHnNFin
49 simp1l RCRingMBINHNRCRing
50 49 ad2antrr RCRingMBINHNnNHrNHnlNRCRing
51 crngring RCRingRRing
52 50 51 syl RCRingMBINHNnNHrNHnlNRRing
53 40 6 ring0cl RRing0˙BaseR
54 52 53 syl RCRingMBINHNnNHrNHnlN0˙BaseR
55 simpl1r RCRingMBINHNnNHrNHnMB
56 1 40 4 matbas2i MBMBaseRN×N
57 elmapi MBaseRN×NM:N×NBaseR
58 55 56 57 3syl RCRingMBINHNnNHrNHnM:N×NBaseR
59 58 adantr RCRingMBINHNnNHrNHnlNM:N×NBaseR
60 eldifi rNHnrNH
61 60 ad2antll RCRingMBINHNnNHrNHnrNH
62 61 eldifad RCRingMBINHNnNHrNHnrN
63 62 adantr RCRingMBINHNnNHrNHnlNrN
64 simpr RCRingMBINHNnNHrNHnlNlN
65 59 63 64 fovcdmd RCRingMBINHNnNHrNHnlNrMlBaseR
66 54 65 ifcld RCRingMBINHNnNHrNHnlNifl=I0˙rMlBaseR
67 40 5 ringidcl RRing1˙BaseR
68 52 67 syl RCRingMBINHNnNHrNHnlN1˙BaseR
69 68 54 ifcld RCRingMBINHNnNHrNHnlNifl=I1˙0˙BaseR
70 54 3adant2 RCRingMBINHNnNHrNHnkNlN0˙BaseR
71 58 fovcdmda RCRingMBINHNnNHrNHnkNlNkMlBaseR
72 71 3impb RCRingMBINHNnNHrNHnkNlNkMlBaseR
73 70 72 ifcld RCRingMBINHNnNHrNHnkNlNifl=I0˙kMlBaseR
74 73 72 ifcld RCRingMBINHNnNHrNHnkNlNifknifl=I0˙kMlkMlBaseR
75 simpl2 RCRingMBINHNnNHrNHnIN
76 58 62 75 fovcdmd RCRingMBINHNnNHrNHnrMIBaseR
77 simpl3 RCRingMBINHNnNHrNHnHN
78 eldifsni rNHrH
79 61 78 syl RCRingMBINHNnNHrNHnrH
80 2 40 41 42 43 48 66 69 74 76 62 77 79 mdetero RCRingMBINHNnNHrNHnDkN,lNifk=rifl=I0˙rMl+RrMIRifl=I1˙0˙ifk=Hifl=I1˙0˙ifknifl=I0˙kMlkMl=DkN,lNifk=rifl=I0˙rMlifk=Hifl=I1˙0˙ifknifl=I0˙kMlkMl
81 ifnot if¬l=IrMl0˙=ifl=I0˙rMl
82 81 eqcomi ifl=I0˙rMl=if¬l=IrMl0˙
83 82 a1i RCRingMBINHNnNHrNHnlNifl=I0˙rMl=if¬l=IrMl0˙
84 ovif2 rMIRifl=I1˙0˙=ifl=IrMIR1˙rMIR0˙
85 76 adantr RCRingMBINHNnNHrNHnlNrMIBaseR
86 40 42 5 ringridm RRingrMIBaseRrMIR1˙=rMI
87 52 85 86 syl2anc RCRingMBINHNnNHrNHnlNrMIR1˙=rMI
88 87 adantr RCRingMBINHNnNHrNHnlNl=IrMIR1˙=rMI
89 oveq2 l=IrMl=rMI
90 89 adantl RCRingMBINHNnNHrNHnlNl=IrMl=rMI
91 88 90 eqtr4d RCRingMBINHNnNHrNHnlNl=IrMIR1˙=rMl
92 91 ifeq1da RCRingMBINHNnNHrNHnlNifl=IrMIR1˙rMIR0˙=ifl=IrMlrMIR0˙
93 40 42 6 ringrz RRingrMIBaseRrMIR0˙=0˙
94 52 85 93 syl2anc RCRingMBINHNnNHrNHnlNrMIR0˙=0˙
95 94 ifeq2d RCRingMBINHNnNHrNHnlNifl=IrMlrMIR0˙=ifl=IrMl0˙
96 92 95 eqtrd RCRingMBINHNnNHrNHnlNifl=IrMIR1˙rMIR0˙=ifl=IrMl0˙
97 84 96 eqtrid RCRingMBINHNnNHrNHnlNrMIRifl=I1˙0˙=ifl=IrMl0˙
98 83 97 oveq12d RCRingMBINHNnNHrNHnlNifl=I0˙rMl+RrMIRifl=I1˙0˙=if¬l=IrMl0˙+Rifl=IrMl0˙
99 ringmnd RRingRMnd
100 52 99 syl RCRingMBINHNnNHrNHnlNRMnd
101 id ¬l=I¬l=I
102 imnan ¬l=I¬l=I¬¬l=Il=I
103 101 102 mpbi ¬¬l=Il=I
104 103 a1i RCRingMBINHNnNHrNHnlN¬¬l=Il=I
105 40 6 41 mndifsplit RMndrMlBaseR¬¬l=Il=Iif¬l=Il=IrMl0˙=if¬l=IrMl0˙+Rifl=IrMl0˙
106 100 65 104 105 syl3anc RCRingMBINHNnNHrNHnlNif¬l=Il=IrMl0˙=if¬l=IrMl0˙+Rifl=IrMl0˙
107 pm2.1 ¬l=Il=I
108 iftrue ¬l=Il=Iif¬l=Il=IrMl0˙=rMl
109 107 108 mp1i RCRingMBINHNnNHrNHnlNif¬l=Il=IrMl0˙=rMl
110 98 106 109 3eqtr2d RCRingMBINHNnNHrNHnlNifl=I0˙rMl+RrMIRifl=I1˙0˙=rMl
111 110 3adant2 RCRingMBINHNnNHrNHnkNlNifl=I0˙rMl+RrMIRifl=I1˙0˙=rMl
112 oveq1 k=rkMl=rMl
113 112 eqeq2d k=rifl=I0˙rMl+RrMIRifl=I1˙0˙=kMlifl=I0˙rMl+RrMIRifl=I1˙0˙=rMl
114 111 113 syl5ibrcom RCRingMBINHNnNHrNHnkNlNk=rifl=I0˙rMl+RrMIRifl=I1˙0˙=kMl
115 114 imp RCRingMBINHNnNHrNHnkNlNk=rifl=I0˙rMl+RrMIRifl=I1˙0˙=kMl
116 iftrue k=rifk=rifl=I0˙rMl+RrMIRifl=I1˙0˙ifk=Hifl=I1˙0˙ifknifl=I0˙kMlkMl=ifl=I0˙rMl+RrMIRifl=I1˙0˙
117 116 adantl RCRingMBINHNnNHrNHnkNlNk=rifk=rifl=I0˙rMl+RrMIRifl=I1˙0˙ifk=Hifl=I1˙0˙ifknifl=I0˙kMlkMl=ifl=I0˙rMl+RrMIRifl=I1˙0˙
118 79 neneqd RCRingMBINHNnNHrNHn¬r=H
119 118 3ad2ant1 RCRingMBINHNnNHrNHnkNlN¬r=H
120 eqeq1 k=rk=Hr=H
121 120 notbid k=r¬k=H¬r=H
122 119 121 syl5ibrcom RCRingMBINHNnNHrNHnkNlNk=r¬k=H
123 122 imp RCRingMBINHNnNHrNHnkNlNk=r¬k=H
124 123 iffalsed RCRingMBINHNnNHrNHnkNlNk=rifk=Hifl=I1˙0˙ifknifl=I0˙kMlkMl=ifknifl=I0˙kMlkMl
125 eldifn rNHn¬rn
126 125 ad2antll RCRingMBINHNnNHrNHn¬rn
127 126 3ad2ant1 RCRingMBINHNnNHrNHnkNlN¬rn
128 eleq1w k=rknrn
129 128 notbid k=r¬kn¬rn
130 127 129 syl5ibrcom RCRingMBINHNnNHrNHnkNlNk=r¬kn
131 130 imp RCRingMBINHNnNHrNHnkNlNk=r¬kn
132 131 iffalsed RCRingMBINHNnNHrNHnkNlNk=rifknifl=I0˙kMlkMl=kMl
133 124 132 eqtrd RCRingMBINHNnNHrNHnkNlNk=rifk=Hifl=I1˙0˙ifknifl=I0˙kMlkMl=kMl
134 115 117 133 3eqtr4d RCRingMBINHNnNHrNHnkNlNk=rifk=rifl=I0˙rMl+RrMIRifl=I1˙0˙ifk=Hifl=I1˙0˙ifknifl=I0˙kMlkMl=ifk=Hifl=I1˙0˙ifknifl=I0˙kMlkMl
135 iffalse ¬k=rifk=rifl=I0˙rMl+RrMIRifl=I1˙0˙ifk=Hifl=I1˙0˙ifknifl=I0˙kMlkMl=ifk=Hifl=I1˙0˙ifknifl=I0˙kMlkMl
136 135 adantl RCRingMBINHNnNHrNHnkNlN¬k=rifk=rifl=I0˙rMl+RrMIRifl=I1˙0˙ifk=Hifl=I1˙0˙ifknifl=I0˙kMlkMl=ifk=Hifl=I1˙0˙ifknifl=I0˙kMlkMl
137 134 136 pm2.61dan RCRingMBINHNnNHrNHnkNlNifk=rifl=I0˙rMl+RrMIRifl=I1˙0˙ifk=Hifl=I1˙0˙ifknifl=I0˙kMlkMl=ifk=Hifl=I1˙0˙ifknifl=I0˙kMlkMl
138 137 mpoeq3dva RCRingMBINHNnNHrNHnkN,lNifk=rifl=I0˙rMl+RrMIRifl=I1˙0˙ifk=Hifl=I1˙0˙ifknifl=I0˙kMlkMl=kN,lNifk=Hifl=I1˙0˙ifknifl=I0˙kMlkMl
139 138 fveq2d RCRingMBINHNnNHrNHnDkN,lNifk=rifl=I0˙rMl+RrMIRifl=I1˙0˙ifk=Hifl=I1˙0˙ifknifl=I0˙kMlkMl=DkN,lNifk=Hifl=I1˙0˙ifknifl=I0˙kMlkMl
140 neeq2 k=HrkrH
141 140 biimparc rHk=Hrk
142 141 necomd rHk=Hkr
143 142 neneqd rHk=H¬k=r
144 143 iffalsed rHk=Hifk=rifl=I0˙rMlifl=I1˙0˙=ifl=I1˙0˙
145 iftrue k=Hifk=Hifl=I1˙0˙ifknifl=I0˙kMlkMl=ifl=I1˙0˙
146 145 adantl rHk=Hifk=Hifl=I1˙0˙ifknifl=I0˙kMlkMl=ifl=I1˙0˙
147 146 ifeq2d rHk=Hifk=rifl=I0˙rMlifk=Hifl=I1˙0˙ifknifl=I0˙kMlkMl=ifk=rifl=I0˙rMlifl=I1˙0˙
148 iftrue k=Hifk=Hifl=I1˙0˙ifknrifl=I0˙kMlkMl=ifl=I1˙0˙
149 148 adantl rHk=Hifk=Hifl=I1˙0˙ifknrifl=I0˙kMlkMl=ifl=I1˙0˙
150 144 147 149 3eqtr4d rHk=Hifk=rifl=I0˙rMlifk=Hifl=I1˙0˙ifknifl=I0˙kMlkMl=ifk=Hifl=I1˙0˙ifknrifl=I0˙kMlkMl
151 112 ifeq2d k=rifl=I0˙kMl=ifl=I0˙rMl
152 vsnid rr
153 elun2 rrrnr
154 152 153 ax-mp rnr
155 eleq1w k=rknrrnr
156 154 155 mpbiri k=rknr
157 156 iftrued k=rifknrifl=I0˙kMlkMl=ifl=I0˙kMl
158 iftrue k=rifk=rifl=I0˙rMlifknifl=I0˙kMlkMl=ifl=I0˙rMl
159 151 157 158 3eqtr4rd k=rifk=rifl=I0˙rMlifknifl=I0˙kMlkMl=ifknrifl=I0˙kMlkMl
160 159 adantl rH¬k=Hk=rifk=rifl=I0˙rMlifknifl=I0˙kMlkMl=ifknrifl=I0˙kMlkMl
161 iffalse ¬k=rifk=rifl=I0˙rMlifknifl=I0˙kMlkMl=ifknifl=I0˙kMlkMl
162 orc knknk=r
163 orel2 ¬k=rknk=rkn
164 162 163 impbid2 ¬k=rknknk=r
165 elun knrknkr
166 velsn krk=r
167 166 orbi2i knkrknk=r
168 165 167 bitr2i knk=rknr
169 164 168 bitrdi ¬k=rknknr
170 169 ifbid ¬k=rifknifl=I0˙kMlkMl=ifknrifl=I0˙kMlkMl
171 161 170 eqtrd ¬k=rifk=rifl=I0˙rMlifknifl=I0˙kMlkMl=ifknrifl=I0˙kMlkMl
172 171 adantl rH¬k=H¬k=rifk=rifl=I0˙rMlifknifl=I0˙kMlkMl=ifknrifl=I0˙kMlkMl
173 160 172 pm2.61dan rH¬k=Hifk=rifl=I0˙rMlifknifl=I0˙kMlkMl=ifknrifl=I0˙kMlkMl
174 iffalse ¬k=Hifk=Hifl=I1˙0˙ifknifl=I0˙kMlkMl=ifknifl=I0˙kMlkMl
175 174 ifeq2d ¬k=Hifk=rifl=I0˙rMlifk=Hifl=I1˙0˙ifknifl=I0˙kMlkMl=ifk=rifl=I0˙rMlifknifl=I0˙kMlkMl
176 175 adantl rH¬k=Hifk=rifl=I0˙rMlifk=Hifl=I1˙0˙ifknifl=I0˙kMlkMl=ifk=rifl=I0˙rMlifknifl=I0˙kMlkMl
177 iffalse ¬k=Hifk=Hifl=I1˙0˙ifknrifl=I0˙kMlkMl=ifknrifl=I0˙kMlkMl
178 177 adantl rH¬k=Hifk=Hifl=I1˙0˙ifknrifl=I0˙kMlkMl=ifknrifl=I0˙kMlkMl
179 173 176 178 3eqtr4d rH¬k=Hifk=rifl=I0˙rMlifk=Hifl=I1˙0˙ifknifl=I0˙kMlkMl=ifk=Hifl=I1˙0˙ifknrifl=I0˙kMlkMl
180 150 179 pm2.61dan rHifk=rifl=I0˙rMlifk=Hifl=I1˙0˙ifknifl=I0˙kMlkMl=ifk=Hifl=I1˙0˙ifknrifl=I0˙kMlkMl
181 180 mpoeq3dv rHkN,lNifk=rifl=I0˙rMlifk=Hifl=I1˙0˙ifknifl=I0˙kMlkMl=kN,lNifk=Hifl=I1˙0˙ifknrifl=I0˙kMlkMl
182 181 fveq2d rHDkN,lNifk=rifl=I0˙rMlifk=Hifl=I1˙0˙ifknifl=I0˙kMlkMl=DkN,lNifk=Hifl=I1˙0˙ifknrifl=I0˙kMlkMl
183 79 182 syl RCRingMBINHNnNHrNHnDkN,lNifk=rifl=I0˙rMlifk=Hifl=I1˙0˙ifknifl=I0˙kMlkMl=DkN,lNifk=Hifl=I1˙0˙ifknrifl=I0˙kMlkMl
184 80 139 183 3eqtr3d RCRingMBINHNnNHrNHnDkN,lNifk=Hifl=I1˙0˙ifknifl=I0˙kMlkMl=DkN,lNifk=Hifl=I1˙0˙ifknrifl=I0˙kMlkMl
185 184 eqeq2d RCRingMBINHNnNHrNHnIJMH=DkN,lNifk=Hifl=I1˙0˙ifknifl=I0˙kMlkMlIJMH=DkN,lNifk=Hifl=I1˙0˙ifknrifl=I0˙kMlkMl
186 185 biimpd RCRingMBINHNnNHrNHnIJMH=DkN,lNifk=Hifl=I1˙0˙ifknifl=I0˙kMlkMlIJMH=DkN,lNifk=Hifl=I1˙0˙ifknrifl=I0˙kMlkMl
187 difss NHN
188 ssfi NFinNHNNHFin
189 47 187 188 sylancl RCRingMBINHNNHFin
190 12 18 24 30 39 186 189 findcard2d RCRingMBINHNIJMH=DkN,lNifk=Hifl=I1˙0˙ifkNHifl=I0˙kMlkMl
191 iba k=Hl=Il=Ik=H
192 191 ifbid k=Hifl=I1˙0˙=ifl=Ik=H1˙0˙
193 iftrue k=Hifk=Hifl=I1˙0˙ifkNHifl=I0˙kMlkMl=ifl=I1˙0˙
194 iftrue k=Hl=Iifk=Hl=Iifl=Ik=H1˙0˙kMl=ifl=Ik=H1˙0˙
195 194 orcs k=Hifk=Hl=Iifl=Ik=H1˙0˙kMl=ifl=Ik=H1˙0˙
196 192 193 195 3eqtr4d k=Hifk=Hifl=I1˙0˙ifkNHifl=I0˙kMlkMl=ifk=Hl=Iifl=Ik=H1˙0˙kMl
197 196 adantl kNlNk=Hifk=Hifl=I1˙0˙ifkNHifl=I0˙kMlkMl=ifk=Hl=Iifl=Ik=H1˙0˙kMl
198 iffalse ¬k=Hifk=Hifl=I1˙0˙ifkNHifl=I0˙kMlkMl=ifkNHifl=I0˙kMlkMl
199 198 adantl kNlN¬k=Hifk=Hifl=I1˙0˙ifkNHifl=I0˙kMlkMl=ifkNHifl=I0˙kMlkMl
200 neqne ¬k=HkH
201 200 anim2i kN¬k=HkNkH
202 201 adantlr kNlN¬k=HkNkH
203 eldifsn kNHkNkH
204 202 203 sylibr kNlN¬k=HkNH
205 204 iftrued kNlN¬k=HifkNHifl=I0˙kMlkMl=ifl=I0˙kMl
206 biorf ¬k=Hl=Ik=Hl=I
207 id ¬k=H¬k=H
208 207 intnand ¬k=H¬l=Ik=H
209 208 iffalsed ¬k=Hifl=Ik=H1˙0˙=0˙
210 209 eqcomd ¬k=H0˙=ifl=Ik=H1˙0˙
211 206 210 ifbieq1d ¬k=Hifl=I0˙kMl=ifk=Hl=Iifl=Ik=H1˙0˙kMl
212 211 adantl kNlN¬k=Hifl=I0˙kMl=ifk=Hl=Iifl=Ik=H1˙0˙kMl
213 199 205 212 3eqtrd kNlN¬k=Hifk=Hifl=I1˙0˙ifkNHifl=I0˙kMlkMl=ifk=Hl=Iifl=Ik=H1˙0˙kMl
214 197 213 pm2.61dan kNlNifk=Hifl=I1˙0˙ifkNHifl=I0˙kMlkMl=ifk=Hl=Iifl=Ik=H1˙0˙kMl
215 214 mpoeq3ia kN,lNifk=Hifl=I1˙0˙ifkNHifl=I0˙kMlkMl=kN,lNifk=Hl=Iifl=Ik=H1˙0˙kMl
216 215 fveq2i DkN,lNifk=Hifl=I1˙0˙ifkNHifl=I0˙kMlkMl=DkN,lNifk=Hl=Iifl=Ik=H1˙0˙kMl
217 190 216 eqtrdi RCRingMBINHNIJMH=DkN,lNifk=Hl=Iifl=Ik=H1˙0˙kMl