Metamath Proof Explorer


Theorem mbfi1fseqlem5

Description: Lemma for mbfi1fseq . Verify that G describes an increasing sequence of positive functions. (Contributed by Mario Carneiro, 16-Aug-2014)

Ref Expression
Hypotheses mbfi1fseq.1 φFMblFn
mbfi1fseq.2 φF:0+∞
mbfi1fseq.3 J=m,yFy2m2m
mbfi1fseq.4 G=mxifxmmifmJxmmJxm0
Assertion mbfi1fseqlem5 φA0𝑝fGAGAfGA+1

Proof

Step Hyp Ref Expression
1 mbfi1fseq.1 φFMblFn
2 mbfi1fseq.2 φF:0+∞
3 mbfi1fseq.3 J=m,yFy2m2m
4 mbfi1fseq.4 G=mxifxmmifmJxmmJxm0
5 2 adantr φAF:0+∞
6 5 ffvelcdmda φAxFx0+∞
7 elrege0 Fx0+∞Fx0Fx
8 6 7 sylib φAxFx0Fx
9 8 simpld φAxFx
10 2nn 2
11 nnnn0 AA0
12 nnexpcl 2A02A
13 10 11 12 sylancr A2A
14 13 ad2antlr φAx2A
15 14 nnred φAx2A
16 9 15 remulcld φAxFx2A
17 14 nnnn0d φAx2A0
18 17 nn0ge0d φAx02A
19 mulge0 Fx0Fx2A02A0Fx2A
20 8 15 18 19 syl12anc φAx0Fx2A
21 flge0nn0 Fx2A0Fx2AFx2A0
22 16 20 21 syl2anc φAxFx2A0
23 22 nn0red φAxFx2A
24 22 nn0ge0d φAx0Fx2A
25 14 nngt0d φAx0<2A
26 divge0 Fx2A0Fx2A2A0<2A0Fx2A2A
27 23 24 15 25 26 syl22anc φAx0Fx2A2A
28 simpr m=Ay=xy=x
29 28 fveq2d m=Ay=xFy=Fx
30 simpl m=Ay=xm=A
31 30 oveq2d m=Ay=x2m=2A
32 29 31 oveq12d m=Ay=xFy2m=Fx2A
33 32 fveq2d m=Ay=xFy2m=Fx2A
34 33 31 oveq12d m=Ay=xFy2m2m=Fx2A2A
35 ovex Fx2A2AV
36 34 3 35 ovmpoa AxAJx=Fx2A2A
37 36 adantll φAxAJx=Fx2A2A
38 27 37 breqtrrd φAx0AJx
39 11 nn0ge0d A0A
40 39 ad2antlr φAx0A
41 breq2 AJx=ifAJxAAJxA0AJx0ifAJxAAJxA
42 breq2 A=ifAJxAAJxA0A0ifAJxAAJxA
43 41 42 ifboth 0AJx0A0ifAJxAAJxA
44 38 40 43 syl2anc φAx0ifAJxAAJxA
45 0le0 00
46 breq2 ifAJxAAJxA=ifxAAifAJxAAJxA00ifAJxAAJxA0ifxAAifAJxAAJxA0
47 breq2 0=ifxAAifAJxAAJxA0000ifxAAifAJxAAJxA0
48 46 47 ifboth 0ifAJxAAJxA000ifxAAifAJxAAJxA0
49 44 45 48 sylancl φAx0ifxAAifAJxAAJxA0
50 49 ralrimiva φAx0ifxAAifAJxAAJxA0
51 0re 0
52 fnconstg 0×0Fn
53 51 52 ax-mp ×0Fn
54 df-0p 0𝑝=×0
55 54 fneq1i 0𝑝Fn×0Fn
56 53 55 mpbir 0𝑝Fn
57 56 a1i φA0𝑝Fn
58 1 2 3 4 mbfi1fseqlem4 φG:dom1
59 58 ffvelcdmda φAGAdom1
60 i1ff GAdom1GA:
61 ffn GA:GAFn
62 59 60 61 3syl φAGAFn
63 cnex V
64 63 a1i φAV
65 reex V
66 65 a1i φAV
67 ax-resscn
68 sseqin2 =
69 67 68 mpbi =
70 0pval x0𝑝x=0
71 70 adantl φAx0𝑝x=0
72 1 2 3 4 mbfi1fseqlem2 AGA=xifxAAifAJxAAJxA0
73 72 fveq1d AGAx=xifxAAifAJxAAJxA0x
74 73 ad2antlr φAxGAx=xifxAAifAJxAAJxA0x
75 simpr φAxx
76 rge0ssre 0+∞
77 simpr myy
78 ffvelcdm F:0+∞yFy0+∞
79 2 77 78 syl2an φmyFy0+∞
80 76 79 sselid φmyFy
81 nnnn0 mm0
82 nnexpcl 2m02m
83 10 81 82 sylancr m2m
84 83 ad2antrl φmy2m
85 84 nnred φmy2m
86 80 85 remulcld φmyFy2m
87 reflcl Fy2mFy2m
88 86 87 syl φmyFy2m
89 88 84 nndivred φmyFy2m2m
90 89 ralrimivva φmyFy2m2m
91 3 fmpo myFy2m2mJ:×
92 90 91 sylib φJ:×
93 fovcdm J:×AxAJx
94 92 93 syl3an1 φAxAJx
95 94 3expa φAxAJx
96 nnre AA
97 96 ad2antlr φAxA
98 95 97 ifcld φAxifAJxAAJxA
99 ifcl ifAJxAAJxA0ifxAAifAJxAAJxA0
100 98 51 99 sylancl φAxifxAAifAJxAAJxA0
101 eqid xifxAAifAJxAAJxA0=xifxAAifAJxAAJxA0
102 101 fvmpt2 xifxAAifAJxAAJxA0xifxAAifAJxAAJxA0x=ifxAAifAJxAAJxA0
103 75 100 102 syl2anc φAxxifxAAifAJxAAJxA0x=ifxAAifAJxAAJxA0
104 74 103 eqtrd φAxGAx=ifxAAifAJxAAJxA0
105 57 62 64 66 69 71 104 ofrfval φA0𝑝fGAx0ifxAAifAJxAAJxA0
106 50 105 mpbird φA0𝑝fGA
107 1 2 3 mbfi1fseqlem1 φJ:×0+∞
108 107 ad2antrr φAxJ:×0+∞
109 peano2nn AA+1
110 109 ad2antlr φAxA+1
111 108 110 75 fovcdmd φAxA+1Jx0+∞
112 elrege0 A+1Jx0+∞A+1Jx0A+1Jx
113 111 112 sylib φAxA+1Jx0A+1Jx
114 113 simpld φAxA+1Jx
115 min1 AJxAifAJxAAJxAAJx
116 95 97 115 syl2anc φAxifAJxAAJxAAJx
117 2cn 2
118 11 ad2antlr φAxA0
119 expp1 2A02A+1=2A2
120 117 118 119 sylancr φAx2A+1=2A2
121 120 oveq2d φAxFx2A2A2A+1=Fx2A2A2A2
122 37 95 eqeltrrd φAxFx2A2A
123 122 recnd φAxFx2A2A
124 15 recnd φAx2A
125 2cnd φAx2
126 123 124 125 mulassd φAxFx2A2A2A2=Fx2A2A2A2
127 23 recnd φAxFx2A
128 14 nnne0d φAx2A0
129 127 124 128 divcan1d φAxFx2A2A2A=Fx2A
130 129 oveq1d φAxFx2A2A2A2=Fx2A2
131 121 126 130 3eqtr2d φAxFx2A2A2A+1=Fx2A2
132 flle Fx2AFx2AFx2A
133 16 132 syl φAxFx2AFx2A
134 2re 2
135 2pos 0<2
136 134 135 pm3.2i 20<2
137 136 a1i φAx20<2
138 lemul1 Fx2AFx2A20<2Fx2AFx2AFx2A2Fx2A2
139 23 16 137 138 syl3anc φAxFx2AFx2AFx2A2Fx2A2
140 133 139 mpbid φAxFx2A2Fx2A2
141 120 oveq2d φAxFx2A+1=Fx2A2
142 9 recnd φAxFx
143 142 124 125 mulassd φAxFx2A2=Fx2A2
144 141 143 eqtr4d φAxFx2A+1=Fx2A2
145 140 144 breqtrrd φAxFx2A2Fx2A+1
146 110 nnnn0d φAxA+10
147 nnexpcl 2A+102A+1
148 10 146 147 sylancr φAx2A+1
149 148 nnred φAx2A+1
150 9 149 remulcld φAxFx2A+1
151 16 flcld φAxFx2A
152 2z 2
153 zmulcl Fx2A2Fx2A2
154 151 152 153 sylancl φAxFx2A2
155 flge Fx2A+1Fx2A2Fx2A2Fx2A+1Fx2A2Fx2A+1
156 150 154 155 syl2anc φAxFx2A2Fx2A+1Fx2A2Fx2A+1
157 145 156 mpbid φAxFx2A2Fx2A+1
158 131 157 eqbrtrd φAxFx2A2A2A+1Fx2A+1
159 reflcl Fx2A+1Fx2A+1
160 150 159 syl φAxFx2A+1
161 148 nngt0d φAx0<2A+1
162 lemuldiv Fx2A2AFx2A+12A+10<2A+1Fx2A2A2A+1Fx2A+1Fx2A2AFx2A+12A+1
163 122 160 149 161 162 syl112anc φAxFx2A2A2A+1Fx2A+1Fx2A2AFx2A+12A+1
164 158 163 mpbid φAxFx2A2AFx2A+12A+1
165 simpr m=A+1y=xy=x
166 165 fveq2d m=A+1y=xFy=Fx
167 simpl m=A+1y=xm=A+1
168 167 oveq2d m=A+1y=x2m=2A+1
169 166 168 oveq12d m=A+1y=xFy2m=Fx2A+1
170 169 fveq2d m=A+1y=xFy2m=Fx2A+1
171 170 168 oveq12d m=A+1y=xFy2m2m=Fx2A+12A+1
172 ovex Fx2A+12A+1V
173 171 3 172 ovmpoa A+1xA+1Jx=Fx2A+12A+1
174 110 75 173 syl2anc φAxA+1Jx=Fx2A+12A+1
175 164 37 174 3brtr4d φAxAJxA+1Jx
176 98 95 114 116 175 letrd φAxifAJxAAJxAA+1Jx
177 110 nnred φAxA+1
178 min2 AJxAifAJxAAJxAA
179 95 97 178 syl2anc φAxifAJxAAJxAA
180 97 lep1d φAxAA+1
181 98 97 177 179 180 letrd φAxifAJxAAJxAA+1
182 breq2 A+1Jx=ifA+1JxA+1A+1JxA+1ifAJxAAJxAA+1JxifAJxAAJxAifA+1JxA+1A+1JxA+1
183 breq2 A+1=ifA+1JxA+1A+1JxA+1ifAJxAAJxAA+1ifAJxAAJxAifA+1JxA+1A+1JxA+1
184 182 183 ifboth ifAJxAAJxAA+1JxifAJxAAJxAA+1ifAJxAAJxAifA+1JxA+1A+1JxA+1
185 176 181 184 syl2anc φAxifAJxAAJxAifA+1JxA+1A+1JxA+1
186 185 adantr φAxxAAifAJxAAJxAifA+1JxA+1A+1JxA+1
187 iftrue xAAifxAAifAJxAAJxA0=ifAJxAAJxA
188 187 adantl φAxxAAifxAAifAJxAAJxA0=ifAJxAAJxA
189 177 renegcld φAxA+1
190 97 177 lenegd φAxAA+1A+1A
191 180 190 mpbid φAxA+1A
192 iccss A+1A+1A+1AAA+1AAA+1A+1
193 189 177 191 180 192 syl22anc φAxAAA+1A+1
194 193 sselda φAxxAAxA+1A+1
195 194 iftrued φAxxAAifxA+1A+1ifA+1JxA+1A+1JxA+10=ifA+1JxA+1A+1JxA+1
196 186 188 195 3brtr4d φAxxAAifxAAifAJxAAJxA0ifxA+1A+1ifA+1JxA+1A+1JxA+10
197 iffalse ¬xAAifxAAifAJxAAJxA0=0
198 197 adantl φAx¬xAAifxAAifAJxAAJxA0=0
199 113 simprd φAx0A+1Jx
200 146 nn0ge0d φAx0A+1
201 breq2 A+1Jx=ifA+1JxA+1A+1JxA+10A+1Jx0ifA+1JxA+1A+1JxA+1
202 breq2 A+1=ifA+1JxA+1A+1JxA+10A+10ifA+1JxA+1A+1JxA+1
203 201 202 ifboth 0A+1Jx0A+10ifA+1JxA+1A+1JxA+1
204 199 200 203 syl2anc φAx0ifA+1JxA+1A+1JxA+1
205 breq2 ifA+1JxA+1A+1JxA+1=ifxA+1A+1ifA+1JxA+1A+1JxA+100ifA+1JxA+1A+1JxA+10ifxA+1A+1ifA+1JxA+1A+1JxA+10
206 breq2 0=ifxA+1A+1ifA+1JxA+1A+1JxA+10000ifxA+1A+1ifA+1JxA+1A+1JxA+10
207 205 206 ifboth 0ifA+1JxA+1A+1JxA+1000ifxA+1A+1ifA+1JxA+1A+1JxA+10
208 204 45 207 sylancl φAx0ifxA+1A+1ifA+1JxA+1A+1JxA+10
209 208 adantr φAx¬xAA0ifxA+1A+1ifA+1JxA+1A+1JxA+10
210 198 209 eqbrtrd φAx¬xAAifxAAifAJxAAJxA0ifxA+1A+1ifA+1JxA+1A+1JxA+10
211 196 210 pm2.61dan φAxifxAAifAJxAAJxA0ifxA+1A+1ifA+1JxA+1A+1JxA+10
212 211 ralrimiva φAxifxAAifAJxAAJxA0ifxA+1A+1ifA+1JxA+1A+1JxA+10
213 ffvelcdm G:dom1A+1GA+1dom1
214 58 109 213 syl2an φAGA+1dom1
215 i1ff GA+1dom1GA+1:
216 ffn GA+1:GA+1Fn
217 214 215 216 3syl φAGA+1Fn
218 inidm =
219 1 2 3 4 mbfi1fseqlem2 A+1GA+1=xifxA+1A+1ifA+1JxA+1A+1JxA+10
220 219 fveq1d A+1GA+1x=xifxA+1A+1ifA+1JxA+1A+1JxA+10x
221 110 220 syl φAxGA+1x=xifxA+1A+1ifA+1JxA+1A+1JxA+10x
222 114 177 ifcld φAxifA+1JxA+1A+1JxA+1
223 ifcl ifA+1JxA+1A+1JxA+10ifxA+1A+1ifA+1JxA+1A+1JxA+10
224 222 51 223 sylancl φAxifxA+1A+1ifA+1JxA+1A+1JxA+10
225 eqid xifxA+1A+1ifA+1JxA+1A+1JxA+10=xifxA+1A+1ifA+1JxA+1A+1JxA+10
226 225 fvmpt2 xifxA+1A+1ifA+1JxA+1A+1JxA+10xifxA+1A+1ifA+1JxA+1A+1JxA+10x=ifxA+1A+1ifA+1JxA+1A+1JxA+10
227 75 224 226 syl2anc φAxxifxA+1A+1ifA+1JxA+1A+1JxA+10x=ifxA+1A+1ifA+1JxA+1A+1JxA+10
228 221 227 eqtrd φAxGA+1x=ifxA+1A+1ifA+1JxA+1A+1JxA+10
229 62 217 66 66 218 104 228 ofrfval φAGAfGA+1xifxAAifAJxAAJxA0ifxA+1A+1ifA+1JxA+1A+1JxA+10
230 212 229 mpbird φAGAfGA+1
231 106 230 jca φA0𝑝fGAGAfGA+1