Metamath Proof Explorer


Theorem muinv

Description: The Möbius inversion formula. If G ( n ) = sum_ k || n F ( k ) for every n e. NN , then F ( n ) = sum_ k || n mmu ( k ) G ( n / k ) = sum_ k || n mmu ( n / k ) G ( k ) , i.e. the Möbius function is the Dirichlet convolution inverse of the constant function 1 . Theorem 2.9 in ApostolNT p. 32. (Contributed by Mario Carneiro, 2-Jul-2015)

Ref Expression
Hypotheses muinv.1 φ F :
muinv.2 φ G = n k x | x n F k
Assertion muinv φ F = m j x | x m μ j G m j

Proof

Step Hyp Ref Expression
1 muinv.1 φ F :
2 muinv.2 φ G = n k x | x n F k
3 1 feqmptd φ F = m F m
4 2 ad2antrr φ m j x | x m G = n k x | x n F k
5 4 fveq1d φ m j x | x m G m j = n k x | x n F k m j
6 breq1 x = j x m j m
7 6 elrab j x | x m j j m
8 7 simprbi j x | x m j m
9 8 adantl φ m j x | x m j m
10 elrabi j x | x m j
11 10 adantl φ m j x | x m j
12 11 nnzd φ m j x | x m j
13 11 nnne0d φ m j x | x m j 0
14 nnz m m
15 14 ad2antlr φ m j x | x m m
16 dvdsval2 j j 0 m j m m j
17 12 13 15 16 syl3anc φ m j x | x m j m m j
18 9 17 mpbid φ m j x | x m m j
19 nnre m m
20 nngt0 m 0 < m
21 19 20 jca m m 0 < m
22 21 ad2antlr φ m j x | x m m 0 < m
23 nnre j j
24 nngt0 j 0 < j
25 23 24 jca j j 0 < j
26 11 25 syl φ m j x | x m j 0 < j
27 divgt0 m 0 < m j 0 < j 0 < m j
28 22 26 27 syl2anc φ m j x | x m 0 < m j
29 elnnz m j m j 0 < m j
30 18 28 29 sylanbrc φ m j x | x m m j
31 breq2 n = m j x n x m j
32 31 rabbidv n = m j x | x n = x | x m j
33 32 sumeq1d n = m j k x | x n F k = k x | x m j F k
34 eqid n k x | x n F k = n k x | x n F k
35 sumex k x | x m j F k V
36 33 34 35 fvmpt m j n k x | x n F k m j = k x | x m j F k
37 30 36 syl φ m j x | x m n k x | x n F k m j = k x | x m j F k
38 5 37 eqtrd φ m j x | x m G m j = k x | x m j F k
39 38 oveq2d φ m j x | x m μ j G m j = μ j k x | x m j F k
40 fzfid φ m j x | x m 1 m j Fin
41 dvdsssfz1 m j x | x m j 1 m j
42 30 41 syl φ m j x | x m x | x m j 1 m j
43 40 42 ssfid φ m j x | x m x | x m j Fin
44 mucl j μ j
45 11 44 syl φ m j x | x m μ j
46 45 zcnd φ m j x | x m μ j
47 1 ad2antrr φ m j x | x m F :
48 elrabi k x | x m j k
49 ffvelrn F : k F k
50 47 48 49 syl2an φ m j x | x m k x | x m j F k
51 43 46 50 fsummulc2 φ m j x | x m μ j k x | x m j F k = k x | x m j μ j F k
52 39 51 eqtrd φ m j x | x m μ j G m j = k x | x m j μ j F k
53 52 sumeq2dv φ m j x | x m μ j G m j = j x | x m k x | x m j μ j F k
54 simpr φ m m
55 46 adantrr φ m j x | x m k x | x m j μ j
56 50 anasss φ m j x | x m k x | x m j F k
57 55 56 mulcld φ m j x | x m k x | x m j μ j F k
58 54 57 fsumdvdsdiag φ m j x | x m k x | x m j μ j F k = k x | x m j x | x m k μ j F k
59 ssrab2 x | x m
60 dvdsdivcl m k x | x m m k x | x m
61 60 adantll φ m k x | x m m k x | x m
62 59 61 sselid φ m k x | x m m k
63 musum m k j x | x m k μ j = if m k = 1 1 0
64 62 63 syl φ m k x | x m j x | x m k μ j = if m k = 1 1 0
65 64 oveq1d φ m k x | x m j x | x m k μ j F k = if m k = 1 1 0 F k
66 fzfid φ m k x | x m 1 m k Fin
67 dvdsssfz1 m k x | x m k 1 m k
68 62 67 syl φ m k x | x m x | x m k 1 m k
69 66 68 ssfid φ m k x | x m x | x m k Fin
70 1 adantr φ m F :
71 elrabi k x | x m k
72 70 71 49 syl2an φ m k x | x m F k
73 ssrab2 x | x m k
74 simpr φ m k x | x m j x | x m k j x | x m k
75 73 74 sselid φ m k x | x m j x | x m k j
76 75 44 syl φ m k x | x m j x | x m k μ j
77 76 zcnd φ m k x | x m j x | x m k μ j
78 69 72 77 fsummulc1 φ m k x | x m j x | x m k μ j F k = j x | x m k μ j F k
79 ovif if m k = 1 1 0 F k = if m k = 1 1 F k 0 F k
80 nncn m m
81 80 ad2antlr φ m k x | x m m
82 71 adantl φ m k x | x m k
83 82 nncnd φ m k x | x m k
84 1cnd φ m k x | x m 1
85 82 nnne0d φ m k x | x m k 0
86 81 83 84 85 divmuld φ m k x | x m m k = 1 k 1 = m
87 83 mulid1d φ m k x | x m k 1 = k
88 87 eqeq1d φ m k x | x m k 1 = m k = m
89 86 88 bitrd φ m k x | x m m k = 1 k = m
90 72 mulid2d φ m k x | x m 1 F k = F k
91 72 mul02d φ m k x | x m 0 F k = 0
92 89 90 91 ifbieq12d φ m k x | x m if m k = 1 1 F k 0 F k = if k = m F k 0
93 79 92 eqtrid φ m k x | x m if m k = 1 1 0 F k = if k = m F k 0
94 65 78 93 3eqtr3d φ m k x | x m j x | x m k μ j F k = if k = m F k 0
95 94 sumeq2dv φ m k x | x m j x | x m k μ j F k = k x | x m if k = m F k 0
96 breq1 x = m x m m m
97 54 nnzd φ m m
98 iddvds m m m
99 97 98 syl φ m m m
100 96 54 99 elrabd φ m m x | x m
101 100 snssd φ m m x | x m
102 101 sselda φ m k m k x | x m
103 102 72 syldan φ m k m F k
104 0cn 0
105 ifcl F k 0 if k = m F k 0
106 103 104 105 sylancl φ m k m if k = m F k 0
107 eldifsni k x | x m m k m
108 107 adantl φ m k x | x m m k m
109 108 neneqd φ m k x | x m m ¬ k = m
110 109 iffalsed φ m k x | x m m if k = m F k 0 = 0
111 fzfid φ m 1 m Fin
112 dvdsssfz1 m x | x m 1 m
113 112 adantl φ m x | x m 1 m
114 111 113 ssfid φ m x | x m Fin
115 101 106 110 114 fsumss φ m k m if k = m F k 0 = k x | x m if k = m F k 0
116 1 ffvelrnda φ m F m
117 iftrue k = m if k = m F k 0 = F k
118 fveq2 k = m F k = F m
119 117 118 eqtrd k = m if k = m F k 0 = F m
120 119 sumsn m F m k m if k = m F k 0 = F m
121 54 116 120 syl2anc φ m k m if k = m F k 0 = F m
122 95 115 121 3eqtr2d φ m k x | x m j x | x m k μ j F k = F m
123 53 58 122 3eqtrd φ m j x | x m μ j G m j = F m
124 123 mpteq2dva φ m j x | x m μ j G m j = m F m
125 3 124 eqtr4d φ F = m j x | x m μ j G m j