Metamath Proof Explorer


Theorem muinv

Description: The Möbius inversion formula. If G ( n ) = sum_ k || n F ( k ) for every n e. NN , then F ( n ) = sum_ k || n mmu ( k ) G ( n / k ) = sum_ k || n mmu ( n / k ) G ( k ) , i.e. the Möbius function is the Dirichlet convolution inverse of the constant function 1 . Theorem 2.9 in ApostolNT p. 32. (Contributed by Mario Carneiro, 2-Jul-2015)

Ref Expression
Hypotheses muinv.1 φF:
muinv.2 φG=nkx|xnFk
Assertion muinv φF=mjx|xmμjGmj

Proof

Step Hyp Ref Expression
1 muinv.1 φF:
2 muinv.2 φG=nkx|xnFk
3 1 feqmptd φF=mFm
4 2 ad2antrr φmjx|xmG=nkx|xnFk
5 4 fveq1d φmjx|xmGmj=nkx|xnFkmj
6 breq1 x=jxmjm
7 6 elrab jx|xmjjm
8 7 simprbi jx|xmjm
9 8 adantl φmjx|xmjm
10 elrabi jx|xmj
11 10 adantl φmjx|xmj
12 11 nnzd φmjx|xmj
13 11 nnne0d φmjx|xmj0
14 nnz mm
15 14 ad2antlr φmjx|xmm
16 dvdsval2 jj0mjmmj
17 12 13 15 16 syl3anc φmjx|xmjmmj
18 9 17 mpbid φmjx|xmmj
19 nnre mm
20 nngt0 m0<m
21 19 20 jca mm0<m
22 21 ad2antlr φmjx|xmm0<m
23 nnre jj
24 nngt0 j0<j
25 23 24 jca jj0<j
26 11 25 syl φmjx|xmj0<j
27 divgt0 m0<mj0<j0<mj
28 22 26 27 syl2anc φmjx|xm0<mj
29 elnnz mjmj0<mj
30 18 28 29 sylanbrc φmjx|xmmj
31 breq2 n=mjxnxmj
32 31 rabbidv n=mjx|xn=x|xmj
33 32 sumeq1d n=mjkx|xnFk=kx|xmjFk
34 eqid nkx|xnFk=nkx|xnFk
35 sumex kx|xmjFkV
36 33 34 35 fvmpt mjnkx|xnFkmj=kx|xmjFk
37 30 36 syl φmjx|xmnkx|xnFkmj=kx|xmjFk
38 5 37 eqtrd φmjx|xmGmj=kx|xmjFk
39 38 oveq2d φmjx|xmμjGmj=μjkx|xmjFk
40 fzfid φmjx|xm1mjFin
41 dvdsssfz1 mjx|xmj1mj
42 30 41 syl φmjx|xmx|xmj1mj
43 40 42 ssfid φmjx|xmx|xmjFin
44 mucl jμj
45 11 44 syl φmjx|xmμj
46 45 zcnd φmjx|xmμj
47 1 ad2antrr φmjx|xmF:
48 elrabi kx|xmjk
49 ffvelcdm F:kFk
50 47 48 49 syl2an φmjx|xmkx|xmjFk
51 43 46 50 fsummulc2 φmjx|xmμjkx|xmjFk=kx|xmjμjFk
52 39 51 eqtrd φmjx|xmμjGmj=kx|xmjμjFk
53 52 sumeq2dv φmjx|xmμjGmj=jx|xmkx|xmjμjFk
54 simpr φmm
55 46 adantrr φmjx|xmkx|xmjμj
56 50 anasss φmjx|xmkx|xmjFk
57 55 56 mulcld φmjx|xmkx|xmjμjFk
58 54 57 fsumdvdsdiag φmjx|xmkx|xmjμjFk=kx|xmjx|xmkμjFk
59 ssrab2 x|xm
60 dvdsdivcl mkx|xmmkx|xm
61 60 adantll φmkx|xmmkx|xm
62 59 61 sselid φmkx|xmmk
63 musum mkjx|xmkμj=ifmk=110
64 62 63 syl φmkx|xmjx|xmkμj=ifmk=110
65 64 oveq1d φmkx|xmjx|xmkμjFk=ifmk=110Fk
66 fzfid φmkx|xm1mkFin
67 dvdsssfz1 mkx|xmk1mk
68 62 67 syl φmkx|xmx|xmk1mk
69 66 68 ssfid φmkx|xmx|xmkFin
70 1 adantr φmF:
71 elrabi kx|xmk
72 70 71 49 syl2an φmkx|xmFk
73 ssrab2 x|xmk
74 simpr φmkx|xmjx|xmkjx|xmk
75 73 74 sselid φmkx|xmjx|xmkj
76 75 44 syl φmkx|xmjx|xmkμj
77 76 zcnd φmkx|xmjx|xmkμj
78 69 72 77 fsummulc1 φmkx|xmjx|xmkμjFk=jx|xmkμjFk
79 ovif ifmk=110Fk=ifmk=11Fk0Fk
80 nncn mm
81 80 ad2antlr φmkx|xmm
82 71 adantl φmkx|xmk
83 82 nncnd φmkx|xmk
84 1cnd φmkx|xm1
85 82 nnne0d φmkx|xmk0
86 81 83 84 85 divmuld φmkx|xmmk=1k1=m
87 83 mulridd φmkx|xmk1=k
88 87 eqeq1d φmkx|xmk1=mk=m
89 86 88 bitrd φmkx|xmmk=1k=m
90 72 mullidd φmkx|xm1Fk=Fk
91 72 mul02d φmkx|xm0Fk=0
92 89 90 91 ifbieq12d φmkx|xmifmk=11Fk0Fk=ifk=mFk0
93 79 92 eqtrid φmkx|xmifmk=110Fk=ifk=mFk0
94 65 78 93 3eqtr3d φmkx|xmjx|xmkμjFk=ifk=mFk0
95 94 sumeq2dv φmkx|xmjx|xmkμjFk=kx|xmifk=mFk0
96 breq1 x=mxmmm
97 54 nnzd φmm
98 iddvds mmm
99 97 98 syl φmmm
100 96 54 99 elrabd φmmx|xm
101 100 snssd φmmx|xm
102 101 sselda φmkmkx|xm
103 102 72 syldan φmkmFk
104 0cn 0
105 ifcl Fk0ifk=mFk0
106 103 104 105 sylancl φmkmifk=mFk0
107 eldifsni kx|xmmkm
108 107 adantl φmkx|xmmkm
109 108 neneqd φmkx|xmm¬k=m
110 109 iffalsed φmkx|xmmifk=mFk0=0
111 fzfid φm1mFin
112 dvdsssfz1 mx|xm1m
113 112 adantl φmx|xm1m
114 111 113 ssfid φmx|xmFin
115 101 106 110 114 fsumss φmkmifk=mFk0=kx|xmifk=mFk0
116 1 ffvelcdmda φmFm
117 iftrue k=mifk=mFk0=Fk
118 fveq2 k=mFk=Fm
119 117 118 eqtrd k=mifk=mFk0=Fm
120 119 sumsn mFmkmifk=mFk0=Fm
121 54 116 120 syl2anc φmkmifk=mFk0=Fm
122 95 115 121 3eqtr2d φmkx|xmjx|xmkμjFk=Fm
123 53 58 122 3eqtrd φmjx|xmμjGmj=Fm
124 123 mpteq2dva φmjx|xmμjGmj=mFm
125 3 124 eqtr4d φF=mjx|xmμjGmj