Metamath Proof Explorer


Theorem nosupbnd2lem1

Description: Bounding law from above when a set of surreals has a maximum. (Contributed by Scott Fenton, 6-Dec-2021)

Ref Expression
Assertion nosupbnd2lem1 U A y A ¬ U < s y A No A V Z No a A a < s Z ¬ Z suc dom U < s U dom U 2 𝑜

Proof

Step Hyp Ref Expression
1 simp1l U A y A ¬ U < s y A No A V Z No a A a < s Z U A
2 simp3 U A y A ¬ U < s y A No A V Z No a A a < s Z a A a < s Z
3 breq1 a = U a < s Z U < s Z
4 3 rspcv U A a A a < s Z U < s Z
5 1 2 4 sylc U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z
6 simpl21 U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z A No
7 simpl1l U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z U A
8 6 7 sseldd U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z U No
9 simpl23 U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z Z No
10 simp21 U A y A ¬ U < s y A No A V Z No a A a < s Z A No
11 10 1 sseldd U A y A ¬ U < s y A No A V Z No a A a < s Z U No
12 sltso < s Or No
13 sonr < s Or No U No ¬ U < s U
14 12 13 mpan U No ¬ U < s U
15 11 14 syl U A y A ¬ U < s y A No A V Z No a A a < s Z ¬ U < s U
16 breq2 U = Z U < s U U < s Z
17 16 notbid U = Z ¬ U < s U ¬ U < s Z
18 15 17 syl5ibcom U A y A ¬ U < s y A No A V Z No a A a < s Z U = Z ¬ U < s Z
19 18 con2d U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z ¬ U = Z
20 19 imp U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z ¬ U = Z
21 20 neqned U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z U Z
22 nosepssdm U No Z No U Z x On | U x Z x dom U
23 8 9 21 22 syl3anc U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U
24 nosepon U No Z No U Z x On | U x Z x On
25 8 9 21 24 syl3anc U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x On
26 nodmon U No dom U On
27 8 26 syl U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z dom U On
28 onsseleq x On | U x Z x On dom U On x On | U x Z x dom U x On | U x Z x dom U x On | U x Z x = dom U
29 25 27 28 syl2anc U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U x On | U x Z x dom U x On | U x Z x = dom U
30 8 adantr U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U U No
31 9 adantr U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U Z No
32 21 adantr U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U U Z
33 30 31 32 24 syl3anc U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U x On | U x Z x On
34 onelon x On | U x Z x On q x On | U x Z x q On
35 33 34 sylan U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U q x On | U x Z x q On
36 simpr U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U q x On | U x Z x q x On | U x Z x
37 fveq2 x = q U x = U q
38 fveq2 x = q Z x = Z q
39 37 38 neeq12d x = q U x Z x U q Z q
40 39 onnminsb q On q x On | U x Z x ¬ U q Z q
41 35 36 40 sylc U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U q x On | U x Z x ¬ U q Z q
42 df-ne U q Z q ¬ U q = Z q
43 42 con2bii U q = Z q ¬ U q Z q
44 41 43 sylibr U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U q x On | U x Z x U q = Z q
45 simplr U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U q x On | U x Z x x On | U x Z x dom U
46 27 adantr U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U dom U On
47 46 adantr U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U q x On | U x Z x dom U On
48 ontr1 dom U On q x On | U x Z x x On | U x Z x dom U q dom U
49 47 48 syl U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U q x On | U x Z x q x On | U x Z x x On | U x Z x dom U q dom U
50 36 45 49 mp2and U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U q x On | U x Z x q dom U
51 50 fvresd U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U q x On | U x Z x Z dom U q = Z q
52 44 51 eqtr4d U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U q x On | U x Z x U q = Z dom U q
53 52 ralrimiva U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U q x On | U x Z x U q = Z dom U q
54 simplr U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U U < s Z
55 sltval2 U No Z No U < s Z U x On | U x Z x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 Z x On | U x Z x
56 30 31 55 syl2anc U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U U < s Z U x On | U x Z x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 Z x On | U x Z x
57 54 56 mpbid U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U U x On | U x Z x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 Z x On | U x Z x
58 simpr U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U x On | U x Z x dom U
59 58 fvresd U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U Z dom U x On | U x Z x = Z x On | U x Z x
60 57 59 breqtrrd U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U U x On | U x Z x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 Z dom U x On | U x Z x
61 raleq p = x On | U x Z x q p U q = Z dom U q q x On | U x Z x U q = Z dom U q
62 fveq2 p = x On | U x Z x U p = U x On | U x Z x
63 fveq2 p = x On | U x Z x Z dom U p = Z dom U x On | U x Z x
64 62 63 breq12d p = x On | U x Z x U p 1 𝑜 1 𝑜 2 𝑜 2 𝑜 Z dom U p U x On | U x Z x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 Z dom U x On | U x Z x
65 61 64 anbi12d p = x On | U x Z x q p U q = Z dom U q U p 1 𝑜 1 𝑜 2 𝑜 2 𝑜 Z dom U p q x On | U x Z x U q = Z dom U q U x On | U x Z x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 Z dom U x On | U x Z x
66 65 rspcev x On | U x Z x On q x On | U x Z x U q = Z dom U q U x On | U x Z x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 Z dom U x On | U x Z x p On q p U q = Z dom U q U p 1 𝑜 1 𝑜 2 𝑜 2 𝑜 Z dom U p
67 33 53 60 66 syl12anc U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U p On q p U q = Z dom U q U p 1 𝑜 1 𝑜 2 𝑜 2 𝑜 Z dom U p
68 noreson Z No dom U On Z dom U No
69 31 46 68 syl2anc U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U Z dom U No
70 sltval U No Z dom U No U < s Z dom U p On q p U q = Z dom U q U p 1 𝑜 1 𝑜 2 𝑜 2 𝑜 Z dom U p
71 30 69 70 syl2anc U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U U < s Z dom U p On q p U q = Z dom U q U p 1 𝑜 1 𝑜 2 𝑜 2 𝑜 Z dom U p
72 67 71 mpbird U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U U < s Z dom U
73 df-res dom U 2 𝑜 dom U = dom U 2 𝑜 dom U × V
74 2on 2 𝑜 On
75 xpsng dom U On 2 𝑜 On dom U × 2 𝑜 = dom U 2 𝑜
76 46 74 75 sylancl U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U dom U × 2 𝑜 = dom U 2 𝑜
77 76 ineq1d U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U dom U × 2 𝑜 dom U × V = dom U 2 𝑜 dom U × V
78 incom dom U dom U = dom U dom U
79 nodmord U No Ord dom U
80 ordirr Ord dom U ¬ dom U dom U
81 30 79 80 3syl U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U ¬ dom U dom U
82 disjsn dom U dom U = ¬ dom U dom U
83 81 82 sylibr U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U dom U dom U =
84 78 83 eqtrid U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U dom U dom U =
85 xpdisj1 dom U dom U = dom U × 2 𝑜 dom U × V =
86 84 85 syl U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U dom U × 2 𝑜 dom U × V =
87 77 86 eqtr3d U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U dom U 2 𝑜 dom U × V =
88 73 87 eqtrid U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U dom U 2 𝑜 dom U =
89 88 uneq2d U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U U dom U dom U 2 𝑜 dom U = U dom U
90 resundir U dom U 2 𝑜 dom U = U dom U dom U 2 𝑜 dom U
91 un0 U dom U = U dom U
92 91 eqcomi U dom U = U dom U
93 89 90 92 3eqtr4g U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U U dom U 2 𝑜 dom U = U dom U
94 nofun U No Fun U
95 30 94 syl U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U Fun U
96 funrel Fun U Rel U
97 resdm Rel U U dom U = U
98 95 96 97 3syl U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U U dom U = U
99 93 98 eqtrd U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U U dom U 2 𝑜 dom U = U
100 sssucid dom U suc dom U
101 resabs1 dom U suc dom U Z suc dom U dom U = Z dom U
102 100 101 mp1i U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U Z suc dom U dom U = Z dom U
103 72 99 102 3brtr4d U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U U dom U 2 𝑜 dom U < s Z suc dom U dom U
104 74 elexi 2 𝑜 V
105 104 prid2 2 𝑜 1 𝑜 2 𝑜
106 105 noextend U No U dom U 2 𝑜 No
107 8 106 syl U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z U dom U 2 𝑜 No
108 107 adantr U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U U dom U 2 𝑜 No
109 sucelon dom U On suc dom U On
110 27 109 sylib U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z suc dom U On
111 noreson Z No suc dom U On Z suc dom U No
112 9 110 111 syl2anc U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z Z suc dom U No
113 112 adantr U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U Z suc dom U No
114 sltres U dom U 2 𝑜 No Z suc dom U No dom U On U dom U 2 𝑜 dom U < s Z suc dom U dom U U dom U 2 𝑜 < s Z suc dom U
115 108 113 46 114 syl3anc U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U U dom U 2 𝑜 dom U < s Z suc dom U dom U U dom U 2 𝑜 < s Z suc dom U
116 103 115 mpd U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U U dom U 2 𝑜 < s Z suc dom U
117 soasym < s Or No U dom U 2 𝑜 No Z suc dom U No U dom U 2 𝑜 < s Z suc dom U ¬ Z suc dom U < s U dom U 2 𝑜
118 12 117 mpan U dom U 2 𝑜 No Z suc dom U No U dom U 2 𝑜 < s Z suc dom U ¬ Z suc dom U < s U dom U 2 𝑜
119 108 113 118 syl2anc U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U U dom U 2 𝑜 < s Z suc dom U ¬ Z suc dom U < s U dom U 2 𝑜
120 116 119 mpd U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U ¬ Z suc dom U < s U dom U 2 𝑜
121 df-suc suc dom U = dom U dom U
122 121 reseq2i Z suc dom U = Z dom U dom U
123 resundi Z dom U dom U = Z dom U Z dom U
124 122 123 eqtri Z suc dom U = Z dom U Z dom U
125 dmres dom Z dom U = dom U dom Z
126 simpr U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U x On | U x Z x = dom U
127 necom U x Z x Z x U x
128 127 rabbii x On | U x Z x = x On | Z x U x
129 128 inteqi x On | U x Z x = x On | Z x U x
130 9 adantr U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U Z No
131 8 adantr U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U U No
132 21 adantr U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U U Z
133 132 necomd U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U Z U
134 nosepssdm Z No U No Z U x On | Z x U x dom Z
135 130 131 133 134 syl3anc U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U x On | Z x U x dom Z
136 129 135 eqsstrid U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U x On | U x Z x dom Z
137 126 136 eqsstrrd U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U dom U dom Z
138 df-ss dom U dom Z dom U dom Z = dom U
139 137 138 sylib U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U dom U dom Z = dom U
140 125 139 eqtrid U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U dom Z dom U = dom U
141 140 eleq2d U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U q dom Z dom U q dom U
142 simpr U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U q dom U q dom U
143 142 fvresd U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U q dom U Z dom U q = Z q
144 131 26 syl U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U dom U On
145 onelon dom U On q dom U q On
146 144 145 sylan U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U q dom U q On
147 126 eleq2d U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U q x On | U x Z x q dom U
148 147 biimpar U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U q dom U q x On | U x Z x
149 146 148 40 sylc U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U q dom U ¬ U q Z q
150 nesym U q Z q ¬ Z q = U q
151 150 con2bii Z q = U q ¬ U q Z q
152 149 151 sylibr U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U q dom U Z q = U q
153 143 152 eqtrd U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U q dom U Z dom U q = U q
154 153 ex U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U q dom U Z dom U q = U q
155 141 154 sylbid U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U q dom Z dom U Z dom U q = U q
156 155 ralrimiv U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U q dom Z dom U Z dom U q = U q
157 nofun Z No Fun Z
158 funres Fun Z Fun Z dom U
159 130 157 158 3syl U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U Fun Z dom U
160 131 94 syl U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U Fun U
161 eqfunfv Fun Z dom U Fun U Z dom U = U dom Z dom U = dom U q dom Z dom U Z dom U q = U q
162 159 160 161 syl2anc U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U Z dom U = U dom Z dom U = dom U q dom Z dom U Z dom U q = U q
163 140 156 162 mpbir2and U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U Z dom U = U
164 130 157 syl U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U Fun Z
165 funfn Fun Z Z Fn dom Z
166 164 165 sylib U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U Z Fn dom Z
167 1oex 1 𝑜 V
168 167 prid1 1 𝑜 1 𝑜 2 𝑜
169 168 nosgnn0i 1 𝑜
170 131 79 syl U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U Ord dom U
171 ndmfv ¬ dom U dom U U dom U =
172 170 80 171 3syl U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U U dom U =
173 172 neeq1d U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U U dom U 1 𝑜 1 𝑜
174 169 173 mpbiri U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U U dom U 1 𝑜
175 174 neneqd U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U ¬ U dom U = 1 𝑜
176 175 intnanrd U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U ¬ U dom U = 1 𝑜 Z dom U =
177 175 intnanrd U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U ¬ U dom U = 1 𝑜 Z dom U = 2 𝑜
178 simplr U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U U < s Z
179 131 130 55 syl2anc U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U U < s Z U x On | U x Z x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 Z x On | U x Z x
180 178 179 mpbid U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U U x On | U x Z x 1 𝑜 1 𝑜 2 𝑜 2 𝑜 Z x On | U x Z x
181 fveq2 x On | U x Z x = dom U U x On | U x Z x = U dom U
182 181 adantl U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U U x On | U x Z x = U dom U
183 fveq2 x On | U x Z x = dom U Z x On | U x Z x = Z dom U
184 183 adantl U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U Z x On | U x Z x = Z dom U
185 180 182 184 3brtr3d U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U U dom U 1 𝑜 1 𝑜 2 𝑜 2 𝑜 Z dom U
186 fvex U dom U V
187 fvex Z dom U V
188 186 187 brtp U dom U 1 𝑜 1 𝑜 2 𝑜 2 𝑜 Z dom U U dom U = 1 𝑜 Z dom U = U dom U = 1 𝑜 Z dom U = 2 𝑜 U dom U = Z dom U = 2 𝑜
189 3orrot U dom U = 1 𝑜 Z dom U = U dom U = 1 𝑜 Z dom U = 2 𝑜 U dom U = Z dom U = 2 𝑜 U dom U = 1 𝑜 Z dom U = 2 𝑜 U dom U = Z dom U = 2 𝑜 U dom U = 1 𝑜 Z dom U =
190 3orrot U dom U = 1 𝑜 Z dom U = 2 𝑜 U dom U = Z dom U = 2 𝑜 U dom U = 1 𝑜 Z dom U = U dom U = Z dom U = 2 𝑜 U dom U = 1 𝑜 Z dom U = U dom U = 1 𝑜 Z dom U = 2 𝑜
191 188 189 190 3bitri U dom U 1 𝑜 1 𝑜 2 𝑜 2 𝑜 Z dom U U dom U = Z dom U = 2 𝑜 U dom U = 1 𝑜 Z dom U = U dom U = 1 𝑜 Z dom U = 2 𝑜
192 185 191 sylib U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U U dom U = Z dom U = 2 𝑜 U dom U = 1 𝑜 Z dom U = U dom U = 1 𝑜 Z dom U = 2 𝑜
193 176 177 192 ecase23d U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U U dom U = Z dom U = 2 𝑜
194 193 simprd U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U Z dom U = 2 𝑜
195 ndmfv ¬ dom U dom Z Z dom U =
196 105 nosgnn0i 2 𝑜
197 neeq1 Z dom U = Z dom U 2 𝑜 2 𝑜
198 196 197 mpbiri Z dom U = Z dom U 2 𝑜
199 198 neneqd Z dom U = ¬ Z dom U = 2 𝑜
200 195 199 syl ¬ dom U dom Z ¬ Z dom U = 2 𝑜
201 200 con4i Z dom U = 2 𝑜 dom U dom Z
202 194 201 syl U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U dom U dom Z
203 fnressn Z Fn dom Z dom U dom Z Z dom U = dom U Z dom U
204 166 202 203 syl2anc U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U Z dom U = dom U Z dom U
205 194 opeq2d U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U dom U Z dom U = dom U 2 𝑜
206 205 sneqd U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U dom U Z dom U = dom U 2 𝑜
207 204 206 eqtrd U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U Z dom U = dom U 2 𝑜
208 163 207 uneq12d U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U Z dom U Z dom U = U dom U 2 𝑜
209 124 208 eqtrid U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U Z suc dom U = U dom U 2 𝑜
210 sonr < s Or No U dom U 2 𝑜 No ¬ U dom U 2 𝑜 < s U dom U 2 𝑜
211 12 210 mpan U dom U 2 𝑜 No ¬ U dom U 2 𝑜 < s U dom U 2 𝑜
212 131 106 211 3syl U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U ¬ U dom U 2 𝑜 < s U dom U 2 𝑜
213 209 212 eqnbrtrd U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x = dom U ¬ Z suc dom U < s U dom U 2 𝑜
214 120 213 jaodan U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U x On | U x Z x = dom U ¬ Z suc dom U < s U dom U 2 𝑜
215 214 ex U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U x On | U x Z x = dom U ¬ Z suc dom U < s U dom U 2 𝑜
216 29 215 sylbid U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z x On | U x Z x dom U ¬ Z suc dom U < s U dom U 2 𝑜
217 23 216 mpd U A y A ¬ U < s y A No A V Z No a A a < s Z U < s Z ¬ Z suc dom U < s U dom U 2 𝑜
218 5 217 mpdan U A y A ¬ U < s y A No A V Z No a A a < s Z ¬ Z suc dom U < s U dom U 2 𝑜