Metamath Proof Explorer


Theorem phimullem

Description: Lemma for phimul . (Contributed by Mario Carneiro, 24-Feb-2014)

Ref Expression
Hypotheses crth.1 S=0..^ M N
crth.2 T=0..^M×0..^N
crth.3 F=xSxmodMxmodN
crth.4 φMNMgcdN=1
phimul.4 U=y0..^M|ygcdM=1
phimul.5 V=y0..^N|ygcdN=1
phimul.6 W=yS|ygcd M N=1
Assertion phimullem φϕ M N=ϕMϕN

Proof

Step Hyp Ref Expression
1 crth.1 S=0..^ M N
2 crth.2 T=0..^M×0..^N
3 crth.3 F=xSxmodMxmodN
4 crth.4 φMNMgcdN=1
5 phimul.4 U=y0..^M|ygcdM=1
6 phimul.5 V=y0..^N|ygcdN=1
7 phimul.6 W=yS|ygcd M N=1
8 oveq1 y=wygcd M N=wgcd M N
9 8 eqeq1d y=wygcd M N=1wgcd M N=1
10 9 7 elrab2 wWwSwgcd M N=1
11 10 simplbi wWwS
12 oveq1 x=wxmodM=wmodM
13 oveq1 x=wxmodN=wmodN
14 12 13 opeq12d x=wxmodMxmodN=wmodMwmodN
15 opex wmodMwmodNV
16 14 3 15 fvmpt wSFw=wmodMwmodN
17 11 16 syl wWFw=wmodMwmodN
18 17 adantl φwWFw=wmodMwmodN
19 11 1 eleqtrdi wWw0..^ M N
20 19 adantl φwWw0..^ M N
21 elfzoelz w0..^ M Nw
22 20 21 syl φwWw
23 4 simp1d φM
24 23 adantr φwWM
25 zmodfzo wMwmodM0..^M
26 22 24 25 syl2anc φwWwmodM0..^M
27 modgcd wMwmodMgcdM=wgcdM
28 22 24 27 syl2anc φwWwmodMgcdM=wgcdM
29 24 nnzd φwWM
30 gcddvds wMwgcdMwwgcdMM
31 22 29 30 syl2anc φwWwgcdMwwgcdMM
32 31 simpld φwWwgcdMw
33 nnne0 MM0
34 simpr w=0M=0M=0
35 34 necon3ai M0¬w=0M=0
36 24 33 35 3syl φwW¬w=0M=0
37 gcdn0cl wM¬w=0M=0wgcdM
38 22 29 36 37 syl21anc φwWwgcdM
39 38 nnzd φwWwgcdM
40 4 simp2d φN
41 40 adantr φwWN
42 41 nnzd φwWN
43 31 simprd φwWwgcdMM
44 39 29 42 43 dvdsmultr1d φwWwgcdM M N
45 24 41 nnmulcld φwW M N
46 45 nnzd φwW M N
47 nnne0 M N M N0
48 simpr w=0 M N=0 M N=0
49 48 necon3ai M N0¬w=0 M N=0
50 45 47 49 3syl φwW¬w=0 M N=0
51 dvdslegcd wgcdMw M N¬w=0 M N=0wgcdMwwgcdM M NwgcdMwgcd M N
52 39 22 46 50 51 syl31anc φwWwgcdMwwgcdM M NwgcdMwgcd M N
53 32 44 52 mp2and φwWwgcdMwgcd M N
54 10 simprbi wWwgcd M N=1
55 54 adantl φwWwgcd M N=1
56 53 55 breqtrd φwWwgcdM1
57 nnle1eq1 wgcdMwgcdM1wgcdM=1
58 38 57 syl φwWwgcdM1wgcdM=1
59 56 58 mpbid φwWwgcdM=1
60 28 59 eqtrd φwWwmodMgcdM=1
61 oveq1 y=wmodMygcdM=wmodMgcdM
62 61 eqeq1d y=wmodMygcdM=1wmodMgcdM=1
63 62 5 elrab2 wmodMUwmodM0..^MwmodMgcdM=1
64 26 60 63 sylanbrc φwWwmodMU
65 zmodfzo wNwmodN0..^N
66 22 41 65 syl2anc φwWwmodN0..^N
67 modgcd wNwmodNgcdN=wgcdN
68 22 41 67 syl2anc φwWwmodNgcdN=wgcdN
69 gcddvds wNwgcdNwwgcdNN
70 22 42 69 syl2anc φwWwgcdNwwgcdNN
71 70 simpld φwWwgcdNw
72 nnne0 NN0
73 simpr w=0N=0N=0
74 73 necon3ai N0¬w=0N=0
75 41 72 74 3syl φwW¬w=0N=0
76 gcdn0cl wN¬w=0N=0wgcdN
77 22 42 75 76 syl21anc φwWwgcdN
78 77 nnzd φwWwgcdN
79 70 simprd φwWwgcdNN
80 dvdsmul2 MNN M N
81 29 42 80 syl2anc φwWN M N
82 78 42 46 79 81 dvdstrd φwWwgcdN M N
83 dvdslegcd wgcdNw M N¬w=0 M N=0wgcdNwwgcdN M NwgcdNwgcd M N
84 78 22 46 50 83 syl31anc φwWwgcdNwwgcdN M NwgcdNwgcd M N
85 71 82 84 mp2and φwWwgcdNwgcd M N
86 85 55 breqtrd φwWwgcdN1
87 nnle1eq1 wgcdNwgcdN1wgcdN=1
88 77 87 syl φwWwgcdN1wgcdN=1
89 86 88 mpbid φwWwgcdN=1
90 68 89 eqtrd φwWwmodNgcdN=1
91 oveq1 y=wmodNygcdN=wmodNgcdN
92 91 eqeq1d y=wmodNygcdN=1wmodNgcdN=1
93 92 6 elrab2 wmodNVwmodN0..^NwmodNgcdN=1
94 66 90 93 sylanbrc φwWwmodNV
95 64 94 opelxpd φwWwmodMwmodNU×V
96 18 95 eqeltrd φwWFwU×V
97 96 ralrimiva φwWFwU×V
98 1 2 3 4 crth φF:S1-1 ontoT
99 f1ofn F:S1-1 ontoTFFnS
100 fnfun FFnSFunF
101 98 99 100 3syl φFunF
102 7 ssrab3 WS
103 fndm FFnSdomF=S
104 98 99 103 3syl φdomF=S
105 102 104 sseqtrrid φWdomF
106 funimass4 FunFWdomFFWU×VwWFwU×V
107 101 105 106 syl2anc φFWU×VwWFwU×V
108 97 107 mpbird φFWU×V
109 5 ssrab3 U0..^M
110 6 ssrab3 V0..^N
111 xpss12 U0..^MV0..^NU×V0..^M×0..^N
112 109 110 111 mp2an U×V0..^M×0..^N
113 112 2 sseqtrri U×VT
114 113 sseli zU×VzT
115 f1ocnvfv2 F:S1-1 ontoTzTFF-1z=z
116 98 114 115 syl2an φzU×VFF-1z=z
117 f1ocnv F:S1-1 ontoTF-1:T1-1 ontoS
118 f1of F-1:T1-1 ontoSF-1:TS
119 98 117 118 3syl φF-1:TS
120 ffvelcdm F-1:TSzTF-1zS
121 119 114 120 syl2an φzU×VF-1zS
122 121 1 eleqtrdi φzU×VF-1z0..^ M N
123 elfzoelz F-1z0..^ M NF-1z
124 122 123 syl φzU×VF-1z
125 23 adantr φzU×VM
126 modgcd F-1zMF-1zmodMgcdM=F-1zgcdM
127 124 125 126 syl2anc φzU×VF-1zmodMgcdM=F-1zgcdM
128 oveq1 w=F-1zwmodM=F-1zmodM
129 oveq1 w=F-1zwmodN=F-1zmodN
130 128 129 opeq12d w=F-1zwmodMwmodN=F-1zmodMF-1zmodN
131 14 cbvmptv xSxmodMxmodN=wSwmodMwmodN
132 3 131 eqtri F=wSwmodMwmodN
133 opex F-1zmodMF-1zmodNV
134 130 132 133 fvmpt F-1zSFF-1z=F-1zmodMF-1zmodN
135 121 134 syl φzU×VFF-1z=F-1zmodMF-1zmodN
136 116 135 eqtr3d φzU×Vz=F-1zmodMF-1zmodN
137 simpr φzU×VzU×V
138 136 137 eqeltrrd φzU×VF-1zmodMF-1zmodNU×V
139 opelxp F-1zmodMF-1zmodNU×VF-1zmodMUF-1zmodNV
140 138 139 sylib φzU×VF-1zmodMUF-1zmodNV
141 140 simpld φzU×VF-1zmodMU
142 oveq1 y=F-1zmodMygcdM=F-1zmodMgcdM
143 142 eqeq1d y=F-1zmodMygcdM=1F-1zmodMgcdM=1
144 143 5 elrab2 F-1zmodMUF-1zmodM0..^MF-1zmodMgcdM=1
145 141 144 sylib φzU×VF-1zmodM0..^MF-1zmodMgcdM=1
146 145 simprd φzU×VF-1zmodMgcdM=1
147 127 146 eqtr3d φzU×VF-1zgcdM=1
148 40 adantr φzU×VN
149 modgcd F-1zNF-1zmodNgcdN=F-1zgcdN
150 124 148 149 syl2anc φzU×VF-1zmodNgcdN=F-1zgcdN
151 140 simprd φzU×VF-1zmodNV
152 oveq1 y=F-1zmodNygcdN=F-1zmodNgcdN
153 152 eqeq1d y=F-1zmodNygcdN=1F-1zmodNgcdN=1
154 153 6 elrab2 F-1zmodNVF-1zmodN0..^NF-1zmodNgcdN=1
155 151 154 sylib φzU×VF-1zmodN0..^NF-1zmodNgcdN=1
156 155 simprd φzU×VF-1zmodNgcdN=1
157 150 156 eqtr3d φzU×VF-1zgcdN=1
158 23 nnzd φM
159 158 adantr φzU×VM
160 40 nnzd φN
161 160 adantr φzU×VN
162 rpmul F-1zMNF-1zgcdM=1F-1zgcdN=1F-1zgcd M N=1
163 124 159 161 162 syl3anc φzU×VF-1zgcdM=1F-1zgcdN=1F-1zgcd M N=1
164 147 157 163 mp2and φzU×VF-1zgcd M N=1
165 oveq1 y=F-1zygcd M N=F-1zgcd M N
166 165 eqeq1d y=F-1zygcd M N=1F-1zgcd M N=1
167 166 7 elrab2 F-1zWF-1zSF-1zgcd M N=1
168 121 164 167 sylanbrc φzU×VF-1zW
169 funfvima2 FunFWdomFF-1zWFF-1zFW
170 101 105 169 syl2anc φF-1zWFF-1zFW
171 170 imp φF-1zWFF-1zFW
172 168 171 syldan φzU×VFF-1zFW
173 116 172 eqeltrrd φzU×VzFW
174 108 173 eqelssd φFW=U×V
175 f1of1 F:S1-1 ontoTF:S1-1T
176 98 175 syl φF:S1-1T
177 fzofi 0..^ M NFin
178 1 177 eqeltri SFin
179 ssfi SFinWSWFin
180 178 102 179 mp2an WFin
181 180 elexi WV
182 181 f1imaen F:S1-1TWSFWW
183 176 102 182 sylancl φFWW
184 174 183 eqbrtrrd φU×VW
185 fzofi 0..^MFin
186 ssrab2 y0..^M|ygcdM=10..^M
187 ssfi 0..^MFiny0..^M|ygcdM=10..^My0..^M|ygcdM=1Fin
188 185 186 187 mp2an y0..^M|ygcdM=1Fin
189 5 188 eqeltri UFin
190 fzofi 0..^NFin
191 ssrab2 y0..^N|ygcdN=10..^N
192 ssfi 0..^NFiny0..^N|ygcdN=10..^Ny0..^N|ygcdN=1Fin
193 190 191 192 mp2an y0..^N|ygcdN=1Fin
194 6 193 eqeltri VFin
195 xpfi UFinVFinU×VFin
196 189 194 195 mp2an U×VFin
197 hashen U×VFinWFinU×V=WU×VW
198 196 180 197 mp2an U×V=WU×VW
199 184 198 sylibr φU×V=W
200 hashxp UFinVFinU×V=UV
201 189 194 200 mp2an U×V=UV
202 199 201 eqtr3di φW=UV
203 23 40 nnmulcld φ M N
204 dfphi2 M Nϕ M N=y0..^ M N|ygcd M N=1
205 1 rabeqi yS|ygcd M N=1=y0..^ M N|ygcd M N=1
206 7 205 eqtri W=y0..^ M N|ygcd M N=1
207 206 fveq2i W=y0..^ M N|ygcd M N=1
208 204 207 eqtr4di M Nϕ M N=W
209 203 208 syl φϕ M N=W
210 dfphi2 MϕM=y0..^M|ygcdM=1
211 5 fveq2i U=y0..^M|ygcdM=1
212 210 211 eqtr4di MϕM=U
213 23 212 syl φϕM=U
214 dfphi2 NϕN=y0..^N|ygcdN=1
215 6 fveq2i V=y0..^N|ygcdN=1
216 214 215 eqtr4di NϕN=V
217 40 216 syl φϕN=V
218 213 217 oveq12d φϕMϕN=UV
219 202 209 218 3eqtr4d φϕ M N=ϕMϕN