Metamath Proof Explorer


Theorem pntleml

Description: Lemma for pnt . Equation 10.6.35 in Shapiro, p. 436. (Contributed by Mario Carneiro, 14-Apr-2016)

Ref Expression
Hypotheses pntlem3.r R = a + ψ a a
pntlem3.a φ A +
pntlem3.A φ x + R x x A
pntlemp.b φ B +
pntlemp.l φ L 0 1
pntlemp.d D = A + 1
pntlemp.f F = 1 1 D L 32 B D 2
pntlemp.K φ e 0 1 x + k e B e +∞ y x +∞ z + y < z 1 + L e z < k y u z 1 + L e z R u u e
Assertion pntleml φ x + ψ x x 1

Proof

Step Hyp Ref Expression
1 pntlem3.r R = a + ψ a a
2 pntlem3.a φ A +
3 pntlem3.A φ x + R x x A
4 pntlemp.b φ B +
5 pntlemp.l φ L 0 1
6 pntlemp.d D = A + 1
7 pntlemp.f F = 1 1 D L 32 B D 2
8 pntlemp.K φ e 0 1 x + k e B e +∞ y x +∞ z + y < z 1 + L e z < k y u z 1 + L e z R u u e
9 eqid t 0 A | y + z y +∞ R z z t = t 0 A | y + z y +∞ R z z t
10 1 2 4 5 6 7 pntlemd φ L + D + F +
11 10 simp3d φ F +
12 0m0e0 0 0 = 0
13 simpr φ r t 0 A | y + z y +∞ R z z t r = 0 r = 0
14 13 oveq1d φ r t 0 A | y + z y +∞ R z z t r = 0 r 3 = 0 3
15 3nn 3
16 0exp 3 0 3 = 0
17 15 16 ax-mp 0 3 = 0
18 14 17 syl6eq φ r t 0 A | y + z y +∞ R z z t r = 0 r 3 = 0
19 18 oveq2d φ r t 0 A | y + z y +∞ R z z t r = 0 F r 3 = F 0
20 11 rpcnd φ F
21 20 mul01d φ F 0 = 0
22 21 ad2antrr φ r t 0 A | y + z y +∞ R z z t r = 0 F 0 = 0
23 19 22 eqtrd φ r t 0 A | y + z y +∞ R z z t r = 0 F r 3 = 0
24 13 23 oveq12d φ r t 0 A | y + z y +∞ R z z t r = 0 r F r 3 = 0 0
25 12 24 13 3eqtr4a φ r t 0 A | y + z y +∞ R z z t r = 0 r F r 3 = r
26 simplr φ r t 0 A | y + z y +∞ R z z t r = 0 r t 0 A | y + z y +∞ R z z t
27 25 26 eqeltrd φ r t 0 A | y + z y +∞ R z z t r = 0 r F r 3 t 0 A | y + z y +∞ R z z t
28 oveq1 y = s y +∞ = s +∞
29 28 raleqdv y = s z y +∞ R z z r z s +∞ R z z r
30 29 cbvrexvw y + z y +∞ R z z r s + z s +∞ R z z r
31 simplrr φ r 0 r 0 A s + z s +∞ R z z r r 0 A
32 0re 0
33 2 ad2antrr φ r 0 r 0 A s + z s +∞ R z z r A +
34 33 rpred φ r 0 r 0 A s + z s +∞ R z z r A
35 elicc2 0 A r 0 A r 0 r r A
36 32 34 35 sylancr φ r 0 r 0 A s + z s +∞ R z z r r 0 A r 0 r r A
37 31 36 mpbid φ r 0 r 0 A s + z s +∞ R z z r r 0 r r A
38 37 simp1d φ r 0 r 0 A s + z s +∞ R z z r r
39 11 ad2antrr φ r 0 r 0 A s + z s +∞ R z z r F +
40 37 simp2d φ r 0 r 0 A s + z s +∞ R z z r 0 r
41 simplrl φ r 0 r 0 A s + z s +∞ R z z r r 0
42 38 40 41 ne0gt0d φ r 0 r 0 A s + z s +∞ R z z r 0 < r
43 38 42 elrpd φ r 0 r 0 A s + z s +∞ R z z r r +
44 3z 3
45 rpexpcl r + 3 r 3 +
46 43 44 45 sylancl φ r 0 r 0 A s + z s +∞ R z z r r 3 +
47 39 46 rpmulcld φ r 0 r 0 A s + z s +∞ R z z r F r 3 +
48 47 rpred φ r 0 r 0 A s + z s +∞ R z z r F r 3
49 38 48 resubcld φ r 0 r 0 A s + z s +∞ R z z r r F r 3
50 3 ad2antrr φ r 0 r 0 A s + z s +∞ R z z r x + R x x A
51 4 ad2antrr φ r 0 r 0 A s + z s +∞ R z z r B +
52 5 ad2antrr φ r 0 r 0 A s + z s +∞ R z z r L 0 1
53 8 ad2antrr φ r 0 r 0 A s + z s +∞ R z z r e 0 1 x + k e B e +∞ y x +∞ z + y < z 1 + L e z < k y u z 1 + L e z R u u e
54 37 simp3d φ r 0 r 0 A s + z s +∞ R z z r r A
55 eqid r D = r D
56 eqid e B r D = e B r D
57 simprl φ r 0 r 0 A s + z s +∞ R z z r s +
58 1rp 1 +
59 rpaddcl s + 1 + s + 1 +
60 57 58 59 sylancl φ r 0 r 0 A s + z s +∞ R z z r s + 1 +
61 57 rpge0d φ r 0 r 0 A s + z s +∞ R z z r 0 s
62 1re 1
63 57 rpred φ r 0 r 0 A s + z s +∞ R z z r s
64 addge02 1 s 0 s 1 s + 1
65 62 63 64 sylancr φ r 0 r 0 A s + z s +∞ R z z r 0 s 1 s + 1
66 61 65 mpbid φ r 0 r 0 A s + z s +∞ R z z r 1 s + 1
67 60 66 jca φ r 0 r 0 A s + z s +∞ R z z r s + 1 + 1 s + 1
68 57 rpxrd φ r 0 r 0 A s + z s +∞ R z z r s *
69 63 lep1d φ r 0 r 0 A s + z s +∞ R z z r s s + 1
70 df-ico . = t * , r * w * | t w w < r
71 xrletr s * s + 1 * v * s s + 1 s + 1 v s v
72 70 70 71 ixxss1 s * s s + 1 s + 1 +∞ s +∞
73 68 69 72 syl2anc φ r 0 r 0 A s + z s +∞ R z z r s + 1 +∞ s +∞
74 simprr φ r 0 r 0 A s + z s +∞ R z z r z s +∞ R z z r
75 ssralv s + 1 +∞ s +∞ z s +∞ R z z r z s + 1 +∞ R z z r
76 73 74 75 sylc φ r 0 r 0 A s + z s +∞ R z z r z s + 1 +∞ R z z r
77 1 33 50 51 52 6 7 53 43 54 55 56 67 76 pntlemp φ r 0 r 0 A s + z s +∞ R z z r w + v w +∞ R v v r F r 3
78 rpre w + w
79 78 adantl φ r 0 r 0 A s + z s +∞ R z z r w + w
80 79 leidd φ r 0 r 0 A s + z s +∞ R z z r w + w w
81 elicopnf w w w +∞ w w w
82 79 81 syl φ r 0 r 0 A s + z s +∞ R z z r w + w w +∞ w w w
83 79 80 82 mpbir2and φ r 0 r 0 A s + z s +∞ R z z r w + w w +∞
84 fveq2 v = w R v = R w
85 id v = w v = w
86 84 85 oveq12d v = w R v v = R w w
87 86 fveq2d v = w R v v = R w w
88 87 breq1d v = w R v v r F r 3 R w w r F r 3
89 88 rspcv w w +∞ v w +∞ R v v r F r 3 R w w r F r 3
90 83 89 syl φ r 0 r 0 A s + z s +∞ R z z r w + v w +∞ R v v r F r 3 R w w r F r 3
91 1 pntrf R : +
92 91 ffvelrni w + R w
93 rerpdivcl R w w + R w w
94 92 93 mpancom w + R w w
95 94 adantl φ r 0 r 0 A s + z s +∞ R z z r w + R w w
96 95 recnd φ r 0 r 0 A s + z s +∞ R z z r w + R w w
97 96 absge0d φ r 0 r 0 A s + z s +∞ R z z r w + 0 R w w
98 96 abscld φ r 0 r 0 A s + z s +∞ R z z r w + R w w
99 49 adantr φ r 0 r 0 A s + z s +∞ R z z r w + r F r 3
100 letr 0 R w w r F r 3 0 R w w R w w r F r 3 0 r F r 3
101 32 98 99 100 mp3an2i φ r 0 r 0 A s + z s +∞ R z z r w + 0 R w w R w w r F r 3 0 r F r 3
102 97 101 mpand φ r 0 r 0 A s + z s +∞ R z z r w + R w w r F r 3 0 r F r 3
103 90 102 syld φ r 0 r 0 A s + z s +∞ R z z r w + v w +∞ R v v r F r 3 0 r F r 3
104 103 rexlimdva φ r 0 r 0 A s + z s +∞ R z z r w + v w +∞ R v v r F r 3 0 r F r 3
105 77 104 mpd φ r 0 r 0 A s + z s +∞ R z z r 0 r F r 3
106 47 rpge0d φ r 0 r 0 A s + z s +∞ R z z r 0 F r 3
107 38 48 subge02d φ r 0 r 0 A s + z s +∞ R z z r 0 F r 3 r F r 3 r
108 106 107 mpbid φ r 0 r 0 A s + z s +∞ R z z r r F r 3 r
109 49 38 34 108 54 letrd φ r 0 r 0 A s + z s +∞ R z z r r F r 3 A
110 elicc2 0 A r F r 3 0 A r F r 3 0 r F r 3 r F r 3 A
111 32 34 110 sylancr φ r 0 r 0 A s + z s +∞ R z z r r F r 3 0 A r F r 3 0 r F r 3 r F r 3 A
112 49 105 109 111 mpbir3and φ r 0 r 0 A s + z s +∞ R z z r r F r 3 0 A
113 112 77 jca φ r 0 r 0 A s + z s +∞ R z z r r F r 3 0 A w + v w +∞ R v v r F r 3
114 113 rexlimdvaa φ r 0 r 0 A s + z s +∞ R z z r r F r 3 0 A w + v w +∞ R v v r F r 3
115 30 114 syl5bi φ r 0 r 0 A y + z y +∞ R z z r r F r 3 0 A w + v w +∞ R v v r F r 3
116 115 anassrs φ r 0 r 0 A y + z y +∞ R z z r r F r 3 0 A w + v w +∞ R v v r F r 3
117 116 expimpd φ r 0 r 0 A y + z y +∞ R z z r r F r 3 0 A w + v w +∞ R v v r F r 3
118 breq2 t = r R z z t R z z r
119 118 rexralbidv t = r y + z y +∞ R z z t y + z y +∞ R z z r
120 119 elrab r t 0 A | y + z y +∞ R z z t r 0 A y + z y +∞ R z z r
121 breq2 t = r F r 3 R z z t R z z r F r 3
122 121 rexralbidv t = r F r 3 y + z y +∞ R z z t y + z y +∞ R z z r F r 3
123 fveq2 v = z R v = R z
124 id v = z v = z
125 123 124 oveq12d v = z R v v = R z z
126 125 fveq2d v = z R v v = R z z
127 126 breq1d v = z R v v r F r 3 R z z r F r 3
128 127 cbvralvw v w +∞ R v v r F r 3 z w +∞ R z z r F r 3
129 oveq1 w = y w +∞ = y +∞
130 129 raleqdv w = y z w +∞ R z z r F r 3 z y +∞ R z z r F r 3
131 128 130 syl5bb w = y v w +∞ R v v r F r 3 z y +∞ R z z r F r 3
132 131 cbvrexvw w + v w +∞ R v v r F r 3 y + z y +∞ R z z r F r 3
133 122 132 syl6bbr t = r F r 3 y + z y +∞ R z z t w + v w +∞ R v v r F r 3
134 133 elrab r F r 3 t 0 A | y + z y +∞ R z z t r F r 3 0 A w + v w +∞ R v v r F r 3
135 117 120 134 3imtr4g φ r 0 r t 0 A | y + z y +∞ R z z t r F r 3 t 0 A | y + z y +∞ R z z t
136 135 imp φ r 0 r t 0 A | y + z y +∞ R z z t r F r 3 t 0 A | y + z y +∞ R z z t
137 136 an32s φ r t 0 A | y + z y +∞ R z z t r 0 r F r 3 t 0 A | y + z y +∞ R z z t
138 27 137 pm2.61dane φ r t 0 A | y + z y +∞ R z z t r F r 3 t 0 A | y + z y +∞ R z z t
139 1 2 3 9 11 138 pntlem3 φ x + ψ x x 1