Metamath Proof Explorer


Theorem pntleml

Description: Lemma for pnt . Equation 10.6.35 in Shapiro, p. 436. (Contributed by Mario Carneiro, 14-Apr-2016)

Ref Expression
Hypotheses pntlem3.r R=a+ψaa
pntlem3.a φA+
pntlem3.A φx+RxxA
pntlemp.b φB+
pntlemp.l φL01
pntlemp.d D=A+1
pntlemp.f F=11DL32BD2
pntlemp.K φe01x+keBe+∞yx+∞z+y<z1+Lez<kyuz1+LezRuue
Assertion pntleml φx+ψxx1

Proof

Step Hyp Ref Expression
1 pntlem3.r R=a+ψaa
2 pntlem3.a φA+
3 pntlem3.A φx+RxxA
4 pntlemp.b φB+
5 pntlemp.l φL01
6 pntlemp.d D=A+1
7 pntlemp.f F=11DL32BD2
8 pntlemp.K φe01x+keBe+∞yx+∞z+y<z1+Lez<kyuz1+LezRuue
9 eqid t0A|y+zy+∞Rzzt=t0A|y+zy+∞Rzzt
10 1 2 4 5 6 7 pntlemd φL+D+F+
11 10 simp3d φF+
12 0m0e0 00=0
13 simpr φrt0A|y+zy+∞Rzztr=0r=0
14 13 oveq1d φrt0A|y+zy+∞Rzztr=0r3=03
15 3nn 3
16 0exp 303=0
17 15 16 ax-mp 03=0
18 14 17 eqtrdi φrt0A|y+zy+∞Rzztr=0r3=0
19 18 oveq2d φrt0A|y+zy+∞Rzztr=0Fr3=F0
20 11 rpcnd φF
21 20 mul01d φF0=0
22 21 ad2antrr φrt0A|y+zy+∞Rzztr=0F0=0
23 19 22 eqtrd φrt0A|y+zy+∞Rzztr=0Fr3=0
24 13 23 oveq12d φrt0A|y+zy+∞Rzztr=0rFr3=00
25 12 24 13 3eqtr4a φrt0A|y+zy+∞Rzztr=0rFr3=r
26 simplr φrt0A|y+zy+∞Rzztr=0rt0A|y+zy+∞Rzzt
27 25 26 eqeltrd φrt0A|y+zy+∞Rzztr=0rFr3t0A|y+zy+∞Rzzt
28 oveq1 y=sy+∞=s+∞
29 28 raleqdv y=szy+∞Rzzrzs+∞Rzzr
30 29 cbvrexvw y+zy+∞Rzzrs+zs+∞Rzzr
31 simplrr φr0r0As+zs+∞Rzzrr0A
32 0re 0
33 2 ad2antrr φr0r0As+zs+∞RzzrA+
34 33 rpred φr0r0As+zs+∞RzzrA
35 elicc2 0Ar0Ar0rrA
36 32 34 35 sylancr φr0r0As+zs+∞Rzzrr0Ar0rrA
37 31 36 mpbid φr0r0As+zs+∞Rzzrr0rrA
38 37 simp1d φr0r0As+zs+∞Rzzrr
39 11 ad2antrr φr0r0As+zs+∞RzzrF+
40 37 simp2d φr0r0As+zs+∞Rzzr0r
41 simplrl φr0r0As+zs+∞Rzzrr0
42 38 40 41 ne0gt0d φr0r0As+zs+∞Rzzr0<r
43 38 42 elrpd φr0r0As+zs+∞Rzzrr+
44 3z 3
45 rpexpcl r+3r3+
46 43 44 45 sylancl φr0r0As+zs+∞Rzzrr3+
47 39 46 rpmulcld φr0r0As+zs+∞RzzrFr3+
48 47 rpred φr0r0As+zs+∞RzzrFr3
49 38 48 resubcld φr0r0As+zs+∞RzzrrFr3
50 3 ad2antrr φr0r0As+zs+∞Rzzrx+RxxA
51 4 ad2antrr φr0r0As+zs+∞RzzrB+
52 5 ad2antrr φr0r0As+zs+∞RzzrL01
53 8 ad2antrr φr0r0As+zs+∞Rzzre01x+keBe+∞yx+∞z+y<z1+Lez<kyuz1+LezRuue
54 37 simp3d φr0r0As+zs+∞RzzrrA
55 eqid rD=rD
56 eqid eBrD=eBrD
57 simprl φr0r0As+zs+∞Rzzrs+
58 1rp 1+
59 rpaddcl s+1+s+1+
60 57 58 59 sylancl φr0r0As+zs+∞Rzzrs+1+
61 57 rpge0d φr0r0As+zs+∞Rzzr0s
62 1re 1
63 57 rpred φr0r0As+zs+∞Rzzrs
64 addge02 1s0s1s+1
65 62 63 64 sylancr φr0r0As+zs+∞Rzzr0s1s+1
66 61 65 mpbid φr0r0As+zs+∞Rzzr1s+1
67 60 66 jca φr0r0As+zs+∞Rzzrs+1+1s+1
68 57 rpxrd φr0r0As+zs+∞Rzzrs*
69 63 lep1d φr0r0As+zs+∞Rzzrss+1
70 df-ico .=t*,r*w*|tww<r
71 xrletr s*s+1*v*ss+1s+1vsv
72 70 70 71 ixxss1 s*ss+1s+1+∞s+∞
73 68 69 72 syl2anc φr0r0As+zs+∞Rzzrs+1+∞s+∞
74 simprr φr0r0As+zs+∞Rzzrzs+∞Rzzr
75 ssralv s+1+∞s+∞zs+∞Rzzrzs+1+∞Rzzr
76 73 74 75 sylc φr0r0As+zs+∞Rzzrzs+1+∞Rzzr
77 1 33 50 51 52 6 7 53 43 54 55 56 67 76 pntlemp φr0r0As+zs+∞Rzzrw+vw+∞RvvrFr3
78 rpre w+w
79 78 adantl φr0r0As+zs+∞Rzzrw+w
80 79 leidd φr0r0As+zs+∞Rzzrw+ww
81 elicopnf www+∞www
82 79 81 syl φr0r0As+zs+∞Rzzrw+ww+∞www
83 79 80 82 mpbir2and φr0r0As+zs+∞Rzzrw+ww+∞
84 fveq2 v=wRv=Rw
85 id v=wv=w
86 84 85 oveq12d v=wRvv=Rww
87 86 fveq2d v=wRvv=Rww
88 87 breq1d v=wRvvrFr3RwwrFr3
89 88 rspcv ww+∞vw+∞RvvrFr3RwwrFr3
90 83 89 syl φr0r0As+zs+∞Rzzrw+vw+∞RvvrFr3RwwrFr3
91 1 pntrf R:+
92 91 ffvelcdmi w+Rw
93 rerpdivcl Rww+Rww
94 92 93 mpancom w+Rww
95 94 adantl φr0r0As+zs+∞Rzzrw+Rww
96 95 recnd φr0r0As+zs+∞Rzzrw+Rww
97 96 absge0d φr0r0As+zs+∞Rzzrw+0Rww
98 96 abscld φr0r0As+zs+∞Rzzrw+Rww
99 49 adantr φr0r0As+zs+∞Rzzrw+rFr3
100 letr 0RwwrFr30RwwRwwrFr30rFr3
101 32 98 99 100 mp3an2i φr0r0As+zs+∞Rzzrw+0RwwRwwrFr30rFr3
102 97 101 mpand φr0r0As+zs+∞Rzzrw+RwwrFr30rFr3
103 90 102 syld φr0r0As+zs+∞Rzzrw+vw+∞RvvrFr30rFr3
104 103 rexlimdva φr0r0As+zs+∞Rzzrw+vw+∞RvvrFr30rFr3
105 77 104 mpd φr0r0As+zs+∞Rzzr0rFr3
106 47 rpge0d φr0r0As+zs+∞Rzzr0Fr3
107 38 48 subge02d φr0r0As+zs+∞Rzzr0Fr3rFr3r
108 106 107 mpbid φr0r0As+zs+∞RzzrrFr3r
109 49 38 34 108 54 letrd φr0r0As+zs+∞RzzrrFr3A
110 elicc2 0ArFr30ArFr30rFr3rFr3A
111 32 34 110 sylancr φr0r0As+zs+∞RzzrrFr30ArFr30rFr3rFr3A
112 49 105 109 111 mpbir3and φr0r0As+zs+∞RzzrrFr30A
113 112 77 jca φr0r0As+zs+∞RzzrrFr30Aw+vw+∞RvvrFr3
114 113 rexlimdvaa φr0r0As+zs+∞RzzrrFr30Aw+vw+∞RvvrFr3
115 30 114 biimtrid φr0r0Ay+zy+∞RzzrrFr30Aw+vw+∞RvvrFr3
116 115 anassrs φr0r0Ay+zy+∞RzzrrFr30Aw+vw+∞RvvrFr3
117 116 expimpd φr0r0Ay+zy+∞RzzrrFr30Aw+vw+∞RvvrFr3
118 breq2 t=rRzztRzzr
119 118 rexralbidv t=ry+zy+∞Rzzty+zy+∞Rzzr
120 119 elrab rt0A|y+zy+∞Rzztr0Ay+zy+∞Rzzr
121 breq2 t=rFr3RzztRzzrFr3
122 121 rexralbidv t=rFr3y+zy+∞Rzzty+zy+∞RzzrFr3
123 fveq2 v=zRv=Rz
124 id v=zv=z
125 123 124 oveq12d v=zRvv=Rzz
126 125 fveq2d v=zRvv=Rzz
127 126 breq1d v=zRvvrFr3RzzrFr3
128 127 cbvralvw vw+∞RvvrFr3zw+∞RzzrFr3
129 oveq1 w=yw+∞=y+∞
130 129 raleqdv w=yzw+∞RzzrFr3zy+∞RzzrFr3
131 128 130 bitrid w=yvw+∞RvvrFr3zy+∞RzzrFr3
132 131 cbvrexvw w+vw+∞RvvrFr3y+zy+∞RzzrFr3
133 122 132 bitr4di t=rFr3y+zy+∞Rzztw+vw+∞RvvrFr3
134 133 elrab rFr3t0A|y+zy+∞RzztrFr30Aw+vw+∞RvvrFr3
135 117 120 134 3imtr4g φr0rt0A|y+zy+∞RzztrFr3t0A|y+zy+∞Rzzt
136 135 imp φr0rt0A|y+zy+∞RzztrFr3t0A|y+zy+∞Rzzt
137 136 an32s φrt0A|y+zy+∞Rzztr0rFr3t0A|y+zy+∞Rzzt
138 27 137 pm2.61dane φrt0A|y+zy+∞RzztrFr3t0A|y+zy+∞Rzzt
139 1 2 3 9 11 138 pntlem3 φx+ψxx1