Metamath Proof Explorer


Theorem prmreclem2

Description: Lemma for prmrec . There are at most 2 ^ K squarefree numbers which divide no primes larger than K . (We could strengthen this to 2 ^ # ( Prime i^i ( 1 ... K ) ) but there's no reason to.) We establish the inequality by showing that the prime counts of the number up to K completely determine it because all higher prime counts are zero, and they are all at most 1 because no square divides the number, so there are at most 2 ^ K possibilities. (Contributed by Mario Carneiro, 5-Aug-2014)

Ref Expression
Hypotheses prmrec.1 F=nifn1n0
prmrec.2 φK
prmrec.3 φN
prmrec.4 M=n1N|p1K¬pn
prmreclem2.5 Q=nsupr|r2n<
Assertion prmreclem2 φxM|Qx=12K

Proof

Step Hyp Ref Expression
1 prmrec.1 F=nifn1n0
2 prmrec.2 φK
3 prmrec.3 φN
4 prmrec.4 M=n1N|p1K¬pn
5 prmreclem2.5 Q=nsupr|r2n<
6 ovex 011KV
7 fveqeq2 x=yQx=1Qy=1
8 7 elrab yxM|Qx=1yMQy=1
9 4 ssrab3 M1N
10 simprl φyMQy=1yM
11 10 ad2antrr φyMQy=1n1KnyM
12 9 11 sselid φyMQy=1n1Kny1N
13 elfznn y1Ny
14 12 13 syl φyMQy=1n1Kny
15 simpr φyMQy=1n1Knn
16 prmuz2 nn2
17 15 16 syl φyMQy=1n1Knn2
18 5 prmreclem1 yQyQy2yn2¬n2yQy2
19 18 simp3d yn2¬n2yQy2
20 14 17 19 sylc φyMQy=1n1Kn¬n2yQy2
21 simprr φyMQy=1Qy=1
22 21 ad2antrr φyMQy=1n1KnQy=1
23 22 oveq1d φyMQy=1n1KnQy2=12
24 sq1 12=1
25 23 24 eqtrdi φyMQy=1n1KnQy2=1
26 25 oveq2d φyMQy=1n1KnyQy2=y1
27 14 nncnd φyMQy=1n1Kny
28 27 div1d φyMQy=1n1Kny1=y
29 26 28 eqtrd φyMQy=1n1KnyQy2=y
30 29 breq2d φyMQy=1n1Knn2yQy2n2y
31 14 nnzd φyMQy=1n1Kny
32 2nn0 20
33 32 a1i φyMQy=1n1Kn20
34 pcdvdsb ny202npCntyn2y
35 15 31 33 34 syl3anc φyMQy=1n1Kn2npCntyn2y
36 30 35 bitr4d φyMQy=1n1Knn2yQy22npCnty
37 20 36 mtbid φyMQy=1n1Kn¬2npCnty
38 15 14 pccld φyMQy=1n1KnnpCnty0
39 38 nn0red φyMQy=1n1KnnpCnty
40 2re 2
41 ltnle npCnty2npCnty<2¬2npCnty
42 39 40 41 sylancl φyMQy=1n1KnnpCnty<2¬2npCnty
43 37 42 mpbird φyMQy=1n1KnnpCnty<2
44 df-2 2=1+1
45 43 44 breqtrdi φyMQy=1n1KnnpCnty<1+1
46 38 nn0zd φyMQy=1n1KnnpCnty
47 1z 1
48 zleltp1 npCnty1npCnty1npCnty<1+1
49 46 47 48 sylancl φyMQy=1n1KnnpCnty1npCnty<1+1
50 45 49 mpbird φyMQy=1n1KnnpCnty1
51 nn0uz 0=0
52 38 51 eleqtrdi φyMQy=1n1KnnpCnty0
53 elfz5 npCnty01npCnty01npCnty1
54 52 47 53 sylancl φyMQy=1n1KnnpCnty01npCnty1
55 50 54 mpbird φyMQy=1n1KnnpCnty01
56 0z 0
57 fzpr 000+1=00+1
58 56 57 ax-mp 00+1=00+1
59 1e0p1 1=0+1
60 59 oveq2i 01=00+1
61 59 preq2i 01=00+1
62 58 60 61 3eqtr4i 01=01
63 55 62 eleqtrdi φyMQy=1n1KnnpCnty01
64 c0ex 0V
65 64 prid1 001
66 65 a1i φyMQy=1n1K¬n001
67 63 66 ifclda φyMQy=1n1KifnnpCnty001
68 67 fmpttd φyMQy=1n1KifnnpCnty0:1K01
69 prex 01V
70 ovex 1KV
71 69 70 elmap n1KifnnpCnty0011Kn1KifnnpCnty0:1K01
72 68 71 sylibr φyMQy=1n1KifnnpCnty0011K
73 72 ex φyMQy=1n1KifnnpCnty0011K
74 8 73 biimtrid φyxM|Qx=1n1KifnnpCnty0011K
75 fveqeq2 x=zQx=1Qz=1
76 75 elrab zxM|Qx=1zMQz=1
77 8 76 anbi12i yxM|Qx=1zxM|Qx=1yMQy=1zMQz=1
78 ovex npCntyV
79 78 64 ifex ifnnpCnty0V
80 eqid n1KifnnpCnty0=n1KifnnpCnty0
81 79 80 fnmpti n1KifnnpCnty0Fn1K
82 ovex npCntzV
83 82 64 ifex ifnnpCntz0V
84 eqid n1KifnnpCntz0=n1KifnnpCntz0
85 83 84 fnmpti n1KifnnpCntz0Fn1K
86 eqfnfv n1KifnnpCnty0Fn1Kn1KifnnpCntz0Fn1Kn1KifnnpCnty0=n1KifnnpCntz0p1Kn1KifnnpCnty0p=n1KifnnpCntz0p
87 81 85 86 mp2an n1KifnnpCnty0=n1KifnnpCntz0p1Kn1KifnnpCnty0p=n1KifnnpCntz0p
88 eleq1w n=pnp
89 oveq1 n=pnpCnty=ppCnty
90 88 89 ifbieq1d n=pifnnpCnty0=ifpppCnty0
91 ovex ppCntyV
92 91 64 ifex ifpppCnty0V
93 90 80 92 fvmpt p1Kn1KifnnpCnty0p=ifpppCnty0
94 oveq1 n=pnpCntz=ppCntz
95 88 94 ifbieq1d n=pifnnpCntz0=ifpppCntz0
96 ovex ppCntzV
97 96 64 ifex ifpppCntz0V
98 95 84 97 fvmpt p1Kn1KifnnpCntz0p=ifpppCntz0
99 93 98 eqeq12d p1Kn1KifnnpCnty0p=n1KifnnpCntz0pifpppCnty0=ifpppCntz0
100 99 ralbiia p1Kn1KifnnpCnty0p=n1KifnnpCntz0pp1KifpppCnty0=ifpppCntz0
101 87 100 bitri n1KifnnpCnty0=n1KifnnpCntz0p1KifpppCnty0=ifpppCntz0
102 simprll φyMQy=1zMQz=1yM
103 breq2 n=ypnpy
104 103 notbid n=y¬pn¬py
105 104 ralbidv n=yp1K¬pnp1K¬py
106 105 4 elrab2 yMy1Np1K¬py
107 106 simprbi yMp1K¬py
108 102 107 syl φyMQy=1zMQz=1p1K¬py
109 simprrl φyMQy=1zMQz=1zM
110 breq2 n=zpnpz
111 110 notbid n=z¬pn¬pz
112 111 ralbidv n=zp1K¬pnp1K¬pz
113 112 4 elrab2 zMz1Np1K¬pz
114 113 simprbi zMp1K¬pz
115 109 114 syl φyMQy=1zMQz=1p1K¬pz
116 r19.26 p1K¬py¬pzp1K¬pyp1K¬pz
117 eldifi p1Kp
118 fz1ssnn 1N
119 9 118 sstri M
120 119 102 sselid φyMQy=1zMQz=1y
121 pceq0 pyppCnty=0¬py
122 117 120 121 syl2anr φyMQy=1zMQz=1p1KppCnty=0¬py
123 119 109 sselid φyMQy=1zMQz=1z
124 pceq0 pzppCntz=0¬pz
125 117 123 124 syl2anr φyMQy=1zMQz=1p1KppCntz=0¬pz
126 122 125 anbi12d φyMQy=1zMQz=1p1KppCnty=0ppCntz=0¬py¬pz
127 eqtr3 ppCnty=0ppCntz=0ppCnty=ppCntz
128 126 127 syl6bir φyMQy=1zMQz=1p1K¬py¬pzppCnty=ppCntz
129 128 ralimdva φyMQy=1zMQz=1p1K¬py¬pzp1KppCnty=ppCntz
130 116 129 biimtrrid φyMQy=1zMQz=1p1K¬pyp1K¬pzp1KppCnty=ppCntz
131 108 115 130 mp2and φyMQy=1zMQz=1p1KppCnty=ppCntz
132 131 biantrud φyMQy=1zMQz=1p1KppCnty=ppCntzp1KppCnty=ppCntzp1KppCnty=ppCntz
133 incom 1K=1K
134 133 uneq1i 1K1K=1K1K
135 inundif 1K1K=1K
136 134 135 eqtri 1K1K=1K
137 136 raleqi p1K1KifpppCnty0=ifpppCntz0p1KifpppCnty0=ifpppCntz0
138 ralunb p1K1KifpppCnty0=ifpppCntz0p1KifpppCnty0=ifpppCntz0p1KifpppCnty0=ifpppCntz0
139 137 138 bitr3i p1KifpppCnty0=ifpppCntz0p1KifpppCnty0=ifpppCntz0p1KifpppCnty0=ifpppCntz0
140 eldifn p1K¬p
141 iffalse ¬pifpppCnty0=0
142 iffalse ¬pifpppCntz0=0
143 141 142 eqtr4d ¬pifpppCnty0=ifpppCntz0
144 140 143 syl p1KifpppCnty0=ifpppCntz0
145 144 rgen p1KifpppCnty0=ifpppCntz0
146 145 biantru p1KifpppCnty0=ifpppCntz0p1KifpppCnty0=ifpppCntz0p1KifpppCnty0=ifpppCntz0
147 elinel1 p1Kp
148 iftrue pifpppCnty0=ppCnty
149 iftrue pifpppCntz0=ppCntz
150 148 149 eqeq12d pifpppCnty0=ifpppCntz0ppCnty=ppCntz
151 147 150 syl p1KifpppCnty0=ifpppCntz0ppCnty=ppCntz
152 151 ralbiia p1KifpppCnty0=ifpppCntz0p1KppCnty=ppCntz
153 146 152 bitr3i p1KifpppCnty0=ifpppCntz0p1KifpppCnty0=ifpppCntz0p1KppCnty=ppCntz
154 139 153 bitri p1KifpppCnty0=ifpppCntz0p1KppCnty=ppCntz
155 inundif 1K1K=
156 155 raleqi p1K1KppCnty=ppCntzpppCnty=ppCntz
157 ralunb p1K1KppCnty=ppCntzp1KppCnty=ppCntzp1KppCnty=ppCntz
158 156 157 bitr3i pppCnty=ppCntzp1KppCnty=ppCntzp1KppCnty=ppCntz
159 132 154 158 3bitr4g φyMQy=1zMQz=1p1KifpppCnty0=ifpppCntz0pppCnty=ppCntz
160 120 nnnn0d φyMQy=1zMQz=1y0
161 123 nnnn0d φyMQy=1zMQz=1z0
162 pc11 y0z0y=zpppCnty=ppCntz
163 160 161 162 syl2anc φyMQy=1zMQz=1y=zpppCnty=ppCntz
164 159 163 bitr4d φyMQy=1zMQz=1p1KifpppCnty0=ifpppCntz0y=z
165 101 164 bitrid φyMQy=1zMQz=1n1KifnnpCnty0=n1KifnnpCntz0y=z
166 165 ex φyMQy=1zMQz=1n1KifnnpCnty0=n1KifnnpCntz0y=z
167 77 166 biimtrid φyxM|Qx=1zxM|Qx=1n1KifnnpCnty0=n1KifnnpCntz0y=z
168 74 167 dom2d φ011KVxM|Qx=1011K
169 6 168 mpi φxM|Qx=1011K
170 fzfi 1NFin
171 ssrab2 n1N|p1K¬pn1N
172 ssfi 1NFinn1N|p1K¬pn1Nn1N|p1K¬pnFin
173 170 171 172 mp2an n1N|p1K¬pnFin
174 4 173 eqeltri MFin
175 ssrab2 xM|Qx=1M
176 ssfi MFinxM|Qx=1MxM|Qx=1Fin
177 174 175 176 mp2an xM|Qx=1Fin
178 prfi 01Fin
179 fzfid φ1KFin
180 mapfi 01Fin1KFin011KFin
181 178 179 180 sylancr φ011KFin
182 hashdom xM|Qx=1Fin011KFinxM|Qx=1011KxM|Qx=1011K
183 177 181 182 sylancr φxM|Qx=1011KxM|Qx=1011K
184 169 183 mpbird φxM|Qx=1011K
185 hashmap 01Fin1KFin011K=011K
186 178 179 185 sylancr φ011K=011K
187 prhash2ex 01=2
188 187 a1i φ01=2
189 2 nnnn0d φK0
190 hashfz1 K01K=K
191 189 190 syl φ1K=K
192 188 191 oveq12d φ011K=2K
193 186 192 eqtrd φ011K=2K
194 184 193 breqtrd φxM|Qx=12K