Metamath Proof Explorer


Theorem psgnfzto1stlem

Description: Lemma for psgnfzto1st . Our permutation of rank ( n + 1 ) can be written as a permutation of rank n composed with a transposition. (Contributed by Thierry Arnoux, 21-Aug-2020)

Ref Expression
Hypothesis psgnfzto1st.d D=1N
Assertion psgnfzto1stlem KK+1DiDifi=1K+1ifiK+1i1i=pmTrspDKK+1iDifi=1KifiKi1i

Proof

Step Hyp Ref Expression
1 psgnfzto1st.d D=1N
2 ovex K+1V
3 ovex i1V
4 vex iV
5 3 4 ifex ifiK+1i1iV
6 2 5 ifex ifi=1K+1ifiK+1i1iV
7 eqid iDifi=1K+1ifiK+1i1i=iDifi=1K+1ifiK+1i1i
8 6 7 fnmpti iDifi=1K+1ifiK+1i1iFnD
9 8 a1i KK+1DiDifi=1K+1ifiK+1i1iFnD
10 eqid pmTrspD=pmTrspD
11 1 10 pmtrto1cl KK+1DpmTrspDKK+1ranpmTrspD
12 eqid ranpmTrspD=ranpmTrspD
13 10 12 pmtrff1o pmTrspDKK+1ranpmTrspDpmTrspDKK+1:D1-1 ontoD
14 f1ofn pmTrspDKK+1:D1-1 ontoDpmTrspDKK+1FnD
15 11 13 14 3syl KK+1DpmTrspDKK+1FnD
16 simpr KK+1DiDi=1i=1
17 16 iftrued KK+1DiDi=1ifi=1KifiKi1i=K
18 simpl KK+1DK
19 18 nnred KK+1DK
20 fz1ssnn 1N
21 1 eleq2i K+1DK+11N
22 21 biimpi K+1DK+11N
23 22 adantl KK+1DK+11N
24 20 23 sselid KK+1DK+1
25 24 nnred KK+1DK+1
26 elfz1b K+11NK+1NK+1N
27 26 simp2bi K+11NN
28 22 27 syl K+1DN
29 28 adantl KK+1DN
30 29 nnred KK+1DN
31 19 lep1d KK+1DKK+1
32 elfzle2 K+11NK+1N
33 23 32 syl KK+1DK+1N
34 19 25 30 31 33 letrd KK+1DKN
35 29 nnzd KK+1DN
36 fznn NK1NKKN
37 35 36 syl KK+1DK1NKKN
38 18 34 37 mpbir2and KK+1DK1N
39 38 1 eleqtrrdi KK+1DKD
40 39 ad2antrr KK+1DiDi=1KD
41 17 40 eqeltrd KK+1DiDi=1ifi=1KifiKi1iD
42 simpr KK+1DiD¬i=1¬i=1
43 42 iffalsed KK+1DiD¬i=1ifi=1KifiKi1i=ifiKi1i
44 simpr KK+1DiD¬i=1iKiK
45 44 iftrued KK+1DiD¬i=1iKifiKi1i=i1
46 42 adantr KK+1DiD¬i=1iK¬i=1
47 1 20 eqsstri D
48 simpllr KK+1DiD¬i=1iKiD
49 47 48 sselid KK+1DiD¬i=1iKi
50 nn1m1nn ii=1i1
51 49 50 syl KK+1DiD¬i=1iKi=1i1
52 51 ord KK+1DiD¬i=1iK¬i=1i1
53 46 52 mpd KK+1DiD¬i=1iKi1
54 53 nnred KK+1DiD¬i=1iKi1
55 49 nnred KK+1DiD¬i=1iKi
56 30 ad3antrrr KK+1DiD¬i=1iKN
57 55 lem1d KK+1DiD¬i=1iKi1i
58 48 1 eleqtrdi KK+1DiD¬i=1iKi1N
59 elfzle2 i1NiN
60 58 59 syl KK+1DiD¬i=1iKiN
61 54 55 56 57 60 letrd KK+1DiD¬i=1iKi1N
62 53 61 jca KK+1DiD¬i=1iKi1i1N
63 fznn Ni11Ni1i1N
64 35 63 syl KK+1Di11Ni1i1N
65 64 ad3antrrr KK+1DiD¬i=1iKi11Ni1i1N
66 62 65 mpbird KK+1DiD¬i=1iKi11N
67 66 1 eleqtrrdi KK+1DiD¬i=1iKi1D
68 45 67 eqeltrd KK+1DiD¬i=1iKifiKi1iD
69 simpr KK+1DiD¬i=1¬iK¬iK
70 69 iffalsed KK+1DiD¬i=1¬iKifiKi1i=i
71 simpllr KK+1DiD¬i=1¬iKiD
72 70 71 eqeltrd KK+1DiD¬i=1¬iKifiKi1iD
73 68 72 pm2.61dan KK+1DiD¬i=1ifiKi1iD
74 43 73 eqeltrd KK+1DiD¬i=1ifi=1KifiKi1iD
75 41 74 pm2.61dan KK+1DiDifi=1KifiKi1iD
76 75 ralrimiva KK+1DiDifi=1KifiKi1iD
77 eqid iDifi=1KifiKi1i=iDifi=1KifiKi1i
78 77 fnmpt iDifi=1KifiKi1iDiDifi=1KifiKi1iFnD
79 76 78 syl KK+1DiDifi=1KifiKi1iFnD
80 77 rnmptss iDifi=1KifiKi1iDraniDifi=1KifiKi1iD
81 76 80 syl KK+1DraniDifi=1KifiKi1iD
82 fnco pmTrspDKK+1FnDiDifi=1KifiKi1iFnDraniDifi=1KifiKi1iDpmTrspDKK+1iDifi=1KifiKi1iFnD
83 15 79 81 82 syl3anc KK+1DpmTrspDKK+1iDifi=1KifiKi1iFnD
84 simpr KK+1DxDx=1x=1
85 84 iftrued KK+1DxDx=1ifx=1KifxKx1x=K
86 85 fveq2d KK+1DxDx=1pmTrspDKK+1ifx=1KifxKx1x=pmTrspDKK+1K
87 fzfi 1NFin
88 1 87 eqeltri DFin
89 88 a1i KK+1DDFin
90 23 21 sylibr KK+1DK+1D
91 19 ltp1d KK+1DK<K+1
92 19 91 ltned KK+1DKK+1
93 10 pmtrprfv DFinKDK+1DKK+1pmTrspDKK+1K=K+1
94 89 39 90 92 93 syl13anc KK+1DpmTrspDKK+1K=K+1
95 94 ad2antrr KK+1DxDx=1pmTrspDKK+1K=K+1
96 86 95 eqtr2d KK+1DxDx=1K+1=pmTrspDKK+1ifx=1KifxKx1x
97 88 a1i KK+1DxD¬x=1xK+1x=K+1DFin
98 39 ad4antr KK+1DxD¬x=1xK+1x=K+1KD
99 90 ad4antr KK+1DxD¬x=1xK+1x=K+1K+1D
100 92 ad4antr KK+1DxD¬x=1xK+1x=K+1KK+1
101 10 pmtrprfv2 DFinKDK+1DKK+1pmTrspDKK+1K+1=K
102 97 98 99 100 101 syl13anc KK+1DxD¬x=1xK+1x=K+1pmTrspDKK+1K+1=K
103 91 ad4antr KK+1DxD¬x=1xK+1x=K+1K<K+1
104 simpr KK+1DxD¬x=1xK+1x=K+1x=K+1
105 103 104 breqtrrd KK+1DxD¬x=1xK+1x=K+1K<x
106 19 ad4antr KK+1DxD¬x=1xK+1x=K+1K
107 simpr KK+1DxDxD
108 47 107 sselid KK+1DxDx
109 108 nnred KK+1DxDx
110 109 ad3antrrr KK+1DxD¬x=1xK+1x=K+1x
111 106 110 ltnled KK+1DxD¬x=1xK+1x=K+1K<x¬xK
112 105 111 mpbid KK+1DxD¬x=1xK+1x=K+1¬xK
113 112 iffalsed KK+1DxD¬x=1xK+1x=K+1ifxKx1x=x
114 113 104 eqtrd KK+1DxD¬x=1xK+1x=K+1ifxKx1x=K+1
115 114 fveq2d KK+1DxD¬x=1xK+1x=K+1pmTrspDKK+1ifxKx1x=pmTrspDKK+1K+1
116 104 oveq1d KK+1DxD¬x=1xK+1x=K+1x1=K+1-1
117 106 recnd KK+1DxD¬x=1xK+1x=K+1K
118 1cnd KK+1DxD¬x=1xK+1x=K+11
119 117 118 pncand KK+1DxD¬x=1xK+1x=K+1K+1-1=K
120 116 119 eqtrd KK+1DxD¬x=1xK+1x=K+1x1=K
121 102 115 120 3eqtr4rd KK+1DxD¬x=1xK+1x=K+1x1=pmTrspDKK+1ifxKx1x
122 simplr KK+1DxD¬x=1xK+1xK+1xK+1
123 simpr KK+1DxD¬x=1xK+1xK+1xK+1
124 123 necomd KK+1DxD¬x=1xK+1xK+1K+1x
125 109 ad3antrrr KK+1DxD¬x=1xK+1xK+1x
126 25 ad4antr KK+1DxD¬x=1xK+1xK+1K+1
127 125 126 ltlend KK+1DxD¬x=1xK+1xK+1x<K+1xK+1K+1x
128 122 124 127 mpbir2and KK+1DxD¬x=1xK+1xK+1x<K+1
129 108 ad3antrrr KK+1DxD¬x=1xK+1xK+1x
130 simpll KK+1DxDK
131 130 ad3antrrr KK+1DxD¬x=1xK+1xK+1K
132 nnleltp1 xKxKx<K+1
133 129 131 132 syl2anc KK+1DxD¬x=1xK+1xK+1xKx<K+1
134 128 133 mpbird KK+1DxD¬x=1xK+1xK+1xK
135 134 iftrued KK+1DxD¬x=1xK+1xK+1ifxKx1x=x1
136 135 fveq2d KK+1DxD¬x=1xK+1xK+1pmTrspDKK+1ifxKx1x=pmTrspDKK+1x1
137 88 a1i KK+1DxD¬x=1xK+1xK+1DFin
138 39 ad4antr KK+1DxD¬x=1xK+1xK+1KD
139 simp-5r KK+1DxD¬x=1xK+1xK+1K+1D
140 simpr KK+1DxD¬x=1¬x=1
141 140 ad2antrr KK+1DxD¬x=1xK+1xK+1¬x=1
142 elnn1uz2 xx=1x2
143 129 142 sylib KK+1DxD¬x=1xK+1xK+1x=1x2
144 143 ord KK+1DxD¬x=1xK+1xK+1¬x=1x2
145 141 144 mpd KK+1DxD¬x=1xK+1xK+1x2
146 uz2m1nn x2x1
147 145 146 syl KK+1DxD¬x=1xK+1xK+1x1
148 139 28 syl KK+1DxD¬x=1xK+1xK+1N
149 147 nnred KK+1DxD¬x=1xK+1xK+1x1
150 131 139 30 syl2anc KK+1DxD¬x=1xK+1xK+1N
151 125 lem1d KK+1DxD¬x=1xK+1xK+1x1x
152 107 ad3antrrr KK+1DxD¬x=1xK+1xK+1xD
153 152 1 eleqtrdi KK+1DxD¬x=1xK+1xK+1x1N
154 elfzle2 x1NxN
155 153 154 syl KK+1DxD¬x=1xK+1xK+1xN
156 149 125 150 151 155 letrd KK+1DxD¬x=1xK+1xK+1x1N
157 147 148 156 3jca KK+1DxD¬x=1xK+1xK+1x1Nx1N
158 elfz1b x11Nx1Nx1N
159 157 158 sylibr KK+1DxD¬x=1xK+1xK+1x11N
160 159 1 eleqtrrdi KK+1DxD¬x=1xK+1xK+1x1D
161 138 139 160 3jca KK+1DxD¬x=1xK+1xK+1KDK+1Dx1D
162 131 139 92 syl2anc KK+1DxD¬x=1xK+1xK+1KK+1
163 simpr KK+1DxD¬x=1xK+1K=x1K=x1
164 163 oveq1d KK+1DxD¬x=1xK+1K=x1K+1=x-1+1
165 109 recnd KK+1DxDx
166 165 ad3antrrr KK+1DxD¬x=1xK+1K=x1x
167 1cnd KK+1DxD¬x=1xK+1K=x11
168 166 167 npcand KK+1DxD¬x=1xK+1K=x1x-1+1=x
169 164 168 eqtr2d KK+1DxD¬x=1xK+1K=x1x=K+1
170 169 ex KK+1DxD¬x=1xK+1K=x1x=K+1
171 170 necon3d KK+1DxD¬x=1xK+1xK+1Kx1
172 171 imp KK+1DxD¬x=1xK+1xK+1Kx1
173 149 125 126 151 128 lelttrd KK+1DxD¬x=1xK+1xK+1x1<K+1
174 149 173 ltned KK+1DxD¬x=1xK+1xK+1x1K+1
175 174 necomd KK+1DxD¬x=1xK+1xK+1K+1x1
176 162 172 175 3jca KK+1DxD¬x=1xK+1xK+1KK+1Kx1K+1x1
177 10 pmtrprfv3 DFinKDK+1Dx1DKK+1Kx1K+1x1pmTrspDKK+1x1=x1
178 137 161 176 177 syl3anc KK+1DxD¬x=1xK+1xK+1pmTrspDKK+1x1=x1
179 136 178 eqtr2d KK+1DxD¬x=1xK+1xK+1x1=pmTrspDKK+1ifxKx1x
180 121 179 pm2.61dane KK+1DxD¬x=1xK+1x1=pmTrspDKK+1ifxKx1x
181 109 ad2antrr KK+1DxD¬x=1xKx
182 19 ad3antrrr KK+1DxD¬x=1xKK
183 25 ad3antrrr KK+1DxD¬x=1xKK+1
184 simpr KK+1DxD¬x=1xKxK
185 31 ad3antrrr KK+1DxD¬x=1xKKK+1
186 181 182 183 184 185 letrd KK+1DxD¬x=1xKxK+1
187 186 ex KK+1DxD¬x=1xKxK+1
188 187 con3d KK+1DxD¬x=1¬xK+1¬xK
189 188 imp KK+1DxD¬x=1¬xK+1¬xK
190 189 iffalsed KK+1DxD¬x=1¬xK+1ifxKx1x=x
191 190 fveq2d KK+1DxD¬x=1¬xK+1pmTrspDKK+1ifxKx1x=pmTrspDKK+1x
192 88 a1i KK+1DxD¬x=1¬xK+1DFin
193 39 ad3antrrr KK+1DxD¬x=1¬xK+1KD
194 90 ad3antrrr KK+1DxD¬x=1¬xK+1K+1D
195 107 ad2antrr KK+1DxD¬x=1¬xK+1xD
196 193 194 195 3jca KK+1DxD¬x=1¬xK+1KDK+1DxD
197 92 ad3antrrr KK+1DxD¬x=1¬xK+1KK+1
198 19 ad3antrrr KK+1DxD¬x=1¬xK+1K
199 25 ad3antrrr KK+1DxD¬x=1¬xK+1K+1
200 109 ad2antrr KK+1DxD¬x=1¬xK+1x
201 91 ad3antrrr KK+1DxD¬x=1¬xK+1K<K+1
202 simpr KK+1DxD¬x=1¬xK+1¬xK+1
203 199 200 ltnled KK+1DxD¬x=1¬xK+1K+1<x¬xK+1
204 202 203 mpbird KK+1DxD¬x=1¬xK+1K+1<x
205 198 199 200 201 204 lttrd KK+1DxD¬x=1¬xK+1K<x
206 198 205 ltned KK+1DxD¬x=1¬xK+1Kx
207 199 204 ltned KK+1DxD¬x=1¬xK+1K+1x
208 197 206 207 3jca KK+1DxD¬x=1¬xK+1KK+1KxK+1x
209 10 pmtrprfv3 DFinKDK+1DxDKK+1KxK+1xpmTrspDKK+1x=x
210 192 196 208 209 syl3anc KK+1DxD¬x=1¬xK+1pmTrspDKK+1x=x
211 191 210 eqtr2d KK+1DxD¬x=1¬xK+1x=pmTrspDKK+1ifxKx1x
212 180 211 ifeqda KK+1DxD¬x=1ifxK+1x1x=pmTrspDKK+1ifxKx1x
213 140 iffalsed KK+1DxD¬x=1ifx=1KifxKx1x=ifxKx1x
214 213 fveq2d KK+1DxD¬x=1pmTrspDKK+1ifx=1KifxKx1x=pmTrspDKK+1ifxKx1x
215 212 214 eqtr4d KK+1DxD¬x=1ifxK+1x1x=pmTrspDKK+1ifx=1KifxKx1x
216 96 215 ifeqda KK+1DxDifx=1K+1ifxK+1x1x=pmTrspDKK+1ifx=1KifxKx1x
217 eqidd KK+1DxDiDifi=1KifiKi1i=iDifi=1KifiKi1i
218 eqeq1 i=xi=1x=1
219 breq1 i=xiKxK
220 oveq1 i=xi1=x1
221 id i=xi=x
222 219 220 221 ifbieq12d i=xifiKi1i=ifxKx1x
223 218 222 ifbieq2d i=xifi=1KifiKi1i=ifx=1KifxKx1x
224 223 adantl KK+1DxDi=xifi=1KifiKi1i=ifx=1KifxKx1x
225 ovex x1V
226 vex xV
227 225 226 ifcli ifxKx1xV
228 227 a1i KK+1DxDifxKx1xV
229 130 228 ifexd KK+1DxDifx=1KifxKx1xV
230 217 224 107 229 fvmptd KK+1DxDiDifi=1KifiKi1ix=ifx=1KifxKx1x
231 230 fveq2d KK+1DxDpmTrspDKK+1iDifi=1KifiKi1ix=pmTrspDKK+1ifx=1KifxKx1x
232 216 231 eqtr4d KK+1DxDifx=1K+1ifxK+1x1x=pmTrspDKK+1iDifi=1KifiKi1ix
233 breq1 i=xiK+1xK+1
234 233 220 221 ifbieq12d i=xifiK+1i1i=ifxK+1x1x
235 218 234 ifbieq2d i=xifi=1K+1ifiK+1i1i=ifx=1K+1ifxK+1x1x
236 225 226 ifex ifxK+1x1xV
237 2 236 ifex ifx=1K+1ifxK+1x1xV
238 235 7 237 fvmpt xDiDifi=1K+1ifiK+1i1ix=ifx=1K+1ifxK+1x1x
239 238 adantl KK+1DxDiDifi=1K+1ifiK+1i1ix=ifx=1K+1ifxK+1x1x
240 funmpt FuniDifi=1KifiKi1i
241 240 a1i KK+1DxDFuniDifi=1KifiKi1i
242 76 adantr KK+1DxDiDifi=1KifiKi1iD
243 dmmptg iDifi=1KifiKi1iDdomiDifi=1KifiKi1i=D
244 242 243 syl KK+1DxDdomiDifi=1KifiKi1i=D
245 107 244 eleqtrrd KK+1DxDxdomiDifi=1KifiKi1i
246 fvco FuniDifi=1KifiKi1ixdomiDifi=1KifiKi1ipmTrspDKK+1iDifi=1KifiKi1ix=pmTrspDKK+1iDifi=1KifiKi1ix
247 241 245 246 syl2anc KK+1DxDpmTrspDKK+1iDifi=1KifiKi1ix=pmTrspDKK+1iDifi=1KifiKi1ix
248 232 239 247 3eqtr4d KK+1DxDiDifi=1K+1ifiK+1i1ix=pmTrspDKK+1iDifi=1KifiKi1ix
249 9 83 248 eqfnfvd KK+1DiDifi=1K+1ifiK+1i1i=pmTrspDKK+1iDifi=1KifiKi1i