Metamath Proof Explorer


Theorem seqcoll

Description: The function F contains a sparse set of nonzero values to be summed. The function G is an order isomorphism from the set of nonzero values of F to a 1-based finite sequence, and H collects these nonzero values together. Under these conditions, the sum over the values in H yields the same result as the sum over the original set F . (Contributed by Mario Carneiro, 2-Apr-2014)

Ref Expression
Hypotheses seqcoll.1 φkSZ+˙k=k
seqcoll.1b φkSk+˙Z=k
seqcoll.c φkSnSk+˙nS
seqcoll.a φZS
seqcoll.2 φGIsom<,<1AA
seqcoll.3 φN1A
seqcoll.4 φAM
seqcoll.5 φkMGAFkS
seqcoll.6 φkMGAAFk=Z
seqcoll.7 φn1AHn=FGn
Assertion seqcoll φseqM+˙FGN=seq1+˙HN

Proof

Step Hyp Ref Expression
1 seqcoll.1 φkSZ+˙k=k
2 seqcoll.1b φkSk+˙Z=k
3 seqcoll.c φkSnSk+˙nS
4 seqcoll.a φZS
5 seqcoll.2 φGIsom<,<1AA
6 seqcoll.3 φN1A
7 seqcoll.4 φAM
8 seqcoll.5 φkMGAFkS
9 seqcoll.6 φkMGAAFk=Z
10 seqcoll.7 φn1AHn=FGn
11 elfznn N1AN
12 6 11 syl φN
13 eleq1 y=1y1A11A
14 2fveq3 y=1seqM+˙FGy=seqM+˙FG1
15 fveq2 y=1seq1+˙Hy=seq1+˙H1
16 14 15 eqeq12d y=1seqM+˙FGy=seq1+˙HyseqM+˙FG1=seq1+˙H1
17 13 16 imbi12d y=1y1AseqM+˙FGy=seq1+˙Hy11AseqM+˙FG1=seq1+˙H1
18 17 imbi2d y=1φy1AseqM+˙FGy=seq1+˙Hyφ11AseqM+˙FG1=seq1+˙H1
19 eleq1 y=my1Am1A
20 2fveq3 y=mseqM+˙FGy=seqM+˙FGm
21 fveq2 y=mseq1+˙Hy=seq1+˙Hm
22 20 21 eqeq12d y=mseqM+˙FGy=seq1+˙HyseqM+˙FGm=seq1+˙Hm
23 19 22 imbi12d y=my1AseqM+˙FGy=seq1+˙Hym1AseqM+˙FGm=seq1+˙Hm
24 23 imbi2d y=mφy1AseqM+˙FGy=seq1+˙Hyφm1AseqM+˙FGm=seq1+˙Hm
25 eleq1 y=m+1y1Am+11A
26 2fveq3 y=m+1seqM+˙FGy=seqM+˙FGm+1
27 fveq2 y=m+1seq1+˙Hy=seq1+˙Hm+1
28 26 27 eqeq12d y=m+1seqM+˙FGy=seq1+˙HyseqM+˙FGm+1=seq1+˙Hm+1
29 25 28 imbi12d y=m+1y1AseqM+˙FGy=seq1+˙Hym+11AseqM+˙FGm+1=seq1+˙Hm+1
30 29 imbi2d y=m+1φy1AseqM+˙FGy=seq1+˙Hyφm+11AseqM+˙FGm+1=seq1+˙Hm+1
31 eleq1 y=Ny1AN1A
32 2fveq3 y=NseqM+˙FGy=seqM+˙FGN
33 fveq2 y=Nseq1+˙Hy=seq1+˙HN
34 32 33 eqeq12d y=NseqM+˙FGy=seq1+˙HyseqM+˙FGN=seq1+˙HN
35 31 34 imbi12d y=Ny1AseqM+˙FGy=seq1+˙HyN1AseqM+˙FGN=seq1+˙HN
36 35 imbi2d y=Nφy1AseqM+˙FGy=seq1+˙HyφN1AseqM+˙FGN=seq1+˙HN
37 isof1o GIsom<,<1AAG:1A1-1 ontoA
38 5 37 syl φG:1A1-1 ontoA
39 f1of G:1A1-1 ontoAG:1AA
40 38 39 syl φG:1AA
41 elfzuz2 N1AA1
42 6 41 syl φA1
43 eluzfz1 A111A
44 42 43 syl φ11A
45 40 44 ffvelcdmd φG1A
46 7 45 sseldd φG1M
47 eluzle A11A
48 42 47 syl φ1A
49 fzssz 1A
50 zssre
51 49 50 sstri 1A
52 51 a1i φ1A
53 ressxr *
54 52 53 sstrdi φ1A*
55 eluzelre kMk
56 55 ssriv M
57 7 56 sstrdi φA
58 57 53 sstrdi φA*
59 eluzfz2 A1A1A
60 42 59 syl φA1A
61 leisorel GIsom<,<1AA1A*A*11AA1A1AG1GA
62 5 54 58 44 60 61 syl122anc φ1AG1GA
63 48 62 mpbid φG1GA
64 40 60 ffvelcdmd φGAA
65 7 64 sseldd φGAM
66 eluzelz GAMGA
67 65 66 syl φGA
68 elfz5 G1MGAG1MGAG1GA
69 46 67 68 syl2anc φG1MGAG1GA
70 63 69 mpbird φG1MGA
71 fveq2 k=G1Fk=FG1
72 71 eleq1d k=G1FkSFG1S
73 72 imbi2d k=G1φFkSφFG1S
74 8 expcom kMGAφFkS
75 73 74 vtoclga G1MGAφFG1S
76 70 75 mpcom φFG1S
77 eluzelz G1MG1
78 46 77 syl φG1
79 peano2zm G1G11
80 78 79 syl φG11
81 80 zred φG11
82 78 zred φG1
83 67 zred φGA
84 82 lem1d φG11G1
85 81 82 83 84 63 letrd φG11GA
86 eluz G11GAGAG11G11GA
87 80 67 86 syl2anc φGAG11G11GA
88 85 87 mpbird φGAG11
89 fzss2 GAG11MG11MGA
90 88 89 syl φMG11MGA
91 90 sselda φkMG11kMGA
92 eluzel2 G1MM
93 46 92 syl φM
94 elfzm11 MG1kMG11kMkk<G1
95 93 78 94 syl2anc φkMG11kMkk<G1
96 simp3 kMkk<G1k<G1
97 82 adantr φkAG1
98 57 sselda φkAk
99 f1ocnv G:1A1-1 ontoAG-1:A1-1 onto1A
100 38 99 syl φG-1:A1-1 onto1A
101 f1of G-1:A1-1 onto1AG-1:A1A
102 100 101 syl φG-1:A1A
103 102 ffvelcdmda φkAG-1k1A
104 elfznn G-1k1AG-1k
105 103 104 syl φkAG-1k
106 105 nnge1d φkA1G-1k
107 5 adantr φkAGIsom<,<1AA
108 54 adantr φkA1A*
109 58 adantr φkAA*
110 44 adantr φkA11A
111 leisorel GIsom<,<1AA1A*A*11AG-1k1A1G-1kG1GG-1k
112 107 108 109 110 103 111 syl122anc φkA1G-1kG1GG-1k
113 106 112 mpbid φkAG1GG-1k
114 f1ocnvfv2 G:1A1-1 ontoAkAGG-1k=k
115 38 114 sylan φkAGG-1k=k
116 113 115 breqtrd φkAG1k
117 97 98 116 lensymd φkA¬k<G1
118 117 ex φkA¬k<G1
119 118 con2d φk<G1¬kA
120 96 119 syl5 φkMkk<G1¬kA
121 95 120 sylbid φkMG11¬kA
122 121 imp φkMG11¬kA
123 91 122 eldifd φkMG11kMGAA
124 123 9 syldan φkMG11Fk=Z
125 1 4 46 76 124 seqid φseqM+˙FG1=seqG1+˙F
126 125 fveq1d φseqM+˙FG1G1=seqG1+˙FG1
127 uzid G1G1G1
128 78 127 syl φG1G1
129 128 fvresd φseqM+˙FG1G1=seqM+˙FG1
130 seq1 G1seqG1+˙FG1=FG1
131 78 130 syl φseqG1+˙FG1=FG1
132 fveq2 n=1Hn=H1
133 2fveq3 n=1FGn=FG1
134 132 133 eqeq12d n=1Hn=FGnH1=FG1
135 134 imbi2d n=1φHn=FGnφH1=FG1
136 10 expcom n1AφHn=FGn
137 135 136 vtoclga 11AφH1=FG1
138 44 137 mpcom φH1=FG1
139 131 138 eqtr4d φseqG1+˙FG1=H1
140 126 129 139 3eqtr3d φseqM+˙FG1=H1
141 1z 1
142 seq1 1seq1+˙H1=H1
143 141 142 ax-mp seq1+˙H1=H1
144 140 143 eqtr4di φseqM+˙FG1=seq1+˙H1
145 144 a1d φ11AseqM+˙FG1=seq1+˙H1
146 simplr φmm+11Am
147 nnuz =1
148 146 147 eleqtrdi φmm+11Am1
149 nnz mm
150 149 ad2antlr φmm+11Am
151 elfzuz3 m+11AAm+1
152 151 adantl φmm+11AAm+1
153 peano2uzr mAm+1Am
154 150 152 153 syl2anc φmm+11AAm
155 elfzuzb m1Am1Am
156 148 154 155 sylanbrc φmm+11Am1A
157 156 ex φmm+11Am1A
158 157 imim1d φmm1AseqM+˙FGm=seq1+˙Hmm+11AseqM+˙FGm=seq1+˙Hm
159 oveq1 seqM+˙FGm=seq1+˙HmseqM+˙FGm+˙Hm+1=seq1+˙Hm+˙Hm+1
160 2 ad4ant14 φmm+11AkSk+˙Z=k
161 7 ad2antrr φmm+11AAM
162 40 ad2antrr φmm+11AG:1AA
163 162 156 ffvelcdmd φmm+11AGmA
164 161 163 sseldd φmm+11AGmM
165 nnre mm
166 165 ad2antlr φmm+11Am
167 166 ltp1d φmm+11Am<m+1
168 5 ad2antrr φmm+11AGIsom<,<1AA
169 simpr φmm+11Am+11A
170 isorel GIsom<,<1AAm1Am+11Am<m+1Gm<Gm+1
171 168 156 169 170 syl12anc φmm+11Am<m+1Gm<Gm+1
172 167 171 mpbid φmm+11AGm<Gm+1
173 eluzelz GmMGm
174 164 173 syl φmm+11AGm
175 162 169 ffvelcdmd φmm+11AGm+1A
176 161 175 sseldd φmm+11AGm+1M
177 eluzelz Gm+1MGm+1
178 176 177 syl φmm+11AGm+1
179 zltlem1 GmGm+1Gm<Gm+1GmGm+11
180 174 178 179 syl2anc φmm+11AGm<Gm+1GmGm+11
181 172 180 mpbid φmm+11AGmGm+11
182 peano2zm Gm+1Gm+11
183 178 182 syl φmm+11AGm+11
184 eluz GmGm+11Gm+11GmGmGm+11
185 174 183 184 syl2anc φmm+11AGm+11GmGmGm+11
186 181 185 mpbird φmm+11AGm+11Gm
187 183 zred φmm+11AGm+11
188 178 zred φmm+11AGm+1
189 83 ad2antrr φmm+11AGA
190 188 lem1d φmm+11AGm+11Gm+1
191 elfzle2 m+11Am+1A
192 191 adantl φmm+11Am+1A
193 54 ad2antrr φmm+11A1A*
194 58 ad2antrr φmm+11AA*
195 60 ad2antrr φmm+11AA1A
196 leisorel GIsom<,<1AA1A*A*m+11AA1Am+1AGm+1GA
197 168 193 194 169 195 196 syl122anc φmm+11Am+1AGm+1GA
198 192 197 mpbid φmm+11AGm+1GA
199 187 188 189 190 198 letrd φmm+11AGm+11GA
200 67 ad2antrr φmm+11AGA
201 eluz Gm+11GAGAGm+11Gm+11GA
202 183 200 201 syl2anc φmm+11AGAGm+11Gm+11GA
203 199 202 mpbird φmm+11AGAGm+11
204 uztrn GAGm+11Gm+11GmGAGm
205 203 186 204 syl2anc φmm+11AGAGm
206 fzss2 GAGmMGmMGA
207 205 206 syl φmm+11AMGmMGA
208 207 sselda φmm+11AkMGmkMGA
209 8 ad4ant14 φmm+11AkMGAFkS
210 208 209 syldan φmm+11AkMGmFkS
211 3 ad4ant14 φmm+11AkSnSk+˙nS
212 164 210 211 seqcl φmm+11AseqM+˙FGmS
213 simplll φmm+11AkGm+1Gm+11φ
214 elfzuz kGm+1Gm+11kGm+1
215 peano2uz GmMGm+1M
216 164 215 syl φmm+11AGm+1M
217 uztrn kGm+1Gm+1MkM
218 214 216 217 syl2anr φmm+11AkGm+1Gm+11kM
219 elfzuz3 kGm+1Gm+11Gm+11k
220 uztrn GAGm+11Gm+11kGAk
221 203 219 220 syl2an φmm+11AkGm+1Gm+11GAk
222 elfzuzb kMGAkMGAk
223 218 221 222 sylanbrc φmm+11AkGm+1Gm+11kMGA
224 149 ad2antlr φmm+11AkAm
225 102 ad2antrr φmm+11AkAG-1:A1A
226 simprr φmm+11AkAkA
227 225 226 ffvelcdmd φmm+11AkAG-1k1A
228 227 elfzelzd φmm+11AkAG-1k
229 btwnnz mm<G-1kG-1k<m+1¬G-1k
230 229 3expib mm<G-1kG-1k<m+1¬G-1k
231 230 con2d mG-1k¬m<G-1kG-1k<m+1
232 224 228 231 sylc φmm+11AkA¬m<G-1kG-1k<m+1
233 5 ad2antrr φmm+11AkAGIsom<,<1AA
234 156 adantrr φmm+11AkAm1A
235 isorel GIsom<,<1AAm1AG-1k1Am<G-1kGm<GG-1k
236 233 234 227 235 syl12anc φmm+11AkAm<G-1kGm<GG-1k
237 38 ad2antrr φmm+11AkAG:1A1-1 ontoA
238 237 226 114 syl2anc φmm+11AkAGG-1k=k
239 238 breq2d φmm+11AkAGm<GG-1kGm<k
240 174 adantrr φmm+11AkAGm
241 7 ad2antrr φmm+11AkAAM
242 241 226 sseldd φmm+11AkAkM
243 eluzelz kMk
244 242 243 syl φmm+11AkAk
245 zltp1le GmkGm<kGm+1k
246 240 244 245 syl2anc φmm+11AkAGm<kGm+1k
247 236 239 246 3bitrd φmm+11AkAm<G-1kGm+1k
248 169 adantrr φmm+11AkAm+11A
249 isorel GIsom<,<1AAG-1k1Am+11AG-1k<m+1GG-1k<Gm+1
250 233 227 248 249 syl12anc φmm+11AkAG-1k<m+1GG-1k<Gm+1
251 238 breq1d φmm+11AkAGG-1k<Gm+1k<Gm+1
252 178 adantrr φmm+11AkAGm+1
253 zltlem1 kGm+1k<Gm+1kGm+11
254 244 252 253 syl2anc φmm+11AkAk<Gm+1kGm+11
255 250 251 254 3bitrd φmm+11AkAG-1k<m+1kGm+11
256 247 255 anbi12d φmm+11AkAm<G-1kG-1k<m+1Gm+1kkGm+11
257 232 256 mtbid φmm+11AkA¬Gm+1kkGm+11
258 257 expr φmm+11AkA¬Gm+1kkGm+11
259 258 con2d φmm+11AGm+1kkGm+11¬kA
260 elfzle1 kGm+1Gm+11Gm+1k
261 elfzle2 kGm+1Gm+11kGm+11
262 260 261 jca kGm+1Gm+11Gm+1kkGm+11
263 259 262 impel φmm+11AkGm+1Gm+11¬kA
264 223 263 eldifd φmm+11AkGm+1Gm+11kMGAA
265 213 264 9 syl2anc φmm+11AkGm+1Gm+11Fk=Z
266 160 164 186 212 265 seqid2 φmm+11AseqM+˙FGm=seqM+˙FGm+11
267 266 oveq1d φmm+11AseqM+˙FGm+˙FGm+1=seqM+˙FGm+11+˙FGm+1
268 fveq2 n=m+1Hn=Hm+1
269 2fveq3 n=m+1FGn=FGm+1
270 268 269 eqeq12d n=m+1Hn=FGnHm+1=FGm+1
271 270 imbi2d n=m+1φHn=FGnφHm+1=FGm+1
272 271 136 vtoclga m+11AφHm+1=FGm+1
273 272 impcom φm+11AHm+1=FGm+1
274 273 adantlr φmm+11AHm+1=FGm+1
275 274 oveq2d φmm+11AseqM+˙FGm+˙Hm+1=seqM+˙FGm+˙FGm+1
276 93 ad2antrr φmm+11AM
277 178 zcnd φmm+11AGm+1
278 ax-1cn 1
279 npcan Gm+11Gm+1-1+1=Gm+1
280 277 278 279 sylancl φmm+11AGm+1-1+1=Gm+1
281 uztrn Gm+11GmGmMGm+11M
282 186 164 281 syl2anc φmm+11AGm+11M
283 eluzp1p1 Gm+11MGm+1-1+1M+1
284 282 283 syl φmm+11AGm+1-1+1M+1
285 280 284 eqeltrrd φmm+11AGm+1M+1
286 seqm1 MGm+1M+1seqM+˙FGm+1=seqM+˙FGm+11+˙FGm+1
287 276 285 286 syl2anc φmm+11AseqM+˙FGm+1=seqM+˙FGm+11+˙FGm+1
288 267 275 287 3eqtr4rd φmm+11AseqM+˙FGm+1=seqM+˙FGm+˙Hm+1
289 seqp1 m1seq1+˙Hm+1=seq1+˙Hm+˙Hm+1
290 148 289 syl φmm+11Aseq1+˙Hm+1=seq1+˙Hm+˙Hm+1
291 288 290 eqeq12d φmm+11AseqM+˙FGm+1=seq1+˙Hm+1seqM+˙FGm+˙Hm+1=seq1+˙Hm+˙Hm+1
292 159 291 imbitrrid φmm+11AseqM+˙FGm=seq1+˙HmseqM+˙FGm+1=seq1+˙Hm+1
293 292 ex φmm+11AseqM+˙FGm=seq1+˙HmseqM+˙FGm+1=seq1+˙Hm+1
294 293 a2d φmm+11AseqM+˙FGm=seq1+˙Hmm+11AseqM+˙FGm+1=seq1+˙Hm+1
295 158 294 syld φmm1AseqM+˙FGm=seq1+˙Hmm+11AseqM+˙FGm+1=seq1+˙Hm+1
296 295 expcom mφm1AseqM+˙FGm=seq1+˙Hmm+11AseqM+˙FGm+1=seq1+˙Hm+1
297 296 a2d mφm1AseqM+˙FGm=seq1+˙Hmφm+11AseqM+˙FGm+1=seq1+˙Hm+1
298 18 24 30 36 145 297 nnind NφN1AseqM+˙FGN=seq1+˙HN
299 12 298 mpcom φN1AseqM+˙FGN=seq1+˙HN
300 6 299 mpd φseqM+˙FGN=seq1+˙HN