Metamath Proof Explorer


Theorem stoweidlem14

Description: There exists a k as in the proof of Lemma 1 in BrosowskiDeutsh p. 90: k is an integer and 1 < k * δ < 2. D is used to represent δ in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem14.1 A=j|1D<j
stoweidlem14.2 φD+
stoweidlem14.3 φD<1
Assertion stoweidlem14 φk1<kDkD2<1

Proof

Step Hyp Ref Expression
1 stoweidlem14.1 A=j|1D<j
2 stoweidlem14.2 φD+
3 stoweidlem14.3 φD<1
4 ssrab2 j|1D<j
5 4 a1i φj|1D<j
6 1 5 eqsstrid φA
7 2 rprecred φ1D
8 arch 1Dk1D<k
9 breq2 j=k1D<j1D<k
10 9 elrab kj|1D<jk1D<k
11 10 biimpri k1D<kkj|1D<j
12 11 1 eleqtrrdi k1D<kkA
13 simpr k1D<k1D<k
14 12 13 jca k1D<kkA1D<k
15 14 reximi2 k1D<kkA1D<k
16 rexn0 kA1D<kA
17 7 8 15 16 4syl φA
18 nnwo AAkAzAkz
19 6 17 18 syl2anc φkAzAkz
20 df-rex kAzAkzkkAzAkz
21 19 20 sylib φkkAzAkz
22 9 1 elrab2 kAk1D<k
23 22 simplbi kAk
24 23 ad2antrl φkAzAkzk
25 simpl φkAzAkzφ
26 simprl φkAzAkzkA
27 simprr φkAzAkzzAkz
28 nfcv _zA
29 nfrab1 _jj|1D<j
30 1 29 nfcxfr _jA
31 nfv jkz
32 nfv zkj
33 breq2 z=jkzkj
34 28 30 31 32 33 cbvralfw zAkzjAkj
35 27 34 sylib φkAzAkzjAkj
36 22 simprbi kA1D<k
37 36 ad2antrl φkAjAkj1D<k
38 23 ad2antrl φkAjAkjk
39 1red φk1
40 nnre kk
41 40 adantl φkk
42 2 rpregt0d φD0<D
43 42 adantr φkD0<D
44 ltdivmul2 1kD0<D1D<k1<kD
45 39 41 43 44 syl3anc φk1D<k1<kD
46 38 45 syldan φkAjAkj1D<k1<kD
47 37 46 mpbid φkAjAkj1<kD
48 25 26 35 47 syl12anc φkAzAkz1<kD
49 oveq1 k=1kD=1D
50 49 adantl φk=1kD=1D
51 2 rpcnd φD
52 51 adantr φk=1D
53 52 mullidd φk=11D=D
54 50 53 eqtrd φk=1kD=D
55 54 oveq1d φk=1kD2=D2
56 2 rpred φD
57 56 rehalfcld φD2
58 halfre 12
59 58 a1i φ12
60 1red φ1
61 2re 2
62 61 a1i φ2
63 2pos 0<2
64 63 a1i φ0<2
65 ltdiv1 D120<2D<1D2<12
66 56 60 62 64 65 syl112anc φD<1D2<12
67 3 66 mpbid φD2<12
68 halflt1 12<1
69 68 a1i φ12<1
70 57 59 60 67 69 lttrd φD2<1
71 70 adantr φk=1D2<1
72 55 71 eqbrtrd φk=1kD2<1
73 72 adantlr φkAzAkzk=1kD2<1
74 simpll φkAzAkz¬k=1φ
75 simplrl φkAzAkz¬k=1kA
76 75 23 syl φkAzAkz¬k=1k
77 neqne ¬k=1k1
78 77 adantl φkAzAkz¬k=1k1
79 eluz2b3 k2kk1
80 76 78 79 sylanbrc φkAzAkz¬k=1k2
81 peano2rem kk1
82 75 23 40 81 4syl φkAzAkz¬k=1k1
83 56 ad2antrr φkAzAkz¬k=1D
84 2 rpne0d φD0
85 84 ad2antrr φkAzAkz¬k=1D0
86 83 85 rereccld φkAzAkz¬k=11D
87 1zzd φkAzAkz¬k=11
88 df-2 2=1+1
89 88 fveq2i 2=1+1
90 89 eleq2i k2k1+1
91 eluzsub 11k1+1k11
92 90 91 syl3an3b 11k2k11
93 nnuz =1
94 92 93 eleqtrrdi 11k2k1
95 87 87 80 94 syl3anc φkAzAkz¬k=1k1
96 23 40 syl kAk
97 96 adantl k1AkAk
98 97 81 syl k1AkAk1
99 simpr k1kk
100 99 ltm1d k1kk1<k
101 ltnle k1kk1<k¬kk1
102 100 101 mpbid k1k¬kk1
103 98 97 102 syl2anc k1AkA¬kk1
104 breq2 z=k1kzkk1
105 104 notbid z=k1¬kz¬kk1
106 105 rspcev k1A¬kk1zA¬kz
107 103 106 syldan k1AkAzA¬kz
108 rexnal zA¬kz¬zAkz
109 107 108 sylib k1AkA¬zAkz
110 109 ex k1AkA¬zAkz
111 imnan kA¬zAkz¬kAzAkz
112 110 111 sylib k1A¬kAzAkz
113 112 con2i kAzAkz¬k1A
114 113 ad2antlr φkAzAkz¬k=1¬k1A
115 breq2 j=k11D<j1D<k1
116 115 1 elrab2 k1Ak11D<k1
117 114 116 sylnib φkAzAkz¬k=1¬k11D<k1
118 ianor ¬k11D<k1¬k1¬1D<k1
119 117 118 sylib φkAzAkz¬k=1¬k1¬1D<k1
120 imor k1¬1D<k1¬k1¬1D<k1
121 119 120 sylibr φkAzAkz¬k=1k1¬1D<k1
122 95 121 mpd φkAzAkz¬k=1¬1D<k1
123 82 86 122 nltled φkAzAkz¬k=1k11D
124 eluzelre k2k
125 124 adantl φk2k
126 56 adantr φk2D
127 125 126 remulcld φk2kD
128 127 rehalfcld φk2kD2
129 128 3adant3 φk2k11DkD2
130 60 56 readdcld φ1+D
131 130 adantr φk21+D
132 131 rehalfcld φk21+D2
133 132 3adant3 φk2k11D1+D2
134 1red φk2k11D1
135 eluzelcn k2k
136 135 adantl φk2k
137 51 adantr φk2D
138 136 137 mulcld φk2kD
139 138 3adant3 φk2k11DkD
140 51 3ad2ant1 φk2k11DD
141 139 140 npcand φk2k11DkD-D+D=kD
142 127 126 resubcld φk2kDD
143 142 3adant3 φk2k11DkDD
144 56 3ad2ant1 φk2k11DD
145 simp3 φk2k11Dk11D
146 1red k21
147 124 146 resubcld k2k1
148 147 3ad2ant2 φk2k11Dk1
149 7 3ad2ant1 φk2k11D1D
150 42 3ad2ant1 φk2k11DD0<D
151 lemul1 k11DD0<Dk11Dk1D1DD
152 148 149 150 151 syl3anc φk2k11Dk11Dk1D1DD
153 145 152 mpbid φk2k11Dk1D1DD
154 1cnd φk21
155 136 154 137 subdird φk2k1D=kD1D
156 137 mullidd φk21D=D
157 156 oveq2d φk2kD1D=kDD
158 155 157 eqtrd φk2k1D=kDD
159 158 3adant3 φk2k11Dk1D=kDD
160 1cnd φ1
161 160 51 84 3jca φ1DD0
162 161 3ad2ant1 φk2k11D1DD0
163 divcan1 1DD01DD=1
164 162 163 syl φk2k11D1DD=1
165 153 159 164 3brtr3d φk2k11DkDD1
166 143 134 144 165 leadd1dd φk2k11DkD-D+D1+D
167 141 166 eqbrtrrd φk2k11DkD1+D
168 127 3adant3 φk2k11DkD
169 130 3ad2ant1 φk2k11D1+D
170 61 63 pm3.2i 20<2
171 170 a1i φk2k11D20<2
172 lediv1 kD1+D20<2kD1+DkD21+D2
173 168 169 171 172 syl3anc φk2k11DkD1+DkD21+D2
174 167 173 mpbid φk2k11DkD21+D2
175 56 60 60 3 ltadd2dd φ1+D<1+1
176 1p1e2 1+1=2
177 175 176 breqtrdi φ1+D<2
178 ltdiv1 1+D220<21+D<21+D2<22
179 130 62 62 64 178 syl112anc φ1+D<21+D2<22
180 177 179 mpbid φ1+D2<22
181 2div2e1 22=1
182 180 181 breqtrdi φ1+D2<1
183 182 3ad2ant1 φk2k11D1+D2<1
184 129 133 134 174 183 lelttrd φk2k11DkD2<1
185 74 80 123 184 syl3anc φkAzAkz¬k=1kD2<1
186 73 185 pm2.61dan φkAzAkzkD2<1
187 24 48 186 jca32 φkAzAkzk1<kDkD2<1
188 187 ex φkAzAkzk1<kDkD2<1
189 188 eximdv φkkAzAkzkk1<kDkD2<1
190 21 189 mpd φkk1<kDkD2<1
191 df-rex k1<kDkD2<1kk1<kDkD2<1
192 190 191 sylibr φk1<kDkD2<1