Metamath Proof Explorer


Theorem stoweidlem42

Description: This lemma is used to prove that x built as in Lemma 2 of BrosowskiDeutsh p. 91, is such that x > 1 - ε on B. Here X is used to represent x in the paper, and E is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem42.1 iφ
stoweidlem42.2 tφ
stoweidlem42.3 _tY
stoweidlem42.4 P=fY,gYtTftgt
stoweidlem42.5 X=seq1PUM
stoweidlem42.6 F=tTi1MUit
stoweidlem42.7 Z=tTseq1×FtM
stoweidlem42.8 φM
stoweidlem42.9 φU:1MY
stoweidlem42.10 φi1MtB1EM<Uit
stoweidlem42.11 φE+
stoweidlem42.12 φE<13
stoweidlem42.13 φfYf:T
stoweidlem42.14 φfYgYtTftgtY
stoweidlem42.15 φTV
stoweidlem42.16 φBT
Assertion stoweidlem42 φtB1E<Xt

Proof

Step Hyp Ref Expression
1 stoweidlem42.1 iφ
2 stoweidlem42.2 tφ
3 stoweidlem42.3 _tY
4 stoweidlem42.4 P=fY,gYtTftgt
5 stoweidlem42.5 X=seq1PUM
6 stoweidlem42.6 F=tTi1MUit
7 stoweidlem42.7 Z=tTseq1×FtM
8 stoweidlem42.8 φM
9 stoweidlem42.9 φU:1MY
10 stoweidlem42.10 φi1MtB1EM<Uit
11 stoweidlem42.11 φE+
12 stoweidlem42.12 φE<13
13 stoweidlem42.13 φfYf:T
14 stoweidlem42.14 φfYgYtTftgtY
15 stoweidlem42.15 φTV
16 stoweidlem42.16 φBT
17 1red φ1
18 11 rpred φE
19 17 18 resubcld φ1E
20 19 adantr φtB1E
21 18 8 nndivred φEM
22 17 21 resubcld φ1EM
23 22 adantr φtB1EM
24 8 nnnn0d φM0
25 24 adantr φtBM0
26 23 25 reexpcld φtB1EMM
27 elnnuz MM1
28 8 27 sylib φM1
29 28 adantr φtBM1
30 nfv itB
31 1 30 nfan iφtB
32 nfv ia1M
33 31 32 nfan iφtBa1M
34 nfcv _iT
35 nfmpt1 _ii1MUit
36 34 35 nfmpt _itTi1MUit
37 6 36 nfcxfr _iF
38 nfcv _it
39 37 38 nffv _iFt
40 nfcv _ia
41 39 40 nffv _iFta
42 41 nfel1 iFta
43 33 42 nfim iφtBa1MFta
44 eleq1 i=ai1Ma1M
45 44 anbi2d i=aφtBi1MφtBa1M
46 fveq2 i=aFti=Fta
47 46 eleq1d i=aFtiFta
48 45 47 imbi12d i=aφtBi1MFtiφtBa1MFta
49 16 sselda φtBtT
50 ovex 1MV
51 mptexg 1MVi1MUitV
52 50 51 mp1i φtBi1MUitV
53 6 fvmpt2 tTi1MUitVFt=i1MUit
54 49 52 53 syl2anc φtBFt=i1MUit
55 9 ffvelcdmda φi1MUiY
56 simpl φi1Mφ
57 56 55 jca φi1MφUiY
58 eleq1 f=UifYUiY
59 58 anbi2d f=UiφfYφUiY
60 feq1 f=Uif:TUi:T
61 59 60 imbi12d f=UiφfYf:TφUiYUi:T
62 61 13 vtoclg UiYφUiYUi:T
63 55 57 62 sylc φi1MUi:T
64 63 adantlr φtBi1MUi:T
65 49 adantr φtBi1MtT
66 64 65 ffvelcdmd φtBi1MUit
67 54 66 fvmpt2d φtBi1MFti=Uit
68 67 66 eqeltrd φtBi1MFti
69 43 48 68 chvarfv φtBa1MFta
70 remulcl ajaj
71 70 adantl φtBajaj
72 29 69 71 seqcl φtBseq1×FtM
73 11 rpcnd φE
74 8 nncnd φM
75 8 nnne0d φM0
76 73 74 75 divcan1d φEM M=E
77 76 eqcomd φE=EM M
78 77 oveq2d φ1E=1EM M
79 1cnd φ1
80 73 74 75 divcld φEM
81 80 74 mulcld φEM M
82 79 81 negsubd φ1+EM M=1EM M
83 80 74 mulneg1d φEM M=EM M
84 83 eqcomd φEM M=EM M
85 84 oveq2d φ1+EM M=1+EM M
86 78 82 85 3eqtr2d φ1E=1+EM M
87 21 renegcld φEM
88 8 nnred φM
89 3re 3
90 89 a1i φ3
91 3ne0 30
92 91 a1i φ30
93 90 92 rereccld φ13
94 1lt3 1<3
95 94 a1i φ1<3
96 0lt1 0<1
97 96 a1i φ0<1
98 3pos 0<3
99 98 a1i φ0<3
100 ltdiv2 10<130<310<11<313<11
101 17 97 90 99 17 97 100 syl222anc φ1<313<11
102 95 101 mpbid φ13<11
103 1div1e1 11=1
104 102 103 breqtrdi φ13<1
105 18 93 17 12 104 lttrd φE<1
106 8 nnge1d φ1M
107 18 17 88 105 106 ltletrd φE<M
108 18 88 107 ltled φEM
109 11 rpregt0d φE0<E
110 8 nngt0d φ0<M
111 lediv2 E0<EM0<ME0<EEMEMEE
112 109 88 110 109 111 syl121anc φEMEMEE
113 108 112 mpbid φEMEE
114 11 rpcnne0d φEE0
115 divid EE0EE=1
116 114 115 syl φEE=1
117 113 116 breqtrd φEM1
118 21 17 lenegd φEM11EM
119 117 118 mpbid φ1EM
120 bernneq EMM01EM1+EM M1+EMM
121 87 24 119 120 syl3anc φ1+EM M1+EMM
122 79 80 negsubd φ1+EM=1EM
123 122 oveq1d φ1+EMM=1EMM
124 121 123 breqtrd φ1+EM M1EMM
125 86 124 eqbrtrd φ1E1EMM
126 125 adantr φtB1E1EMM
127 eqid seq1×Ft=seq1×Ft
128 8 adantr φtBM
129 eqid i1MUit=i1MUit
130 31 66 129 fmptdf φtBi1MUit:1M
131 54 feq1d φtBFt:1Mi1MUit:1M
132 130 131 mpbird φtBFt:1M
133 10 r19.21bi φi1MtB1EM<Uit
134 133 an32s φtBi1M1EM<Uit
135 134 67 breqtrrd φtBi1M1EM<Fti
136 80 addlidd φ0+EM=EM
137 lediv2 10<1M0<ME0<E1MEME1
138 17 97 88 110 109 137 syl221anc φ1MEME1
139 106 138 mpbid φEME1
140 73 div1d φE1=E
141 139 140 breqtrd φEME
142 21 18 17 141 105 lelttrd φEM<1
143 136 142 eqbrtrd φ0+EM<1
144 0red φ0
145 144 21 17 ltaddsubd φ0+EM<10<1EM
146 143 145 mpbid φ0<1EM
147 22 146 elrpd φ1EM+
148 147 adantr φtB1EM+
149 39 31 127 128 132 135 148 stoweidlem3 φtB1EMM<seq1×FtM
150 20 26 72 126 149 lelttrd φtB1E<seq1×FtM
151 7 fvmpt2 tTseq1×FtMZt=seq1×FtM
152 49 72 151 syl2anc φtBZt=seq1×FtM
153 150 152 breqtrrd φtB1E<Zt
154 simpl φtBφ
155 1 3 4 5 6 7 15 8 9 13 14 fmuldfeq φtTXt=Zt
156 154 49 155 syl2anc φtBXt=Zt
157 153 156 breqtrrd φtB1E<Xt
158 157 ex φtB1E<Xt
159 2 158 ralrimi φtB1E<Xt