Metamath Proof Explorer


Theorem sylow3lem6

Description: Lemma for sylow3 , second part. Using the lemma sylow2a , show that the number of sylow subgroups is equivalent mod P to the number of fixed points under the group action. But K is the unique element of the set of Sylow subgroups that is fixed under the group action, so there is exactly one fixed point and so ( ( #( P pSyl G ) ) mod P ) = 1 . (Contributed by Mario Carneiro, 19-Jan-2015)

Ref Expression
Hypotheses sylow3.x X=BaseG
sylow3.g φGGrp
sylow3.xf φXFin
sylow3.p φP
sylow3lem5.a +˙=+G
sylow3lem5.d -˙=-G
sylow3lem5.k φKPpSylG
sylow3lem5.m ˙=xK,yPpSylGranzyx+˙z-˙x
sylow3lem6.n N=xX|yXx+˙ysy+˙xs
Assertion sylow3lem6 φPpSylGmodP=1

Proof

Step Hyp Ref Expression
1 sylow3.x X=BaseG
2 sylow3.g φGGrp
3 sylow3.xf φXFin
4 sylow3.p φP
5 sylow3lem5.a +˙=+G
6 sylow3lem5.d -˙=-G
7 sylow3lem5.k φKPpSylG
8 sylow3lem5.m ˙=xK,yPpSylGranzyx+˙z-˙x
9 sylow3lem6.n N=xX|yXx+˙ysy+˙xs
10 eqid BaseG𝑠K=BaseG𝑠K
11 1 2 3 4 5 6 7 8 sylow3lem5 φ˙G𝑠KGrpActPpSylG
12 eqid G𝑠K=G𝑠K
13 12 slwpgp KPpSylGPpGrpG𝑠K
14 7 13 syl φPpGrpG𝑠K
15 slwsubg KPpSylGKSubGrpG
16 7 15 syl φKSubGrpG
17 12 subgbas KSubGrpGK=BaseG𝑠K
18 16 17 syl φK=BaseG𝑠K
19 1 subgss KSubGrpGKX
20 16 19 syl φKX
21 3 20 ssfid φKFin
22 18 21 eqeltrrd φBaseG𝑠KFin
23 pwfi XFin𝒫XFin
24 3 23 sylib φ𝒫XFin
25 slwsubg xPpSylGxSubGrpG
26 1 subgss xSubGrpGxX
27 25 26 syl xPpSylGxX
28 25 27 elpwd xPpSylGx𝒫X
29 28 ssriv PpSylG𝒫X
30 ssfi 𝒫XFinPpSylG𝒫XPpSylGFin
31 24 29 30 sylancl φPpSylGFin
32 eqid sPpSylG|gBaseG𝑠Kg˙s=s=sPpSylG|gBaseG𝑠Kg˙s=s
33 eqid zw|zwPpSylGhBaseG𝑠Kh˙z=w=zw|zwPpSylGhBaseG𝑠Kh˙z=w
34 10 11 14 22 31 32 33 sylow2a φPPpSylGsPpSylG|gBaseG𝑠Kg˙s=s
35 eqcom ranzsg+˙z-˙g=ss=ranzsg+˙z-˙g
36 20 adantr φsPpSylGKX
37 36 sselda φsPpSylGgKgX
38 37 biantrurd φsPpSylGgKs=ranzsg+˙z-˙ggXs=ranzsg+˙z-˙g
39 35 38 bitrid φsPpSylGgKranzsg+˙z-˙g=sgXs=ranzsg+˙z-˙g
40 simpr φsPpSylGgKgK
41 simplr φsPpSylGgKsPpSylG
42 simpr x=gy=sy=s
43 simpl x=gy=sx=g
44 43 oveq1d x=gy=sx+˙z=g+˙z
45 44 43 oveq12d x=gy=sx+˙z-˙x=g+˙z-˙g
46 42 45 mpteq12dv x=gy=szyx+˙z-˙x=zsg+˙z-˙g
47 46 rneqd x=gy=sranzyx+˙z-˙x=ranzsg+˙z-˙g
48 vex sV
49 48 mptex zsg+˙z-˙gV
50 49 rnex ranzsg+˙z-˙gV
51 47 8 50 ovmpoa gKsPpSylGg˙s=ranzsg+˙z-˙g
52 40 41 51 syl2anc φsPpSylGgKg˙s=ranzsg+˙z-˙g
53 52 eqeq1d φsPpSylGgKg˙s=sranzsg+˙z-˙g=s
54 slwsubg sPpSylGsSubGrpG
55 54 ad2antlr φsPpSylGgKsSubGrpG
56 eqid zsg+˙z-˙g=zsg+˙z-˙g
57 1 5 6 56 9 conjnmzb sSubGrpGgNgXs=ranzsg+˙z-˙g
58 55 57 syl φsPpSylGgKgNgXs=ranzsg+˙z-˙g
59 39 53 58 3bitr4d φsPpSylGgKg˙s=sgN
60 59 ralbidva φsPpSylGgKg˙s=sgKgN
61 dfss3 KNgKgN
62 60 61 bitr4di φsPpSylGgKg˙s=sKN
63 18 adantr φsPpSylGK=BaseG𝑠K
64 63 raleqdv φsPpSylGgKg˙s=sgBaseG𝑠Kg˙s=s
65 eqid BaseG𝑠N=BaseG𝑠N
66 2 ad2antrr φsPpSylGKNGGrp
67 9 1 5 nmzsubg GGrpNSubGrpG
68 66 67 syl φsPpSylGKNNSubGrpG
69 eqid G𝑠N=G𝑠N
70 69 subgbas NSubGrpGN=BaseG𝑠N
71 68 70 syl φsPpSylGKNN=BaseG𝑠N
72 3 ad2antrr φsPpSylGKNXFin
73 1 subgss NSubGrpGNX
74 68 73 syl φsPpSylGKNNX
75 72 74 ssfid φsPpSylGKNNFin
76 71 75 eqeltrrd φsPpSylGKNBaseG𝑠NFin
77 7 ad2antrr φsPpSylGKNKPpSylG
78 simpr φsPpSylGKNKN
79 69 subgslw NSubGrpGKPpSylGKNKPpSylG𝑠N
80 68 77 78 79 syl3anc φsPpSylGKNKPpSylG𝑠N
81 simplr φsPpSylGKNsPpSylG
82 54 ad2antlr φsPpSylGKNsSubGrpG
83 9 1 5 ssnmz sSubGrpGsN
84 82 83 syl φsPpSylGKNsN
85 69 subgslw NSubGrpGsPpSylGsNsPpSylG𝑠N
86 68 81 84 85 syl3anc φsPpSylGKNsPpSylG𝑠N
87 1 fvexi XV
88 9 87 rabex2 NV
89 69 5 ressplusg NV+˙=+G𝑠N
90 88 89 ax-mp +˙=+G𝑠N
91 eqid -G𝑠N=-G𝑠N
92 65 76 80 86 90 91 sylow2 φsPpSylGKNgBaseG𝑠NK=ranzsg+˙z-G𝑠Ng
93 9 1 5 69 nmznsg sSubGrpGsNrmSGrpG𝑠N
94 82 93 syl φsPpSylGKNsNrmSGrpG𝑠N
95 eqid zsg+˙z-G𝑠Ng=zsg+˙z-G𝑠Ng
96 65 90 91 95 conjnsg sNrmSGrpG𝑠NgBaseG𝑠Ns=ranzsg+˙z-G𝑠Ng
97 94 96 sylan φsPpSylGKNgBaseG𝑠Ns=ranzsg+˙z-G𝑠Ng
98 eqeq2 K=ranzsg+˙z-G𝑠Ngs=Ks=ranzsg+˙z-G𝑠Ng
99 97 98 syl5ibrcom φsPpSylGKNgBaseG𝑠NK=ranzsg+˙z-G𝑠Ngs=K
100 99 rexlimdva φsPpSylGKNgBaseG𝑠NK=ranzsg+˙z-G𝑠Ngs=K
101 92 100 mpd φsPpSylGKNs=K
102 simpr φsPpSylGs=Ks=K
103 16 ad2antrr φsPpSylGs=KKSubGrpG
104 102 103 eqeltrd φsPpSylGs=KsSubGrpG
105 104 83 syl φsPpSylGs=KsN
106 102 105 eqsstrrd φsPpSylGs=KKN
107 101 106 impbida φsPpSylGKNs=K
108 62 64 107 3bitr3d φsPpSylGgBaseG𝑠Kg˙s=ss=K
109 108 rabbidva φsPpSylG|gBaseG𝑠Kg˙s=s=sPpSylG|s=K
110 rabsn KPpSylGsPpSylG|s=K=K
111 7 110 syl φsPpSylG|s=K=K
112 109 111 eqtrd φsPpSylG|gBaseG𝑠Kg˙s=s=K
113 112 fveq2d φsPpSylG|gBaseG𝑠Kg˙s=s=K
114 hashsng KPpSylGK=1
115 7 114 syl φK=1
116 113 115 eqtrd φsPpSylG|gBaseG𝑠Kg˙s=s=1
117 116 oveq2d φPpSylGsPpSylG|gBaseG𝑠Kg˙s=s=PpSylG1
118 34 117 breqtrd φPPpSylG1
119 prmnn PP
120 4 119 syl φP
121 hashcl PpSylGFinPpSylG0
122 31 121 syl φPpSylG0
123 122 nn0zd φPpSylG
124 1zzd φ1
125 moddvds PPpSylG1PpSylGmodP=1modPPPpSylG1
126 120 123 124 125 syl3anc φPpSylGmodP=1modPPPpSylG1
127 118 126 mpbird φPpSylGmodP=1modP
128 prmuz2 PP2
129 eluz2b2 P2P1<P
130 nnre PP
131 1mod P1<P1modP=1
132 130 131 sylan P1<P1modP=1
133 129 132 sylbi P21modP=1
134 4 128 133 3syl φ1modP=1
135 127 134 eqtrd φPpSylGmodP=1