Metamath Proof Explorer


Theorem volsupnfl

Description: volsup is incompatible with the Feferman-Levy model. (Contributed by Brendan Leahy, 2-Jan-2018)

Ref Expression
Hypothesis volsupnfl.0 f : dom vol n f n f n + 1 vol ran f = sup vol ran f * <
Assertion volsupnfl A x A x A

Proof

Step Hyp Ref Expression
1 volsupnfl.0 f : dom vol n f n f n + 1 vol ran f = sup vol ran f * <
2 unieq A = A =
3 uni0 =
4 2 3 eqtrdi A = A =
5 4 fveq2d A = vol A = vol
6 0mbl dom vol
7 mblvol dom vol vol = vol *
8 6 7 ax-mp vol = vol *
9 ovol0 vol * = 0
10 8 9 eqtri vol = 0
11 5 10 eqtr2di A = 0 = vol A
12 11 a1d A = A x A x A 0 = vol A
13 reldom Rel
14 13 brrelex1i A A V
15 0sdomg A V A A
16 14 15 syl A A A
17 16 biimparc A A A
18 fodomr A A g g : onto A
19 17 18 sylancom A A g g : onto A
20 unissb A x A x
21 20 anbi1i A x A x x A x x A x
22 r19.26 x A x x x A x x A x
23 21 22 bitr4i A x A x x A x x
24 ovolctb2 x x vol * x = 0
25 nulmbl x vol * x = 0 x dom vol
26 mblvol x dom vol vol x = vol * x
27 eqtr vol x = vol * x vol * x = 0 vol x = 0
28 27 expcom vol * x = 0 vol x = vol * x vol x = 0
29 26 28 syl5 vol * x = 0 x dom vol vol x = 0
30 29 adantl x vol * x = 0 x dom vol vol x = 0
31 25 30 jcai x vol * x = 0 x dom vol vol x = 0
32 24 31 syldan x x x dom vol vol x = 0
33 32 ralimi x A x x x A x dom vol vol x = 0
34 23 33 sylbi A x A x x A x dom vol vol x = 0
35 34 ancoms x A x A x A x dom vol vol x = 0
36 fzfi 1 m Fin
37 fzssuz 1 m 1
38 nnuz = 1
39 37 38 sseqtrri 1 m
40 fof g : onto A g : A
41 40 ffvelrnda g : onto A l g l A
42 eleq1 x = g l x dom vol g l dom vol
43 fveqeq2 x = g l vol x = 0 vol g l = 0
44 42 43 anbi12d x = g l x dom vol vol x = 0 g l dom vol vol g l = 0
45 44 rspccva x A x dom vol vol x = 0 g l A g l dom vol vol g l = 0
46 45 simpld x A x dom vol vol x = 0 g l A g l dom vol
47 46 ancoms g l A x A x dom vol vol x = 0 g l dom vol
48 41 47 sylan g : onto A l x A x dom vol vol x = 0 g l dom vol
49 48 an32s g : onto A x A x dom vol vol x = 0 l g l dom vol
50 49 ralrimiva g : onto A x A x dom vol vol x = 0 l g l dom vol
51 ssralv 1 m l g l dom vol l 1 m g l dom vol
52 39 50 51 mpsyl g : onto A x A x dom vol vol x = 0 l 1 m g l dom vol
53 finiunmbl 1 m Fin l 1 m g l dom vol l = 1 m g l dom vol
54 36 52 53 sylancr g : onto A x A x dom vol vol x = 0 l = 1 m g l dom vol
55 54 adantr g : onto A x A x dom vol vol x = 0 m l = 1 m g l dom vol
56 55 fmpttd g : onto A x A x dom vol vol x = 0 m l = 1 m g l : dom vol
57 fzssp1 1 n 1 n + 1
58 iunss1 1 n 1 n + 1 l = 1 n g l l = 1 n + 1 g l
59 57 58 ax-mp l = 1 n g l l = 1 n + 1 g l
60 oveq2 m = n 1 m = 1 n
61 60 iuneq1d m = n l = 1 m g l = l = 1 n g l
62 eqid m l = 1 m g l = m l = 1 m g l
63 ovex 1 n V
64 fvex g l V
65 63 64 iunex l = 1 n g l V
66 61 62 65 fvmpt n m l = 1 m g l n = l = 1 n g l
67 peano2nn n n + 1
68 oveq2 m = n + 1 1 m = 1 n + 1
69 68 iuneq1d m = n + 1 l = 1 m g l = l = 1 n + 1 g l
70 ovex 1 n + 1 V
71 70 64 iunex l = 1 n + 1 g l V
72 69 62 71 fvmpt n + 1 m l = 1 m g l n + 1 = l = 1 n + 1 g l
73 67 72 syl n m l = 1 m g l n + 1 = l = 1 n + 1 g l
74 66 73 sseq12d n m l = 1 m g l n m l = 1 m g l n + 1 l = 1 n g l l = 1 n + 1 g l
75 59 74 mpbiri n m l = 1 m g l n m l = 1 m g l n + 1
76 75 rgen n m l = 1 m g l n m l = 1 m g l n + 1
77 nnex V
78 77 mptex m l = 1 m g l V
79 feq1 f = m l = 1 m g l f : dom vol m l = 1 m g l : dom vol
80 fveq1 f = m l = 1 m g l f n = m l = 1 m g l n
81 fveq1 f = m l = 1 m g l f n + 1 = m l = 1 m g l n + 1
82 80 81 sseq12d f = m l = 1 m g l f n f n + 1 m l = 1 m g l n m l = 1 m g l n + 1
83 82 ralbidv f = m l = 1 m g l n f n f n + 1 n m l = 1 m g l n m l = 1 m g l n + 1
84 79 83 anbi12d f = m l = 1 m g l f : dom vol n f n f n + 1 m l = 1 m g l : dom vol n m l = 1 m g l n m l = 1 m g l n + 1
85 rneq f = m l = 1 m g l ran f = ran m l = 1 m g l
86 85 unieqd f = m l = 1 m g l ran f = ran m l = 1 m g l
87 86 fveq2d f = m l = 1 m g l vol ran f = vol ran m l = 1 m g l
88 85 imaeq2d f = m l = 1 m g l vol ran f = vol ran m l = 1 m g l
89 88 supeq1d f = m l = 1 m g l sup vol ran f * < = sup vol ran m l = 1 m g l * <
90 87 89 eqeq12d f = m l = 1 m g l vol ran f = sup vol ran f * < vol ran m l = 1 m g l = sup vol ran m l = 1 m g l * <
91 84 90 imbi12d f = m l = 1 m g l f : dom vol n f n f n + 1 vol ran f = sup vol ran f * < m l = 1 m g l : dom vol n m l = 1 m g l n m l = 1 m g l n + 1 vol ran m l = 1 m g l = sup vol ran m l = 1 m g l * <
92 78 91 1 vtocl m l = 1 m g l : dom vol n m l = 1 m g l n m l = 1 m g l n + 1 vol ran m l = 1 m g l = sup vol ran m l = 1 m g l * <
93 56 76 92 sylancl g : onto A x A x dom vol vol x = 0 vol ran m l = 1 m g l = sup vol ran m l = 1 m g l * <
94 df-iun x g x = n | x n g x
95 eluzfz2 x 1 x 1 x
96 95 38 eleq2s x x 1 x
97 fveq2 l = x g l = g x
98 97 eleq2d l = x n g l n g x
99 98 rspcev x 1 x n g x l 1 x n g l
100 96 99 sylan x n g x l 1 x n g l
101 oveq2 m = x 1 m = 1 x
102 101 rexeqdv m = x l 1 m n g l l 1 x n g l
103 102 rspcev x l 1 x n g l m l 1 m n g l
104 100 103 syldan x n g x m l 1 m n g l
105 104 rexlimiva x n g x m l 1 m n g l
106 ssrexv 1 m l 1 m n g l l n g l
107 39 106 ax-mp l 1 m n g l l n g l
108 98 cbvrexvw l n g l x n g x
109 107 108 sylib l 1 m n g l x n g x
110 109 rexlimivw m l 1 m n g l x n g x
111 105 110 impbii x n g x m l 1 m n g l
112 eliun n l = 1 m g l l 1 m n g l
113 112 rexbii m n l = 1 m g l m l 1 m n g l
114 111 113 bitr4i x n g x m n l = 1 m g l
115 114 abbii n | x n g x = n | m n l = 1 m g l
116 94 115 eqtri x g x = n | m n l = 1 m g l
117 df-iun m l = 1 m g l = n | m n l = 1 m g l
118 ovex 1 m V
119 118 64 iunex l = 1 m g l V
120 119 dfiun3 m l = 1 m g l = ran m l = 1 m g l
121 116 117 120 3eqtr2i x g x = ran m l = 1 m g l
122 fofn g : onto A g Fn
123 fniunfv g Fn x g x = ran g
124 122 123 syl g : onto A x g x = ran g
125 forn g : onto A ran g = A
126 125 unieqd g : onto A ran g = A
127 124 126 eqtrd g : onto A x g x = A
128 121 127 eqtr3id g : onto A ran m l = 1 m g l = A
129 128 fveq2d g : onto A vol ran m l = 1 m g l = vol A
130 129 adantr g : onto A x A x dom vol vol x = 0 vol ran m l = 1 m g l = vol A
131 rnco2 ran vol m l = 1 m g l = vol ran m l = 1 m g l
132 eqidd g : onto A x A x dom vol vol x = 0 m l = 1 m g l = m l = 1 m g l
133 volf vol : dom vol 0 +∞
134 133 a1i g : onto A x A x dom vol vol x = 0 vol : dom vol 0 +∞
135 134 feqmptd g : onto A x A x dom vol vol x = 0 vol = n dom vol vol n
136 fveq2 n = l = 1 m g l vol n = vol l = 1 m g l
137 55 132 135 136 fmptco g : onto A x A x dom vol vol x = 0 vol m l = 1 m g l = m vol l = 1 m g l
138 mblvol l = 1 m g l dom vol vol l = 1 m g l = vol * l = 1 m g l
139 55 138 syl g : onto A x A x dom vol vol x = 0 m vol l = 1 m g l = vol * l = 1 m g l
140 mblss x dom vol x
141 140 adantr x dom vol vol x = 0 x
142 26 eqeq1d x dom vol vol x = 0 vol * x = 0
143 0re 0
144 eleq1a 0 vol * x = 0 vol * x
145 143 144 ax-mp vol * x = 0 vol * x
146 142 145 syl6bi x dom vol vol x = 0 vol * x
147 146 imp x dom vol vol x = 0 vol * x
148 141 147 jca x dom vol vol x = 0 x vol * x
149 148 ralimi x A x dom vol vol x = 0 x A x vol * x
150 149 adantl g : onto A x A x dom vol vol x = 0 x A x vol * x
151 ssid
152 sseq1 x = g l x g l
153 fveq2 x = g l vol * x = vol * g l
154 153 eleq1d x = g l vol * x vol * g l
155 152 154 anbi12d x = g l x vol * x g l vol * g l
156 155 ralima g Fn x g x vol * x l g l vol * g l
157 122 151 156 sylancl g : onto A x g x vol * x l g l vol * g l
158 foima g : onto A g = A
159 158 raleqdv g : onto A x g x vol * x x A x vol * x
160 157 159 bitr3d g : onto A l g l vol * g l x A x vol * x
161 160 adantr g : onto A x A x dom vol vol x = 0 l g l vol * g l x A x vol * x
162 150 161 mpbird g : onto A x A x dom vol vol x = 0 l g l vol * g l
163 ssralv 1 m l g l vol * g l l 1 m g l vol * g l
164 39 162 163 mpsyl g : onto A x A x dom vol vol x = 0 l 1 m g l vol * g l
165 164 adantr g : onto A x A x dom vol vol x = 0 m l 1 m g l vol * g l
166 ovolfiniun 1 m Fin l 1 m g l vol * g l vol * l = 1 m g l l = 1 m vol * g l
167 36 165 166 sylancr g : onto A x A x dom vol vol x = 0 m vol * l = 1 m g l l = 1 m vol * g l
168 mblvol g l dom vol vol g l = vol * g l
169 49 168 syl g : onto A x A x dom vol vol x = 0 l vol g l = vol * g l
170 45 simprd x A x dom vol vol x = 0 g l A vol g l = 0
171 41 170 sylan2 x A x dom vol vol x = 0 g : onto A l vol g l = 0
172 171 ancoms g : onto A l x A x dom vol vol x = 0 vol g l = 0
173 172 an32s g : onto A x A x dom vol vol x = 0 l vol g l = 0
174 169 173 eqtr3d g : onto A x A x dom vol vol x = 0 l vol * g l = 0
175 174 ralrimiva g : onto A x A x dom vol vol x = 0 l vol * g l = 0
176 ssralv 1 m l vol * g l = 0 l 1 m vol * g l = 0
177 39 175 176 mpsyl g : onto A x A x dom vol vol x = 0 l 1 m vol * g l = 0
178 177 adantr g : onto A x A x dom vol vol x = 0 m l 1 m vol * g l = 0
179 178 sumeq2d g : onto A x A x dom vol vol x = 0 m l = 1 m vol * g l = l = 1 m 0
180 36 olci 1 m 1 1 m Fin
181 sumz 1 m 1 1 m Fin l = 1 m 0 = 0
182 180 181 ax-mp l = 1 m 0 = 0
183 179 182 eqtrdi g : onto A x A x dom vol vol x = 0 m l = 1 m vol * g l = 0
184 167 183 breqtrd g : onto A x A x dom vol vol x = 0 m vol * l = 1 m g l 0
185 mblss g l dom vol g l
186 185 ralimi l 1 m g l dom vol l 1 m g l
187 52 186 syl g : onto A x A x dom vol vol x = 0 l 1 m g l
188 iunss l = 1 m g l l 1 m g l
189 187 188 sylibr g : onto A x A x dom vol vol x = 0 l = 1 m g l
190 189 adantr g : onto A x A x dom vol vol x = 0 m l = 1 m g l
191 ovolge0 l = 1 m g l 0 vol * l = 1 m g l
192 190 191 syl g : onto A x A x dom vol vol x = 0 m 0 vol * l = 1 m g l
193 ovolcl l = 1 m g l vol * l = 1 m g l *
194 189 193 syl g : onto A x A x dom vol vol x = 0 vol * l = 1 m g l *
195 194 adantr g : onto A x A x dom vol vol x = 0 m vol * l = 1 m g l *
196 0xr 0 *
197 xrletri3 vol * l = 1 m g l * 0 * vol * l = 1 m g l = 0 vol * l = 1 m g l 0 0 vol * l = 1 m g l
198 195 196 197 sylancl g : onto A x A x dom vol vol x = 0 m vol * l = 1 m g l = 0 vol * l = 1 m g l 0 0 vol * l = 1 m g l
199 184 192 198 mpbir2and g : onto A x A x dom vol vol x = 0 m vol * l = 1 m g l = 0
200 139 199 eqtrd g : onto A x A x dom vol vol x = 0 m vol l = 1 m g l = 0
201 200 mpteq2dva g : onto A x A x dom vol vol x = 0 m vol l = 1 m g l = m 0
202 fconstmpt × 0 = m 0
203 201 202 eqtr4di g : onto A x A x dom vol vol x = 0 m vol l = 1 m g l = × 0
204 137 203 eqtrd g : onto A x A x dom vol vol x = 0 vol m l = 1 m g l = × 0
205 frn m l = 1 m g l : dom vol ran m l = 1 m g l dom vol
206 ffn vol : dom vol 0 +∞ vol Fn dom vol
207 133 206 ax-mp vol Fn dom vol
208 119 62 fnmpti m l = 1 m g l Fn
209 fnco vol Fn dom vol m l = 1 m g l Fn ran m l = 1 m g l dom vol vol m l = 1 m g l Fn
210 207 208 209 mp3an12 ran m l = 1 m g l dom vol vol m l = 1 m g l Fn
211 56 205 210 3syl g : onto A x A x dom vol vol x = 0 vol m l = 1 m g l Fn
212 1nn 1
213 212 ne0ii
214 fconst5 vol m l = 1 m g l Fn vol m l = 1 m g l = × 0 ran vol m l = 1 m g l = 0
215 211 213 214 sylancl g : onto A x A x dom vol vol x = 0 vol m l = 1 m g l = × 0 ran vol m l = 1 m g l = 0
216 204 215 mpbid g : onto A x A x dom vol vol x = 0 ran vol m l = 1 m g l = 0
217 131 216 eqtr3id g : onto A x A x dom vol vol x = 0 vol ran m l = 1 m g l = 0
218 217 supeq1d g : onto A x A x dom vol vol x = 0 sup vol ran m l = 1 m g l * < = sup 0 * <
219 xrltso < Or *
220 supsn < Or * 0 * sup 0 * < = 0
221 219 196 220 mp2an sup 0 * < = 0
222 218 221 eqtrdi g : onto A x A x dom vol vol x = 0 sup vol ran m l = 1 m g l * < = 0
223 93 130 222 3eqtr3rd g : onto A x A x dom vol vol x = 0 0 = vol A
224 223 ex g : onto A x A x dom vol vol x = 0 0 = vol A
225 35 224 syl5 g : onto A x A x A 0 = vol A
226 225 exlimiv g g : onto A x A x A 0 = vol A
227 19 226 syl A A x A x A 0 = vol A
228 227 expimpd A A x A x A 0 = vol A
229 12 228 pm2.61ine A x A x A 0 = vol A
230 renepnf 0 0 +∞
231 143 230 mp1i A = 0 +∞
232 fveq2 A = vol A = vol
233 rembl dom vol
234 mblvol dom vol vol = vol *
235 233 234 ax-mp vol = vol *
236 ovolre vol * = +∞
237 235 236 eqtri vol = +∞
238 232 237 eqtrdi A = vol A = +∞
239 231 238 neeqtrrd A = 0 vol A
240 239 necon2i 0 = vol A A
241 229 240 syl A x A x A A
242 241 expr A x A x A A
243 eqimss A = A
244 243 necon3bi ¬ A A
245 242 244 pm2.61d1 A x A x A