Metamath Proof Explorer


Theorem yonedalem3b

Description: Lemma for yoneda . (Contributed by Mario Carneiro, 29-Jan-2017)

Ref Expression
Hypotheses yoneda.y Y=YonC
yoneda.b B=BaseC
yoneda.1 1˙=IdC
yoneda.o O=oppCatC
yoneda.s S=SetCatU
yoneda.t T=SetCatV
yoneda.q Q=OFuncCatS
yoneda.h H=HomFQ
yoneda.r R=Q×cOFuncCatT
yoneda.e E=OevalFS
yoneda.z Z=Hfunc1stYtpos2ndYfuncQ2ndFO⟨,⟩FQ1stFO
yoneda.c φCCat
yoneda.w φVW
yoneda.u φranHom𝑓CU
yoneda.v φranHom𝑓QUV
yonedalem21.f φFOFuncS
yonedalem21.x φXB
yonedalem22.g φGOFuncS
yonedalem22.p φPB
yonedalem22.a φAFONatSG
yonedalem22.k φKPHomCX
yonedalem3.m M=fOFuncS,xBa1stYxONatSfax1˙x
Assertion yonedalem3b φGMPF1stZXG1stZPcompTG1stEPAFX2ndZGPK=AFX2ndEGPKF1stZXF1stEXcompTG1stEPFMX

Proof

Step Hyp Ref Expression
1 yoneda.y Y=YonC
2 yoneda.b B=BaseC
3 yoneda.1 1˙=IdC
4 yoneda.o O=oppCatC
5 yoneda.s S=SetCatU
6 yoneda.t T=SetCatV
7 yoneda.q Q=OFuncCatS
8 yoneda.h H=HomFQ
9 yoneda.r R=Q×cOFuncCatT
10 yoneda.e E=OevalFS
11 yoneda.z Z=Hfunc1stYtpos2ndYfuncQ2ndFO⟨,⟩FQ1stFO
12 yoneda.c φCCat
13 yoneda.w φVW
14 yoneda.u φranHom𝑓CU
15 yoneda.v φranHom𝑓QUV
16 yonedalem21.f φFOFuncS
17 yonedalem21.x φXB
18 yonedalem22.g φGOFuncS
19 yonedalem22.p φPB
20 yonedalem22.a φAFONatSG
21 yonedalem22.k φKPHomCX
22 yonedalem3.m M=fOFuncS,xBa1stYxONatSfax1˙x
23 oveq2 b=aA1stYXFcompQGb=A1stYXFcompQGa
24 23 oveq1d b=aA1stYXFcompQGb1stYP1stYXcompQGP2ndYXK=A1stYXFcompQGa1stYP1stYXcompQGP2ndYXK
25 24 fveq1d b=aA1stYXFcompQGb1stYP1stYXcompQGP2ndYXKP=A1stYXFcompQGa1stYP1stYXcompQGP2ndYXKP
26 25 fveq1d b=aA1stYXFcompQGb1stYP1stYXcompQGP2ndYXKP1˙P=A1stYXFcompQGa1stYP1stYXcompQGP2ndYXKP1˙P
27 26 cbvmptv b1stYXONatSFA1stYXFcompQGb1stYP1stYXcompQGP2ndYXKP1˙P=a1stYXONatSFA1stYXFcompQGa1stYP1stYXcompQGP2ndYXKP1˙P
28 eqid ONatS=ONatS
29 4 2 oppcbas B=BaseO
30 eqid compS=compS
31 eqid compQ=compQ
32 eqid HomC=HomC
33 7 28 fuchom ONatS=HomQ
34 relfunc RelCFuncQ
35 15 unssbd φUV
36 13 35 ssexd φUV
37 1 12 4 5 7 36 14 yoncl φYCFuncQ
38 1st2ndbr RelCFuncQYCFuncQ1stYCFuncQ2ndY
39 34 37 38 sylancr φ1stYCFuncQ2ndY
40 2 32 33 39 19 17 funcf2 φP2ndYX:PHomCX1stYPONatS1stYX
41 40 21 ffvelcdmd φP2ndYXK1stYPONatS1stYX
42 41 adantr φa1stYXONatSFP2ndYXK1stYPONatS1stYX
43 simpr φa1stYXONatSFa1stYXONatSF
44 20 adantr φa1stYXONatSFAFONatSG
45 7 28 31 43 44 fuccocl φa1stYXONatSFA1stYXFcompQGa1stYXONatSG
46 19 adantr φa1stYXONatSFPB
47 7 28 29 30 31 42 45 46 fuccoval φa1stYXONatSFA1stYXFcompQGa1stYP1stYXcompQGP2ndYXKP=A1stYXFcompQGaP1st1stYPP1st1stYXPcompS1stGPP2ndYXKP
48 7 28 29 30 31 43 44 46 fuccoval φa1stYXONatSFA1stYXFcompQGaP=AP1st1stYXP1stFPcompS1stGPaP
49 36 adantr φa1stYXONatSFUV
50 eqid BaseS=BaseS
51 relfunc RelOFuncS
52 7 fucbas OFuncS=BaseQ
53 2 52 39 funcf1 φ1stY:BOFuncS
54 53 17 ffvelcdmd φ1stYXOFuncS
55 1st2ndbr RelOFuncS1stYXOFuncS1st1stYXOFuncS2nd1stYX
56 51 54 55 sylancr φ1st1stYXOFuncS2nd1stYX
57 29 50 56 funcf1 φ1st1stYX:BBaseS
58 5 36 setcbas φU=BaseS
59 58 feq3d φ1st1stYX:BU1st1stYX:BBaseS
60 57 59 mpbird φ1st1stYX:BU
61 60 19 ffvelcdmd φ1st1stYXPU
62 61 adantr φa1stYXONatSF1st1stYXPU
63 1st2ndbr RelOFuncSFOFuncS1stFOFuncS2ndF
64 51 16 63 sylancr φ1stFOFuncS2ndF
65 29 50 64 funcf1 φ1stF:BBaseS
66 58 feq3d φ1stF:BU1stF:BBaseS
67 65 66 mpbird φ1stF:BU
68 67 19 ffvelcdmd φ1stFPU
69 68 adantr φa1stYXONatSF1stFPU
70 1st2ndbr RelOFuncSGOFuncS1stGOFuncS2ndG
71 51 18 70 sylancr φ1stGOFuncS2ndG
72 29 50 71 funcf1 φ1stG:BBaseS
73 72 19 ffvelcdmd φ1stGPBaseS
74 73 58 eleqtrrd φ1stGPU
75 74 adantr φa1stYXONatSF1stGPU
76 28 43 nat1st2nd φa1stYXONatSFa1st1stYX2nd1stYXONatS1stF2ndF
77 eqid HomS=HomS
78 28 76 29 77 46 natcl φa1stYXONatSFaP1st1stYXPHomS1stFP
79 5 49 77 62 69 elsetchom φa1stYXONatSFaP1st1stYXPHomS1stFPaP:1st1stYXP1stFP
80 78 79 mpbid φa1stYXONatSFaP:1st1stYXP1stFP
81 28 20 nat1st2nd φA1stF2ndFONatS1stG2ndG
82 28 81 29 77 19 natcl φAP1stFPHomS1stGP
83 5 36 77 68 74 elsetchom φAP1stFPHomS1stGPAP:1stFP1stGP
84 82 83 mpbid φAP:1stFP1stGP
85 84 adantr φa1stYXONatSFAP:1stFP1stGP
86 5 49 30 62 69 75 80 85 setcco φa1stYXONatSFAP1st1stYXP1stFPcompS1stGPaP=APaP
87 48 86 eqtrd φa1stYXONatSFA1stYXFcompQGaP=APaP
88 87 oveq1d φa1stYXONatSFA1stYXFcompQGaP1st1stYPP1st1stYXPcompS1stGPP2ndYXKP=APaP1st1stYPP1st1stYXPcompS1stGPP2ndYXKP
89 53 19 ffvelcdmd φ1stYPOFuncS
90 1st2ndbr RelOFuncS1stYPOFuncS1st1stYPOFuncS2nd1stYP
91 51 89 90 sylancr φ1st1stYPOFuncS2nd1stYP
92 29 50 91 funcf1 φ1st1stYP:BBaseS
93 92 19 ffvelcdmd φ1st1stYPPBaseS
94 93 58 eleqtrrd φ1st1stYPPU
95 94 adantr φa1stYXONatSF1st1stYPPU
96 28 41 nat1st2nd φP2ndYXK1st1stYP2nd1stYPONatS1st1stYX2nd1stYX
97 28 96 29 77 19 natcl φP2ndYXKP1st1stYPPHomS1st1stYXP
98 5 36 77 94 61 elsetchom φP2ndYXKP1st1stYPPHomS1st1stYXPP2ndYXKP:1st1stYPP1st1stYXP
99 97 98 mpbid φP2ndYXKP:1st1stYPP1st1stYXP
100 99 adantr φa1stYXONatSFP2ndYXKP:1st1stYPP1st1stYXP
101 fco AP:1stFP1stGPaP:1st1stYXP1stFPAPaP:1st1stYXP1stGP
102 85 80 101 syl2anc φa1stYXONatSFAPaP:1st1stYXP1stGP
103 5 49 30 95 62 75 100 102 setcco φa1stYXONatSFAPaP1st1stYPP1st1stYXPcompS1stGPP2ndYXKP=APaPP2ndYXKP
104 47 88 103 3eqtrd φa1stYXONatSFA1stYXFcompQGa1stYP1stYXcompQGP2ndYXKP=APaPP2ndYXKP
105 104 fveq1d φa1stYXONatSFA1stYXFcompQGa1stYP1stYXcompQGP2ndYXKP1˙P=APaPP2ndYXKP1˙P
106 2 32 3 12 19 catidcl φ1˙PPHomCP
107 1 2 12 19 32 19 yon11 φ1st1stYPP=PHomCP
108 106 107 eleqtrrd φ1˙P1st1stYPP
109 108 adantr φa1stYXONatSF1˙P1st1stYPP
110 fvco3 P2ndYXKP:1st1stYPP1st1stYXP1˙P1st1stYPPAPaPP2ndYXKP1˙P=APaPP2ndYXKP1˙P
111 100 109 110 syl2anc φa1stYXONatSFAPaPP2ndYXKP1˙P=APaPP2ndYXKP1˙P
112 100 109 ffvelcdmd φa1stYXONatSFP2ndYXKP1˙P1st1stYXP
113 fvco3 aP:1st1stYXP1stFPP2ndYXKP1˙P1st1stYXPAPaPP2ndYXKP1˙P=APaPP2ndYXKP1˙P
114 80 112 113 syl2anc φa1stYXONatSFAPaPP2ndYXKP1˙P=APaPP2ndYXKP1˙P
115 12 adantr φa1stYXONatSFCCat
116 17 adantr φa1stYXONatSFXB
117 eqid compC=compC
118 21 adantr φa1stYXONatSFKPHomCX
119 106 adantr φa1stYXONatSF1˙PPHomCP
120 1 2 115 46 32 116 117 46 118 119 yon2 φa1stYXONatSFP2ndYXKP1˙P=KPPcompCX1˙P
121 2 32 3 115 46 117 116 118 catrid φa1stYXONatSFKPPcompCX1˙P=K
122 120 121 eqtrd φa1stYXONatSFP2ndYXKP1˙P=K
123 122 fveq2d φa1stYXONatSFaPP2ndYXKP1˙P=aPK
124 eqid HomO=HomO
125 29 124 77 56 17 19 funcf2 φX2nd1stYXP:XHomOP1st1stYXXHomS1st1stYXP
126 32 4 oppchom XHomOP=PHomCX
127 21 126 eleqtrrdi φKXHomOP
128 125 127 ffvelcdmd φX2nd1stYXPK1st1stYXXHomS1st1stYXP
129 60 17 ffvelcdmd φ1st1stYXXU
130 5 36 77 129 61 elsetchom φX2nd1stYXPK1st1stYXXHomS1st1stYXPX2nd1stYXPK:1st1stYXX1st1stYXP
131 128 130 mpbid φX2nd1stYXPK:1st1stYXX1st1stYXP
132 131 adantr φa1stYXONatSFX2nd1stYXPK:1st1stYXX1st1stYXP
133 2 32 3 12 17 catidcl φ1˙XXHomCX
134 1 2 12 17 32 17 yon11 φ1st1stYXX=XHomCX
135 133 134 eleqtrrd φ1˙X1st1stYXX
136 135 adantr φa1stYXONatSF1˙X1st1stYXX
137 fvco3 X2nd1stYXPK:1st1stYXX1st1stYXP1˙X1st1stYXXaPX2nd1stYXPK1˙X=aPX2nd1stYXPK1˙X
138 132 136 137 syl2anc φa1stYXONatSFaPX2nd1stYXPK1˙X=aPX2nd1stYXPK1˙X
139 127 adantr φa1stYXONatSFKXHomOP
140 28 76 29 124 30 116 46 139 nati φa1stYXONatSFaP1st1stYXX1st1stYXPcompS1stFPX2nd1stYXPK=X2ndFPK1st1stYXX1stFXcompS1stFPaX
141 129 adantr φa1stYXONatSF1st1stYXXU
142 5 49 30 141 62 69 132 80 setcco φa1stYXONatSFaP1st1stYXX1st1stYXPcompS1stFPX2nd1stYXPK=aPX2nd1stYXPK
143 67 17 ffvelcdmd φ1stFXU
144 143 adantr φa1stYXONatSF1stFXU
145 28 76 29 77 116 natcl φa1stYXONatSFaX1st1stYXXHomS1stFX
146 5 49 77 141 144 elsetchom φa1stYXONatSFaX1st1stYXXHomS1stFXaX:1st1stYXX1stFX
147 145 146 mpbid φa1stYXONatSFaX:1st1stYXX1stFX
148 29 124 77 64 17 19 funcf2 φX2ndFP:XHomOP1stFXHomS1stFP
149 148 127 ffvelcdmd φX2ndFPK1stFXHomS1stFP
150 5 36 77 143 68 elsetchom φX2ndFPK1stFXHomS1stFPX2ndFPK:1stFX1stFP
151 149 150 mpbid φX2ndFPK:1stFX1stFP
152 151 adantr φa1stYXONatSFX2ndFPK:1stFX1stFP
153 5 49 30 141 144 69 147 152 setcco φa1stYXONatSFX2ndFPK1st1stYXX1stFXcompS1stFPaX=X2ndFPKaX
154 140 142 153 3eqtr3d φa1stYXONatSFaPX2nd1stYXPK=X2ndFPKaX
155 154 fveq1d φa1stYXONatSFaPX2nd1stYXPK1˙X=X2ndFPKaX1˙X
156 133 adantr φa1stYXONatSF1˙XXHomCX
157 1 2 115 116 32 116 117 46 118 156 yon12 φa1stYXONatSFX2nd1stYXPK1˙X=1˙XPXcompCXK
158 2 32 3 115 46 117 116 118 catlid φa1stYXONatSF1˙XPXcompCXK=K
159 157 158 eqtrd φa1stYXONatSFX2nd1stYXPK1˙X=K
160 159 fveq2d φa1stYXONatSFaPX2nd1stYXPK1˙X=aPK
161 138 155 160 3eqtr3d φa1stYXONatSFX2ndFPKaX1˙X=aPK
162 fvco3 aX:1st1stYXX1stFX1˙X1st1stYXXX2ndFPKaX1˙X=X2ndFPKaX1˙X
163 147 136 162 syl2anc φa1stYXONatSFX2ndFPKaX1˙X=X2ndFPKaX1˙X
164 123 161 163 3eqtr2d φa1stYXONatSFaPP2ndYXKP1˙P=X2ndFPKaX1˙X
165 164 fveq2d φa1stYXONatSFAPaPP2ndYXKP1˙P=APX2ndFPKaX1˙X
166 114 165 eqtrd φa1stYXONatSFAPaPP2ndYXKP1˙P=APX2ndFPKaX1˙X
167 105 111 166 3eqtrd φa1stYXONatSFA1stYXFcompQGa1stYP1stYXcompQGP2ndYXKP1˙P=APX2ndFPKaX1˙X
168 167 mpteq2dva φa1stYXONatSFA1stYXFcompQGa1stYP1stYXcompQGP2ndYXKP1˙P=a1stYXONatSFAPX2ndFPKaX1˙X
169 27 168 eqtrid φb1stYXONatSFA1stYXFcompQGb1stYP1stYXcompQGP2ndYXKP1˙P=a1stYXONatSFAPX2ndFPKaX1˙X
170 eqid Q×cO=Q×cO
171 170 52 29 xpcbas OFuncS×B=BaseQ×cO
172 eqid HomQ×cO=HomQ×cO
173 eqid HomT=HomT
174 relfunc RelQ×cOFuncT
175 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 yonedalem1 φZQ×cOFuncTEQ×cOFuncT
176 175 simpld φZQ×cOFuncT
177 1st2ndbr RelQ×cOFuncTZQ×cOFuncT1stZQ×cOFuncT2ndZ
178 174 176 177 sylancr φ1stZQ×cOFuncT2ndZ
179 16 17 opelxpd φFXOFuncS×B
180 18 19 opelxpd φGPOFuncS×B
181 171 172 173 178 179 180 funcf2 φFX2ndZGP:FXHomQ×cOGP1stZFXHomT1stZGP
182 170 52 29 33 124 16 17 18 19 172 xpchom2 φFXHomQ×cOGP=FONatSG×XHomOP
183 126 xpeq2i FONatSG×XHomOP=FONatSG×PHomCX
184 182 183 eqtrdi φFXHomQ×cOGP=FONatSG×PHomCX
185 df-ov F1stZX=1stZFX
186 df-ov G1stZP=1stZGP
187 185 186 oveq12i F1stZXHomTG1stZP=1stZFXHomT1stZGP
188 187 eqcomi 1stZFXHomT1stZGP=F1stZXHomTG1stZP
189 188 a1i φ1stZFXHomT1stZGP=F1stZXHomTG1stZP
190 184 189 feq23d φFX2ndZGP:FXHomQ×cOGP1stZFXHomT1stZGPFX2ndZGP:FONatSG×PHomCXF1stZXHomTG1stZP
191 181 190 mpbid φFX2ndZGP:FONatSG×PHomCXF1stZXHomTG1stZP
192 191 20 21 fovcdmd φAFX2ndZGPKF1stZXHomTG1stZP
193 eqid BaseT=BaseT
194 171 193 178 funcf1 φ1stZ:OFuncS×BBaseT
195 194 16 17 fovcdmd φF1stZXBaseT
196 6 13 setcbas φV=BaseT
197 195 196 eleqtrrd φF1stZXV
198 194 18 19 fovcdmd φG1stZPBaseT
199 198 196 eleqtrrd φG1stZPV
200 6 13 173 197 199 elsetchom φAFX2ndZGPKF1stZXHomTG1stZPAFX2ndZGPK:F1stZXG1stZP
201 192 200 mpbid φAFX2ndZGPK:F1stZXG1stZP
202 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 yonedalem22 φAFX2ndZGPK=P2ndYXK1stYXF2ndH1stYPGA
203 4 oppccat CCatOCat
204 12 203 syl φOCat
205 5 setccat UVSCat
206 36 205 syl φSCat
207 7 204 206 fuccat φQCat
208 8 207 52 33 54 16 89 18 31 41 20 hof2val φP2ndYXK1stYXF2ndH1stYPGA=b1stYXONatSFA1stYXFcompQGb1stYP1stYXcompQGP2ndYXK
209 202 208 eqtrd φAFX2ndZGPK=b1stYXONatSFA1stYXFcompQGb1stYP1stYXcompQGP2ndYXK
210 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 yonedalem21 φF1stZX=1stYXONatSF
211 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 19 yonedalem21 φG1stZP=1stYPONatSG
212 209 210 211 feq123d φAFX2ndZGPK:F1stZXG1stZPb1stYXONatSFA1stYXFcompQGb1stYP1stYXcompQGP2ndYXK:1stYXONatSF1stYPONatSG
213 201 212 mpbid φb1stYXONatSFA1stYXFcompQGb1stYP1stYXcompQGP2ndYXK:1stYXONatSF1stYPONatSG
214 eqid b1stYXONatSFA1stYXFcompQGb1stYP1stYXcompQGP2ndYXK=b1stYXONatSFA1stYXFcompQGb1stYP1stYXcompQGP2ndYXK
215 214 fmpt b1stYXONatSFA1stYXFcompQGb1stYP1stYXcompQGP2ndYXK1stYPONatSGb1stYXONatSFA1stYXFcompQGb1stYP1stYXcompQGP2ndYXK:1stYXONatSF1stYPONatSG
216 213 215 sylibr φb1stYXONatSFA1stYXFcompQGb1stYP1stYXcompQGP2ndYXK1stYPONatSG
217 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 19 22 yonedalem3a φGMP=a1stYPONatSGaP1˙PGMP:G1stZPG1stEP
218 217 simpld φGMP=a1stYPONatSGaP1˙P
219 fveq1 a=A1stYXFcompQGb1stYP1stYXcompQGP2ndYXKaP=A1stYXFcompQGb1stYP1stYXcompQGP2ndYXKP
220 219 fveq1d a=A1stYXFcompQGb1stYP1stYXcompQGP2ndYXKaP1˙P=A1stYXFcompQGb1stYP1stYXcompQGP2ndYXKP1˙P
221 216 209 218 220 fmptcof φGMPAFX2ndZGPK=b1stYXONatSFA1stYXFcompQGb1stYP1stYXcompQGP2ndYXKP1˙P
222 eqid FX2ndEGP=FX2ndEGP
223 10 204 206 29 124 30 28 16 18 17 19 222 20 127 evlf2val φAFX2ndEGPK=AP1stFX1stFPcompS1stGPX2ndFPK
224 5 36 30 143 68 74 151 84 setcco φAP1stFX1stFPcompS1stGPX2ndFPK=APX2ndFPK
225 223 224 eqtrd φAFX2ndEGPK=APX2ndFPK
226 225 coeq1d φAFX2ndEGPKFMX=APX2ndFPKFMX
227 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 22 yonedalem3a φFMX=a1stYXONatSFaX1˙XFMX:F1stZXF1stEX
228 227 simprd φFMX:F1stZXF1stEX
229 227 simpld φFMX=a1stYXONatSFaX1˙X
230 10 204 206 29 16 17 evlf1 φF1stEX=1stFX
231 229 210 230 feq123d φFMX:F1stZXF1stEXa1stYXONatSFaX1˙X:1stYXONatSF1stFX
232 228 231 mpbid φa1stYXONatSFaX1˙X:1stYXONatSF1stFX
233 eqid a1stYXONatSFaX1˙X=a1stYXONatSFaX1˙X
234 233 fmpt a1stYXONatSFaX1˙X1stFXa1stYXONatSFaX1˙X:1stYXONatSF1stFX
235 232 234 sylibr φa1stYXONatSFaX1˙X1stFX
236 fcompt AP:1stFP1stGPX2ndFPK:1stFX1stFPAPX2ndFPK=y1stFXAPX2ndFPKy
237 84 151 236 syl2anc φAPX2ndFPK=y1stFXAPX2ndFPKy
238 2fveq3 y=aX1˙XAPX2ndFPKy=APX2ndFPKaX1˙X
239 235 229 237 238 fmptcof φAPX2ndFPKFMX=a1stYXONatSFAPX2ndFPKaX1˙X
240 226 239 eqtrd φAFX2ndEGPKFMX=a1stYXONatSFAPX2ndFPKaX1˙X
241 169 221 240 3eqtr4d φGMPAFX2ndZGPK=AFX2ndEGPKFMX
242 eqid compT=compT
243 175 simprd φEQ×cOFuncT
244 1st2ndbr RelQ×cOFuncTEQ×cOFuncT1stEQ×cOFuncT2ndE
245 174 243 244 sylancr φ1stEQ×cOFuncT2ndE
246 171 193 245 funcf1 φ1stE:OFuncS×BBaseT
247 246 18 19 fovcdmd φG1stEPBaseT
248 247 196 eleqtrrd φG1stEPV
249 217 simprd φGMP:G1stZPG1stEP
250 6 13 242 197 199 248 201 249 setcco φGMPF1stZXG1stZPcompTG1stEPAFX2ndZGPK=GMPAFX2ndZGPK
251 246 16 17 fovcdmd φF1stEXBaseT
252 251 196 eleqtrrd φF1stEXV
253 171 172 173 245 179 180 funcf2 φFX2ndEGP:FXHomQ×cOGP1stEFXHomT1stEGP
254 df-ov F1stEX=1stEFX
255 df-ov G1stEP=1stEGP
256 254 255 oveq12i F1stEXHomTG1stEP=1stEFXHomT1stEGP
257 256 eqcomi 1stEFXHomT1stEGP=F1stEXHomTG1stEP
258 257 a1i φ1stEFXHomT1stEGP=F1stEXHomTG1stEP
259 184 258 feq23d φFX2ndEGP:FXHomQ×cOGP1stEFXHomT1stEGPFX2ndEGP:FONatSG×PHomCXF1stEXHomTG1stEP
260 253 259 mpbid φFX2ndEGP:FONatSG×PHomCXF1stEXHomTG1stEP
261 260 20 21 fovcdmd φAFX2ndEGPKF1stEXHomTG1stEP
262 6 13 173 252 248 elsetchom φAFX2ndEGPKF1stEXHomTG1stEPAFX2ndEGPK:F1stEXG1stEP
263 261 262 mpbid φAFX2ndEGPK:F1stEXG1stEP
264 6 13 242 197 252 248 228 263 setcco φAFX2ndEGPKF1stZXF1stEXcompTG1stEPFMX=AFX2ndEGPKFMX
265 241 250 264 3eqtr4d φGMPF1stZXG1stZPcompTG1stEPAFX2ndZGPK=AFX2ndEGPKF1stZXF1stEXcompTG1stEPFMX