Metamath Proof Explorer


Theorem yonedalem3b

Description: Lemma for yoneda . (Contributed by Mario Carneiro, 29-Jan-2017)

Ref Expression
Hypotheses yoneda.y Y = Yon C
yoneda.b B = Base C
yoneda.1 1 ˙ = Id C
yoneda.o O = oppCat C
yoneda.s S = SetCat U
yoneda.t T = SetCat V
yoneda.q Q = O FuncCat S
yoneda.h H = Hom F Q
yoneda.r R = Q × c O FuncCat T
yoneda.e E = O eval F S
yoneda.z Z = H func 1 st Y tpos 2 nd Y func Q 2 nd F O ⟨,⟩ F Q 1 st F O
yoneda.c φ C Cat
yoneda.w φ V W
yoneda.u φ ran Hom 𝑓 C U
yoneda.v φ ran Hom 𝑓 Q U V
yonedalem21.f φ F O Func S
yonedalem21.x φ X B
yonedalem22.g φ G O Func S
yonedalem22.p φ P B
yonedalem22.a φ A F O Nat S G
yonedalem22.k φ K P Hom C X
yonedalem3.m M = f O Func S , x B a 1 st Y x O Nat S f a x 1 ˙ x
Assertion yonedalem3b φ G M P F 1 st Z X G 1 st Z P comp T G 1 st E P A F X 2 nd Z G P K = A F X 2 nd E G P K F 1 st Z X F 1 st E X comp T G 1 st E P F M X

Proof

Step Hyp Ref Expression
1 yoneda.y Y = Yon C
2 yoneda.b B = Base C
3 yoneda.1 1 ˙ = Id C
4 yoneda.o O = oppCat C
5 yoneda.s S = SetCat U
6 yoneda.t T = SetCat V
7 yoneda.q Q = O FuncCat S
8 yoneda.h H = Hom F Q
9 yoneda.r R = Q × c O FuncCat T
10 yoneda.e E = O eval F S
11 yoneda.z Z = H func 1 st Y tpos 2 nd Y func Q 2 nd F O ⟨,⟩ F Q 1 st F O
12 yoneda.c φ C Cat
13 yoneda.w φ V W
14 yoneda.u φ ran Hom 𝑓 C U
15 yoneda.v φ ran Hom 𝑓 Q U V
16 yonedalem21.f φ F O Func S
17 yonedalem21.x φ X B
18 yonedalem22.g φ G O Func S
19 yonedalem22.p φ P B
20 yonedalem22.a φ A F O Nat S G
21 yonedalem22.k φ K P Hom C X
22 yonedalem3.m M = f O Func S , x B a 1 st Y x O Nat S f a x 1 ˙ x
23 oveq2 b = a A 1 st Y X F comp Q G b = A 1 st Y X F comp Q G a
24 23 oveq1d b = a A 1 st Y X F comp Q G b 1 st Y P 1 st Y X comp Q G P 2 nd Y X K = A 1 st Y X F comp Q G a 1 st Y P 1 st Y X comp Q G P 2 nd Y X K
25 24 fveq1d b = a A 1 st Y X F comp Q G b 1 st Y P 1 st Y X comp Q G P 2 nd Y X K P = A 1 st Y X F comp Q G a 1 st Y P 1 st Y X comp Q G P 2 nd Y X K P
26 25 fveq1d b = a A 1 st Y X F comp Q G b 1 st Y P 1 st Y X comp Q G P 2 nd Y X K P 1 ˙ P = A 1 st Y X F comp Q G a 1 st Y P 1 st Y X comp Q G P 2 nd Y X K P 1 ˙ P
27 26 cbvmptv b 1 st Y X O Nat S F A 1 st Y X F comp Q G b 1 st Y P 1 st Y X comp Q G P 2 nd Y X K P 1 ˙ P = a 1 st Y X O Nat S F A 1 st Y X F comp Q G a 1 st Y P 1 st Y X comp Q G P 2 nd Y X K P 1 ˙ P
28 eqid O Nat S = O Nat S
29 4 2 oppcbas B = Base O
30 eqid comp S = comp S
31 eqid comp Q = comp Q
32 eqid Hom C = Hom C
33 7 28 fuchom O Nat S = Hom Q
34 relfunc Rel C Func Q
35 15 unssbd φ U V
36 13 35 ssexd φ U V
37 1 12 4 5 7 36 14 yoncl φ Y C Func Q
38 1st2ndbr Rel C Func Q Y C Func Q 1 st Y C Func Q 2 nd Y
39 34 37 38 sylancr φ 1 st Y C Func Q 2 nd Y
40 2 32 33 39 19 17 funcf2 φ P 2 nd Y X : P Hom C X 1 st Y P O Nat S 1 st Y X
41 40 21 ffvelrnd φ P 2 nd Y X K 1 st Y P O Nat S 1 st Y X
42 41 adantr φ a 1 st Y X O Nat S F P 2 nd Y X K 1 st Y P O Nat S 1 st Y X
43 simpr φ a 1 st Y X O Nat S F a 1 st Y X O Nat S F
44 20 adantr φ a 1 st Y X O Nat S F A F O Nat S G
45 7 28 31 43 44 fuccocl φ a 1 st Y X O Nat S F A 1 st Y X F comp Q G a 1 st Y X O Nat S G
46 19 adantr φ a 1 st Y X O Nat S F P B
47 7 28 29 30 31 42 45 46 fuccoval φ a 1 st Y X O Nat S F A 1 st Y X F comp Q G a 1 st Y P 1 st Y X comp Q G P 2 nd Y X K P = A 1 st Y X F comp Q G a P 1 st 1 st Y P P 1 st 1 st Y X P comp S 1 st G P P 2 nd Y X K P
48 7 28 29 30 31 43 44 46 fuccoval φ a 1 st Y X O Nat S F A 1 st Y X F comp Q G a P = A P 1 st 1 st Y X P 1 st F P comp S 1 st G P a P
49 36 adantr φ a 1 st Y X O Nat S F U V
50 eqid Base S = Base S
51 relfunc Rel O Func S
52 7 fucbas O Func S = Base Q
53 2 52 39 funcf1 φ 1 st Y : B O Func S
54 53 17 ffvelrnd φ 1 st Y X O Func S
55 1st2ndbr Rel O Func S 1 st Y X O Func S 1 st 1 st Y X O Func S 2 nd 1 st Y X
56 51 54 55 sylancr φ 1 st 1 st Y X O Func S 2 nd 1 st Y X
57 29 50 56 funcf1 φ 1 st 1 st Y X : B Base S
58 5 36 setcbas φ U = Base S
59 58 feq3d φ 1 st 1 st Y X : B U 1 st 1 st Y X : B Base S
60 57 59 mpbird φ 1 st 1 st Y X : B U
61 60 19 ffvelrnd φ 1 st 1 st Y X P U
62 61 adantr φ a 1 st Y X O Nat S F 1 st 1 st Y X P U
63 1st2ndbr Rel O Func S F O Func S 1 st F O Func S 2 nd F
64 51 16 63 sylancr φ 1 st F O Func S 2 nd F
65 29 50 64 funcf1 φ 1 st F : B Base S
66 58 feq3d φ 1 st F : B U 1 st F : B Base S
67 65 66 mpbird φ 1 st F : B U
68 67 19 ffvelrnd φ 1 st F P U
69 68 adantr φ a 1 st Y X O Nat S F 1 st F P U
70 1st2ndbr Rel O Func S G O Func S 1 st G O Func S 2 nd G
71 51 18 70 sylancr φ 1 st G O Func S 2 nd G
72 29 50 71 funcf1 φ 1 st G : B Base S
73 72 19 ffvelrnd φ 1 st G P Base S
74 73 58 eleqtrrd φ 1 st G P U
75 74 adantr φ a 1 st Y X O Nat S F 1 st G P U
76 28 43 nat1st2nd φ a 1 st Y X O Nat S F a 1 st 1 st Y X 2 nd 1 st Y X O Nat S 1 st F 2 nd F
77 eqid Hom S = Hom S
78 28 76 29 77 46 natcl φ a 1 st Y X O Nat S F a P 1 st 1 st Y X P Hom S 1 st F P
79 5 49 77 62 69 elsetchom φ a 1 st Y X O Nat S F a P 1 st 1 st Y X P Hom S 1 st F P a P : 1 st 1 st Y X P 1 st F P
80 78 79 mpbid φ a 1 st Y X O Nat S F a P : 1 st 1 st Y X P 1 st F P
81 28 20 nat1st2nd φ A 1 st F 2 nd F O Nat S 1 st G 2 nd G
82 28 81 29 77 19 natcl φ A P 1 st F P Hom S 1 st G P
83 5 36 77 68 74 elsetchom φ A P 1 st F P Hom S 1 st G P A P : 1 st F P 1 st G P
84 82 83 mpbid φ A P : 1 st F P 1 st G P
85 84 adantr φ a 1 st Y X O Nat S F A P : 1 st F P 1 st G P
86 5 49 30 62 69 75 80 85 setcco φ a 1 st Y X O Nat S F A P 1 st 1 st Y X P 1 st F P comp S 1 st G P a P = A P a P
87 48 86 eqtrd φ a 1 st Y X O Nat S F A 1 st Y X F comp Q G a P = A P a P
88 87 oveq1d φ a 1 st Y X O Nat S F A 1 st Y X F comp Q G a P 1 st 1 st Y P P 1 st 1 st Y X P comp S 1 st G P P 2 nd Y X K P = A P a P 1 st 1 st Y P P 1 st 1 st Y X P comp S 1 st G P P 2 nd Y X K P
89 53 19 ffvelrnd φ 1 st Y P O Func S
90 1st2ndbr Rel O Func S 1 st Y P O Func S 1 st 1 st Y P O Func S 2 nd 1 st Y P
91 51 89 90 sylancr φ 1 st 1 st Y P O Func S 2 nd 1 st Y P
92 29 50 91 funcf1 φ 1 st 1 st Y P : B Base S
93 92 19 ffvelrnd φ 1 st 1 st Y P P Base S
94 93 58 eleqtrrd φ 1 st 1 st Y P P U
95 94 adantr φ a 1 st Y X O Nat S F 1 st 1 st Y P P U
96 28 41 nat1st2nd φ P 2 nd Y X K 1 st 1 st Y P 2 nd 1 st Y P O Nat S 1 st 1 st Y X 2 nd 1 st Y X
97 28 96 29 77 19 natcl φ P 2 nd Y X K P 1 st 1 st Y P P Hom S 1 st 1 st Y X P
98 5 36 77 94 61 elsetchom φ P 2 nd Y X K P 1 st 1 st Y P P Hom S 1 st 1 st Y X P P 2 nd Y X K P : 1 st 1 st Y P P 1 st 1 st Y X P
99 97 98 mpbid φ P 2 nd Y X K P : 1 st 1 st Y P P 1 st 1 st Y X P
100 99 adantr φ a 1 st Y X O Nat S F P 2 nd Y X K P : 1 st 1 st Y P P 1 st 1 st Y X P
101 fco A P : 1 st F P 1 st G P a P : 1 st 1 st Y X P 1 st F P A P a P : 1 st 1 st Y X P 1 st G P
102 85 80 101 syl2anc φ a 1 st Y X O Nat S F A P a P : 1 st 1 st Y X P 1 st G P
103 5 49 30 95 62 75 100 102 setcco φ a 1 st Y X O Nat S F A P a P 1 st 1 st Y P P 1 st 1 st Y X P comp S 1 st G P P 2 nd Y X K P = A P a P P 2 nd Y X K P
104 47 88 103 3eqtrd φ a 1 st Y X O Nat S F A 1 st Y X F comp Q G a 1 st Y P 1 st Y X comp Q G P 2 nd Y X K P = A P a P P 2 nd Y X K P
105 104 fveq1d φ a 1 st Y X O Nat S F A 1 st Y X F comp Q G a 1 st Y P 1 st Y X comp Q G P 2 nd Y X K P 1 ˙ P = A P a P P 2 nd Y X K P 1 ˙ P
106 2 32 3 12 19 catidcl φ 1 ˙ P P Hom C P
107 1 2 12 19 32 19 yon11 φ 1 st 1 st Y P P = P Hom C P
108 106 107 eleqtrrd φ 1 ˙ P 1 st 1 st Y P P
109 108 adantr φ a 1 st Y X O Nat S F 1 ˙ P 1 st 1 st Y P P
110 fvco3 P 2 nd Y X K P : 1 st 1 st Y P P 1 st 1 st Y X P 1 ˙ P 1 st 1 st Y P P A P a P P 2 nd Y X K P 1 ˙ P = A P a P P 2 nd Y X K P 1 ˙ P
111 100 109 110 syl2anc φ a 1 st Y X O Nat S F A P a P P 2 nd Y X K P 1 ˙ P = A P a P P 2 nd Y X K P 1 ˙ P
112 100 109 ffvelrnd φ a 1 st Y X O Nat S F P 2 nd Y X K P 1 ˙ P 1 st 1 st Y X P
113 fvco3 a P : 1 st 1 st Y X P 1 st F P P 2 nd Y X K P 1 ˙ P 1 st 1 st Y X P A P a P P 2 nd Y X K P 1 ˙ P = A P a P P 2 nd Y X K P 1 ˙ P
114 80 112 113 syl2anc φ a 1 st Y X O Nat S F A P a P P 2 nd Y X K P 1 ˙ P = A P a P P 2 nd Y X K P 1 ˙ P
115 12 adantr φ a 1 st Y X O Nat S F C Cat
116 17 adantr φ a 1 st Y X O Nat S F X B
117 eqid comp C = comp C
118 21 adantr φ a 1 st Y X O Nat S F K P Hom C X
119 106 adantr φ a 1 st Y X O Nat S F 1 ˙ P P Hom C P
120 1 2 115 46 32 116 117 46 118 119 yon2 φ a 1 st Y X O Nat S F P 2 nd Y X K P 1 ˙ P = K P P comp C X 1 ˙ P
121 2 32 3 115 46 117 116 118 catrid φ a 1 st Y X O Nat S F K P P comp C X 1 ˙ P = K
122 120 121 eqtrd φ a 1 st Y X O Nat S F P 2 nd Y X K P 1 ˙ P = K
123 122 fveq2d φ a 1 st Y X O Nat S F a P P 2 nd Y X K P 1 ˙ P = a P K
124 eqid Hom O = Hom O
125 29 124 77 56 17 19 funcf2 φ X 2 nd 1 st Y X P : X Hom O P 1 st 1 st Y X X Hom S 1 st 1 st Y X P
126 32 4 oppchom X Hom O P = P Hom C X
127 21 126 eleqtrrdi φ K X Hom O P
128 125 127 ffvelrnd φ X 2 nd 1 st Y X P K 1 st 1 st Y X X Hom S 1 st 1 st Y X P
129 60 17 ffvelrnd φ 1 st 1 st Y X X U
130 5 36 77 129 61 elsetchom φ X 2 nd 1 st Y X P K 1 st 1 st Y X X Hom S 1 st 1 st Y X P X 2 nd 1 st Y X P K : 1 st 1 st Y X X 1 st 1 st Y X P
131 128 130 mpbid φ X 2 nd 1 st Y X P K : 1 st 1 st Y X X 1 st 1 st Y X P
132 131 adantr φ a 1 st Y X O Nat S F X 2 nd 1 st Y X P K : 1 st 1 st Y X X 1 st 1 st Y X P
133 2 32 3 12 17 catidcl φ 1 ˙ X X Hom C X
134 1 2 12 17 32 17 yon11 φ 1 st 1 st Y X X = X Hom C X
135 133 134 eleqtrrd φ 1 ˙ X 1 st 1 st Y X X
136 135 adantr φ a 1 st Y X O Nat S F 1 ˙ X 1 st 1 st Y X X
137 fvco3 X 2 nd 1 st Y X P K : 1 st 1 st Y X X 1 st 1 st Y X P 1 ˙ X 1 st 1 st Y X X a P X 2 nd 1 st Y X P K 1 ˙ X = a P X 2 nd 1 st Y X P K 1 ˙ X
138 132 136 137 syl2anc φ a 1 st Y X O Nat S F a P X 2 nd 1 st Y X P K 1 ˙ X = a P X 2 nd 1 st Y X P K 1 ˙ X
139 127 adantr φ a 1 st Y X O Nat S F K X Hom O P
140 28 76 29 124 30 116 46 139 nati φ a 1 st Y X O Nat S F a P 1 st 1 st Y X X 1 st 1 st Y X P comp S 1 st F P X 2 nd 1 st Y X P K = X 2 nd F P K 1 st 1 st Y X X 1 st F X comp S 1 st F P a X
141 129 adantr φ a 1 st Y X O Nat S F 1 st 1 st Y X X U
142 5 49 30 141 62 69 132 80 setcco φ a 1 st Y X O Nat S F a P 1 st 1 st Y X X 1 st 1 st Y X P comp S 1 st F P X 2 nd 1 st Y X P K = a P X 2 nd 1 st Y X P K
143 67 17 ffvelrnd φ 1 st F X U
144 143 adantr φ a 1 st Y X O Nat S F 1 st F X U
145 28 76 29 77 116 natcl φ a 1 st Y X O Nat S F a X 1 st 1 st Y X X Hom S 1 st F X
146 5 49 77 141 144 elsetchom φ a 1 st Y X O Nat S F a X 1 st 1 st Y X X Hom S 1 st F X a X : 1 st 1 st Y X X 1 st F X
147 145 146 mpbid φ a 1 st Y X O Nat S F a X : 1 st 1 st Y X X 1 st F X
148 29 124 77 64 17 19 funcf2 φ X 2 nd F P : X Hom O P 1 st F X Hom S 1 st F P
149 148 127 ffvelrnd φ X 2 nd F P K 1 st F X Hom S 1 st F P
150 5 36 77 143 68 elsetchom φ X 2 nd F P K 1 st F X Hom S 1 st F P X 2 nd F P K : 1 st F X 1 st F P
151 149 150 mpbid φ X 2 nd F P K : 1 st F X 1 st F P
152 151 adantr φ a 1 st Y X O Nat S F X 2 nd F P K : 1 st F X 1 st F P
153 5 49 30 141 144 69 147 152 setcco φ a 1 st Y X O Nat S F X 2 nd F P K 1 st 1 st Y X X 1 st F X comp S 1 st F P a X = X 2 nd F P K a X
154 140 142 153 3eqtr3d φ a 1 st Y X O Nat S F a P X 2 nd 1 st Y X P K = X 2 nd F P K a X
155 154 fveq1d φ a 1 st Y X O Nat S F a P X 2 nd 1 st Y X P K 1 ˙ X = X 2 nd F P K a X 1 ˙ X
156 133 adantr φ a 1 st Y X O Nat S F 1 ˙ X X Hom C X
157 1 2 115 116 32 116 117 46 118 156 yon12 φ a 1 st Y X O Nat S F X 2 nd 1 st Y X P K 1 ˙ X = 1 ˙ X P X comp C X K
158 2 32 3 115 46 117 116 118 catlid φ a 1 st Y X O Nat S F 1 ˙ X P X comp C X K = K
159 157 158 eqtrd φ a 1 st Y X O Nat S F X 2 nd 1 st Y X P K 1 ˙ X = K
160 159 fveq2d φ a 1 st Y X O Nat S F a P X 2 nd 1 st Y X P K 1 ˙ X = a P K
161 138 155 160 3eqtr3d φ a 1 st Y X O Nat S F X 2 nd F P K a X 1 ˙ X = a P K
162 fvco3 a X : 1 st 1 st Y X X 1 st F X 1 ˙ X 1 st 1 st Y X X X 2 nd F P K a X 1 ˙ X = X 2 nd F P K a X 1 ˙ X
163 147 136 162 syl2anc φ a 1 st Y X O Nat S F X 2 nd F P K a X 1 ˙ X = X 2 nd F P K a X 1 ˙ X
164 123 161 163 3eqtr2d φ a 1 st Y X O Nat S F a P P 2 nd Y X K P 1 ˙ P = X 2 nd F P K a X 1 ˙ X
165 164 fveq2d φ a 1 st Y X O Nat S F A P a P P 2 nd Y X K P 1 ˙ P = A P X 2 nd F P K a X 1 ˙ X
166 114 165 eqtrd φ a 1 st Y X O Nat S F A P a P P 2 nd Y X K P 1 ˙ P = A P X 2 nd F P K a X 1 ˙ X
167 105 111 166 3eqtrd φ a 1 st Y X O Nat S F A 1 st Y X F comp Q G a 1 st Y P 1 st Y X comp Q G P 2 nd Y X K P 1 ˙ P = A P X 2 nd F P K a X 1 ˙ X
168 167 mpteq2dva φ a 1 st Y X O Nat S F A 1 st Y X F comp Q G a 1 st Y P 1 st Y X comp Q G P 2 nd Y X K P 1 ˙ P = a 1 st Y X O Nat S F A P X 2 nd F P K a X 1 ˙ X
169 27 168 eqtrid φ b 1 st Y X O Nat S F A 1 st Y X F comp Q G b 1 st Y P 1 st Y X comp Q G P 2 nd Y X K P 1 ˙ P = a 1 st Y X O Nat S F A P X 2 nd F P K a X 1 ˙ X
170 eqid Q × c O = Q × c O
171 170 52 29 xpcbas O Func S × B = Base Q × c O
172 eqid Hom Q × c O = Hom Q × c O
173 eqid Hom T = Hom T
174 relfunc Rel Q × c O Func T
175 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 yonedalem1 φ Z Q × c O Func T E Q × c O Func T
176 175 simpld φ Z Q × c O Func T
177 1st2ndbr Rel Q × c O Func T Z Q × c O Func T 1 st Z Q × c O Func T 2 nd Z
178 174 176 177 sylancr φ 1 st Z Q × c O Func T 2 nd Z
179 16 17 opelxpd φ F X O Func S × B
180 18 19 opelxpd φ G P O Func S × B
181 171 172 173 178 179 180 funcf2 φ F X 2 nd Z G P : F X Hom Q × c O G P 1 st Z F X Hom T 1 st Z G P
182 170 52 29 33 124 16 17 18 19 172 xpchom2 φ F X Hom Q × c O G P = F O Nat S G × X Hom O P
183 126 xpeq2i F O Nat S G × X Hom O P = F O Nat S G × P Hom C X
184 182 183 eqtrdi φ F X Hom Q × c O G P = F O Nat S G × P Hom C X
185 df-ov F 1 st Z X = 1 st Z F X
186 df-ov G 1 st Z P = 1 st Z G P
187 185 186 oveq12i F 1 st Z X Hom T G 1 st Z P = 1 st Z F X Hom T 1 st Z G P
188 187 eqcomi 1 st Z F X Hom T 1 st Z G P = F 1 st Z X Hom T G 1 st Z P
189 188 a1i φ 1 st Z F X Hom T 1 st Z G P = F 1 st Z X Hom T G 1 st Z P
190 184 189 feq23d φ F X 2 nd Z G P : F X Hom Q × c O G P 1 st Z F X Hom T 1 st Z G P F X 2 nd Z G P : F O Nat S G × P Hom C X F 1 st Z X Hom T G 1 st Z P
191 181 190 mpbid φ F X 2 nd Z G P : F O Nat S G × P Hom C X F 1 st Z X Hom T G 1 st Z P
192 191 20 21 fovrnd φ A F X 2 nd Z G P K F 1 st Z X Hom T G 1 st Z P
193 eqid Base T = Base T
194 171 193 178 funcf1 φ 1 st Z : O Func S × B Base T
195 194 16 17 fovrnd φ F 1 st Z X Base T
196 6 13 setcbas φ V = Base T
197 195 196 eleqtrrd φ F 1 st Z X V
198 194 18 19 fovrnd φ G 1 st Z P Base T
199 198 196 eleqtrrd φ G 1 st Z P V
200 6 13 173 197 199 elsetchom φ A F X 2 nd Z G P K F 1 st Z X Hom T G 1 st Z P A F X 2 nd Z G P K : F 1 st Z X G 1 st Z P
201 192 200 mpbid φ A F X 2 nd Z G P K : F 1 st Z X G 1 st Z P
202 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 yonedalem22 φ A F X 2 nd Z G P K = P 2 nd Y X K 1 st Y X F 2 nd H 1 st Y P G A
203 4 oppccat C Cat O Cat
204 12 203 syl φ O Cat
205 5 setccat U V S Cat
206 36 205 syl φ S Cat
207 7 204 206 fuccat φ Q Cat
208 8 207 52 33 54 16 89 18 31 41 20 hof2val φ P 2 nd Y X K 1 st Y X F 2 nd H 1 st Y P G A = b 1 st Y X O Nat S F A 1 st Y X F comp Q G b 1 st Y P 1 st Y X comp Q G P 2 nd Y X K
209 202 208 eqtrd φ A F X 2 nd Z G P K = b 1 st Y X O Nat S F A 1 st Y X F comp Q G b 1 st Y P 1 st Y X comp Q G P 2 nd Y X K
210 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 yonedalem21 φ F 1 st Z X = 1 st Y X O Nat S F
211 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 19 yonedalem21 φ G 1 st Z P = 1 st Y P O Nat S G
212 209 210 211 feq123d φ A F X 2 nd Z G P K : F 1 st Z X G 1 st Z P b 1 st Y X O Nat S F A 1 st Y X F comp Q G b 1 st Y P 1 st Y X comp Q G P 2 nd Y X K : 1 st Y X O Nat S F 1 st Y P O Nat S G
213 201 212 mpbid φ b 1 st Y X O Nat S F A 1 st Y X F comp Q G b 1 st Y P 1 st Y X comp Q G P 2 nd Y X K : 1 st Y X O Nat S F 1 st Y P O Nat S G
214 eqid b 1 st Y X O Nat S F A 1 st Y X F comp Q G b 1 st Y P 1 st Y X comp Q G P 2 nd Y X K = b 1 st Y X O Nat S F A 1 st Y X F comp Q G b 1 st Y P 1 st Y X comp Q G P 2 nd Y X K
215 214 fmpt b 1 st Y X O Nat S F A 1 st Y X F comp Q G b 1 st Y P 1 st Y X comp Q G P 2 nd Y X K 1 st Y P O Nat S G b 1 st Y X O Nat S F A 1 st Y X F comp Q G b 1 st Y P 1 st Y X comp Q G P 2 nd Y X K : 1 st Y X O Nat S F 1 st Y P O Nat S G
216 213 215 sylibr φ b 1 st Y X O Nat S F A 1 st Y X F comp Q G b 1 st Y P 1 st Y X comp Q G P 2 nd Y X K 1 st Y P O Nat S G
217 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 19 22 yonedalem3a φ G M P = a 1 st Y P O Nat S G a P 1 ˙ P G M P : G 1 st Z P G 1 st E P
218 217 simpld φ G M P = a 1 st Y P O Nat S G a P 1 ˙ P
219 fveq1 a = A 1 st Y X F comp Q G b 1 st Y P 1 st Y X comp Q G P 2 nd Y X K a P = A 1 st Y X F comp Q G b 1 st Y P 1 st Y X comp Q G P 2 nd Y X K P
220 219 fveq1d a = A 1 st Y X F comp Q G b 1 st Y P 1 st Y X comp Q G P 2 nd Y X K a P 1 ˙ P = A 1 st Y X F comp Q G b 1 st Y P 1 st Y X comp Q G P 2 nd Y X K P 1 ˙ P
221 216 209 218 220 fmptcof φ G M P A F X 2 nd Z G P K = b 1 st Y X O Nat S F A 1 st Y X F comp Q G b 1 st Y P 1 st Y X comp Q G P 2 nd Y X K P 1 ˙ P
222 eqid F X 2 nd E G P = F X 2 nd E G P
223 10 204 206 29 124 30 28 16 18 17 19 222 20 127 evlf2val φ A F X 2 nd E G P K = A P 1 st F X 1 st F P comp S 1 st G P X 2 nd F P K
224 5 36 30 143 68 74 151 84 setcco φ A P 1 st F X 1 st F P comp S 1 st G P X 2 nd F P K = A P X 2 nd F P K
225 223 224 eqtrd φ A F X 2 nd E G P K = A P X 2 nd F P K
226 225 coeq1d φ A F X 2 nd E G P K F M X = A P X 2 nd F P K F M X
227 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 22 yonedalem3a φ F M X = a 1 st Y X O Nat S F a X 1 ˙ X F M X : F 1 st Z X F 1 st E X
228 227 simprd φ F M X : F 1 st Z X F 1 st E X
229 227 simpld φ F M X = a 1 st Y X O Nat S F a X 1 ˙ X
230 10 204 206 29 16 17 evlf1 φ F 1 st E X = 1 st F X
231 229 210 230 feq123d φ F M X : F 1 st Z X F 1 st E X a 1 st Y X O Nat S F a X 1 ˙ X : 1 st Y X O Nat S F 1 st F X
232 228 231 mpbid φ a 1 st Y X O Nat S F a X 1 ˙ X : 1 st Y X O Nat S F 1 st F X
233 eqid a 1 st Y X O Nat S F a X 1 ˙ X = a 1 st Y X O Nat S F a X 1 ˙ X
234 233 fmpt a 1 st Y X O Nat S F a X 1 ˙ X 1 st F X a 1 st Y X O Nat S F a X 1 ˙ X : 1 st Y X O Nat S F 1 st F X
235 232 234 sylibr φ a 1 st Y X O Nat S F a X 1 ˙ X 1 st F X
236 fcompt A P : 1 st F P 1 st G P X 2 nd F P K : 1 st F X 1 st F P A P X 2 nd F P K = y 1 st F X A P X 2 nd F P K y
237 84 151 236 syl2anc φ A P X 2 nd F P K = y 1 st F X A P X 2 nd F P K y
238 2fveq3 y = a X 1 ˙ X A P X 2 nd F P K y = A P X 2 nd F P K a X 1 ˙ X
239 235 229 237 238 fmptcof φ A P X 2 nd F P K F M X = a 1 st Y X O Nat S F A P X 2 nd F P K a X 1 ˙ X
240 226 239 eqtrd φ A F X 2 nd E G P K F M X = a 1 st Y X O Nat S F A P X 2 nd F P K a X 1 ˙ X
241 169 221 240 3eqtr4d φ G M P A F X 2 nd Z G P K = A F X 2 nd E G P K F M X
242 eqid comp T = comp T
243 175 simprd φ E Q × c O Func T
244 1st2ndbr Rel Q × c O Func T E Q × c O Func T 1 st E Q × c O Func T 2 nd E
245 174 243 244 sylancr φ 1 st E Q × c O Func T 2 nd E
246 171 193 245 funcf1 φ 1 st E : O Func S × B Base T
247 246 18 19 fovrnd φ G 1 st E P Base T
248 247 196 eleqtrrd φ G 1 st E P V
249 217 simprd φ G M P : G 1 st Z P G 1 st E P
250 6 13 242 197 199 248 201 249 setcco φ G M P F 1 st Z X G 1 st Z P comp T G 1 st E P A F X 2 nd Z G P K = G M P A F X 2 nd Z G P K
251 246 16 17 fovrnd φ F 1 st E X Base T
252 251 196 eleqtrrd φ F 1 st E X V
253 171 172 173 245 179 180 funcf2 φ F X 2 nd E G P : F X Hom Q × c O G P 1 st E F X Hom T 1 st E G P
254 df-ov F 1 st E X = 1 st E F X
255 df-ov G 1 st E P = 1 st E G P
256 254 255 oveq12i F 1 st E X Hom T G 1 st E P = 1 st E F X Hom T 1 st E G P
257 256 eqcomi 1 st E F X Hom T 1 st E G P = F 1 st E X Hom T G 1 st E P
258 257 a1i φ 1 st E F X Hom T 1 st E G P = F 1 st E X Hom T G 1 st E P
259 184 258 feq23d φ F X 2 nd E G P : F X Hom Q × c O G P 1 st E F X Hom T 1 st E G P F X 2 nd E G P : F O Nat S G × P Hom C X F 1 st E X Hom T G 1 st E P
260 253 259 mpbid φ F X 2 nd E G P : F O Nat S G × P Hom C X F 1 st E X Hom T G 1 st E P
261 260 20 21 fovrnd φ A F X 2 nd E G P K F 1 st E X Hom T G 1 st E P
262 6 13 173 252 248 elsetchom φ A F X 2 nd E G P K F 1 st E X Hom T G 1 st E P A F X 2 nd E G P K : F 1 st E X G 1 st E P
263 261 262 mpbid φ A F X 2 nd E G P K : F 1 st E X G 1 st E P
264 6 13 242 197 252 248 228 263 setcco φ A F X 2 nd E G P K F 1 st Z X F 1 st E X comp T G 1 st E P F M X = A F X 2 nd E G P K F M X
265 241 250 264 3eqtr4d φ G M P F 1 st Z X G 1 st Z P comp T G 1 st E P A F X 2 nd Z G P K = A F X 2 nd E G P K F 1 st Z X F 1 st E X comp T G 1 st E P F M X