Step |
Hyp |
Ref |
Expression |
1 |
|
areacirc.1 |
|- S = { <. x , y >. | ( ( x e. RR /\ y e. RR ) /\ ( ( x ^ 2 ) + ( y ^ 2 ) ) <_ ( R ^ 2 ) ) } |
2 |
|
opabssxp |
|- { <. x , y >. | ( ( x e. RR /\ y e. RR ) /\ ( ( x ^ 2 ) + ( y ^ 2 ) ) <_ ( R ^ 2 ) ) } C_ ( RR X. RR ) |
3 |
1 2
|
eqsstri |
|- S C_ ( RR X. RR ) |
4 |
3
|
a1i |
|- ( ( R e. RR /\ 0 <_ R ) -> S C_ ( RR X. RR ) ) |
5 |
1
|
areacirclem5 |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( S " { t } ) = if ( ( abs ` t ) <_ R , ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) , (/) ) ) |
6 |
|
resqcl |
|- ( R e. RR -> ( R ^ 2 ) e. RR ) |
7 |
6
|
3ad2ant1 |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( R ^ 2 ) e. RR ) |
8 |
|
resqcl |
|- ( t e. RR -> ( t ^ 2 ) e. RR ) |
9 |
8
|
3ad2ant3 |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( t ^ 2 ) e. RR ) |
10 |
7 9
|
resubcld |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( ( R ^ 2 ) - ( t ^ 2 ) ) e. RR ) |
11 |
10
|
adantr |
|- ( ( ( R e. RR /\ 0 <_ R /\ t e. RR ) /\ ( abs ` t ) <_ R ) -> ( ( R ^ 2 ) - ( t ^ 2 ) ) e. RR ) |
12 |
|
absresq |
|- ( t e. RR -> ( ( abs ` t ) ^ 2 ) = ( t ^ 2 ) ) |
13 |
12
|
3ad2ant3 |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( ( abs ` t ) ^ 2 ) = ( t ^ 2 ) ) |
14 |
13
|
breq1d |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( ( ( abs ` t ) ^ 2 ) <_ ( R ^ 2 ) <-> ( t ^ 2 ) <_ ( R ^ 2 ) ) ) |
15 |
|
recn |
|- ( t e. RR -> t e. CC ) |
16 |
15
|
abscld |
|- ( t e. RR -> ( abs ` t ) e. RR ) |
17 |
16
|
3ad2ant3 |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( abs ` t ) e. RR ) |
18 |
|
simp1 |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> R e. RR ) |
19 |
15
|
absge0d |
|- ( t e. RR -> 0 <_ ( abs ` t ) ) |
20 |
19
|
3ad2ant3 |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> 0 <_ ( abs ` t ) ) |
21 |
|
simp2 |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> 0 <_ R ) |
22 |
17 18 20 21
|
le2sqd |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( ( abs ` t ) <_ R <-> ( ( abs ` t ) ^ 2 ) <_ ( R ^ 2 ) ) ) |
23 |
7 9
|
subge0d |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( 0 <_ ( ( R ^ 2 ) - ( t ^ 2 ) ) <-> ( t ^ 2 ) <_ ( R ^ 2 ) ) ) |
24 |
14 22 23
|
3bitr4d |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( ( abs ` t ) <_ R <-> 0 <_ ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) |
25 |
24
|
biimpa |
|- ( ( ( R e. RR /\ 0 <_ R /\ t e. RR ) /\ ( abs ` t ) <_ R ) -> 0 <_ ( ( R ^ 2 ) - ( t ^ 2 ) ) ) |
26 |
11 25
|
resqrtcld |
|- ( ( ( R e. RR /\ 0 <_ R /\ t e. RR ) /\ ( abs ` t ) <_ R ) -> ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) e. RR ) |
27 |
26
|
renegcld |
|- ( ( ( R e. RR /\ 0 <_ R /\ t e. RR ) /\ ( abs ` t ) <_ R ) -> -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) e. RR ) |
28 |
|
iccmbl |
|- ( ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) e. RR /\ ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) e. RR ) -> ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) e. dom vol ) |
29 |
27 26 28
|
syl2anc |
|- ( ( ( R e. RR /\ 0 <_ R /\ t e. RR ) /\ ( abs ` t ) <_ R ) -> ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) e. dom vol ) |
30 |
|
mblvol |
|- ( ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) e. dom vol -> ( vol ` ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) = ( vol* ` ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) ) |
31 |
29 30
|
syl |
|- ( ( ( R e. RR /\ 0 <_ R /\ t e. RR ) /\ ( abs ` t ) <_ R ) -> ( vol ` ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) = ( vol* ` ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) ) |
32 |
11 25
|
sqrtge0d |
|- ( ( ( R e. RR /\ 0 <_ R /\ t e. RR ) /\ ( abs ` t ) <_ R ) -> 0 <_ ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) |
33 |
26 26 32 32
|
addge0d |
|- ( ( ( R e. RR /\ 0 <_ R /\ t e. RR ) /\ ( abs ` t ) <_ R ) -> 0 <_ ( ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) + ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) |
34 |
|
recn |
|- ( R e. RR -> R e. CC ) |
35 |
34
|
sqcld |
|- ( R e. RR -> ( R ^ 2 ) e. CC ) |
36 |
35
|
3ad2ant1 |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( R ^ 2 ) e. CC ) |
37 |
15
|
sqcld |
|- ( t e. RR -> ( t ^ 2 ) e. CC ) |
38 |
37
|
3ad2ant3 |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( t ^ 2 ) e. CC ) |
39 |
36 38
|
subcld |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( ( R ^ 2 ) - ( t ^ 2 ) ) e. CC ) |
40 |
39
|
sqrtcld |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) e. CC ) |
41 |
40
|
adantr |
|- ( ( ( R e. RR /\ 0 <_ R /\ t e. RR ) /\ ( abs ` t ) <_ R ) -> ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) e. CC ) |
42 |
41 41
|
subnegd |
|- ( ( ( R e. RR /\ 0 <_ R /\ t e. RR ) /\ ( abs ` t ) <_ R ) -> ( ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) - -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) = ( ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) + ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) |
43 |
42
|
breq2d |
|- ( ( ( R e. RR /\ 0 <_ R /\ t e. RR ) /\ ( abs ` t ) <_ R ) -> ( 0 <_ ( ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) - -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) <-> 0 <_ ( ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) + ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) ) |
44 |
26 27
|
subge0d |
|- ( ( ( R e. RR /\ 0 <_ R /\ t e. RR ) /\ ( abs ` t ) <_ R ) -> ( 0 <_ ( ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) - -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) <-> -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) <_ ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) |
45 |
43 44
|
bitr3d |
|- ( ( ( R e. RR /\ 0 <_ R /\ t e. RR ) /\ ( abs ` t ) <_ R ) -> ( 0 <_ ( ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) + ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) <-> -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) <_ ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) |
46 |
33 45
|
mpbid |
|- ( ( ( R e. RR /\ 0 <_ R /\ t e. RR ) /\ ( abs ` t ) <_ R ) -> -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) <_ ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) |
47 |
|
ovolicc |
|- ( ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) e. RR /\ ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) e. RR /\ -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) <_ ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) -> ( vol* ` ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) = ( ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) - -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) |
48 |
27 26 46 47
|
syl3anc |
|- ( ( ( R e. RR /\ 0 <_ R /\ t e. RR ) /\ ( abs ` t ) <_ R ) -> ( vol* ` ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) = ( ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) - -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) |
49 |
31 48
|
eqtrd |
|- ( ( ( R e. RR /\ 0 <_ R /\ t e. RR ) /\ ( abs ` t ) <_ R ) -> ( vol ` ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) = ( ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) - -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) |
50 |
26 27
|
resubcld |
|- ( ( ( R e. RR /\ 0 <_ R /\ t e. RR ) /\ ( abs ` t ) <_ R ) -> ( ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) - -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) e. RR ) |
51 |
49 50
|
eqeltrd |
|- ( ( ( R e. RR /\ 0 <_ R /\ t e. RR ) /\ ( abs ` t ) <_ R ) -> ( vol ` ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) e. RR ) |
52 |
|
volf |
|- vol : dom vol --> ( 0 [,] +oo ) |
53 |
|
ffn |
|- ( vol : dom vol --> ( 0 [,] +oo ) -> vol Fn dom vol ) |
54 |
|
elpreima |
|- ( vol Fn dom vol -> ( ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) e. ( `' vol " RR ) <-> ( ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) e. dom vol /\ ( vol ` ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) e. RR ) ) ) |
55 |
52 53 54
|
mp2b |
|- ( ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) e. ( `' vol " RR ) <-> ( ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) e. dom vol /\ ( vol ` ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) e. RR ) ) |
56 |
29 51 55
|
sylanbrc |
|- ( ( ( R e. RR /\ 0 <_ R /\ t e. RR ) /\ ( abs ` t ) <_ R ) -> ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) e. ( `' vol " RR ) ) |
57 |
|
0mbl |
|- (/) e. dom vol |
58 |
|
mblvol |
|- ( (/) e. dom vol -> ( vol ` (/) ) = ( vol* ` (/) ) ) |
59 |
57 58
|
ax-mp |
|- ( vol ` (/) ) = ( vol* ` (/) ) |
60 |
|
ovol0 |
|- ( vol* ` (/) ) = 0 |
61 |
59 60
|
eqtri |
|- ( vol ` (/) ) = 0 |
62 |
|
0re |
|- 0 e. RR |
63 |
61 62
|
eqeltri |
|- ( vol ` (/) ) e. RR |
64 |
|
elpreima |
|- ( vol Fn dom vol -> ( (/) e. ( `' vol " RR ) <-> ( (/) e. dom vol /\ ( vol ` (/) ) e. RR ) ) ) |
65 |
52 53 64
|
mp2b |
|- ( (/) e. ( `' vol " RR ) <-> ( (/) e. dom vol /\ ( vol ` (/) ) e. RR ) ) |
66 |
57 63 65
|
mpbir2an |
|- (/) e. ( `' vol " RR ) |
67 |
66
|
a1i |
|- ( ( ( R e. RR /\ 0 <_ R /\ t e. RR ) /\ -. ( abs ` t ) <_ R ) -> (/) e. ( `' vol " RR ) ) |
68 |
56 67
|
ifclda |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> if ( ( abs ` t ) <_ R , ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) , (/) ) e. ( `' vol " RR ) ) |
69 |
5 68
|
eqeltrd |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( S " { t } ) e. ( `' vol " RR ) ) |
70 |
69
|
3expa |
|- ( ( ( R e. RR /\ 0 <_ R ) /\ t e. RR ) -> ( S " { t } ) e. ( `' vol " RR ) ) |
71 |
70
|
ralrimiva |
|- ( ( R e. RR /\ 0 <_ R ) -> A. t e. RR ( S " { t } ) e. ( `' vol " RR ) ) |
72 |
5
|
fveq2d |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( vol ` ( S " { t } ) ) = ( vol ` if ( ( abs ` t ) <_ R , ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) , (/) ) ) ) |
73 |
72
|
3expa |
|- ( ( ( R e. RR /\ 0 <_ R ) /\ t e. RR ) -> ( vol ` ( S " { t } ) ) = ( vol ` if ( ( abs ` t ) <_ R , ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) , (/) ) ) ) |
74 |
73
|
mpteq2dva |
|- ( ( R e. RR /\ 0 <_ R ) -> ( t e. RR |-> ( vol ` ( S " { t } ) ) ) = ( t e. RR |-> ( vol ` if ( ( abs ` t ) <_ R , ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) , (/) ) ) ) ) |
75 |
|
renegcl |
|- ( R e. RR -> -u R e. RR ) |
76 |
75
|
adantr |
|- ( ( R e. RR /\ 0 <_ R ) -> -u R e. RR ) |
77 |
|
simpl |
|- ( ( R e. RR /\ 0 <_ R ) -> R e. RR ) |
78 |
|
iccssre |
|- ( ( -u R e. RR /\ R e. RR ) -> ( -u R [,] R ) C_ RR ) |
79 |
76 77 78
|
syl2anc |
|- ( ( R e. RR /\ 0 <_ R ) -> ( -u R [,] R ) C_ RR ) |
80 |
|
rembl |
|- RR e. dom vol |
81 |
80
|
a1i |
|- ( ( R e. RR /\ 0 <_ R ) -> RR e. dom vol ) |
82 |
|
fvexd |
|- ( ( ( R e. RR /\ 0 <_ R ) /\ t e. ( -u R [,] R ) ) -> ( vol ` if ( ( abs ` t ) <_ R , ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) , (/) ) ) e. _V ) |
83 |
|
eldif |
|- ( t e. ( RR \ ( -u R [,] R ) ) <-> ( t e. RR /\ -. t e. ( -u R [,] R ) ) ) |
84 |
|
3anass |
|- ( ( t e. RR /\ -u R <_ t /\ t <_ R ) <-> ( t e. RR /\ ( -u R <_ t /\ t <_ R ) ) ) |
85 |
84
|
a1i |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( ( t e. RR /\ -u R <_ t /\ t <_ R ) <-> ( t e. RR /\ ( -u R <_ t /\ t <_ R ) ) ) ) |
86 |
75
|
3ad2ant1 |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> -u R e. RR ) |
87 |
|
elicc2 |
|- ( ( -u R e. RR /\ R e. RR ) -> ( t e. ( -u R [,] R ) <-> ( t e. RR /\ -u R <_ t /\ t <_ R ) ) ) |
88 |
86 18 87
|
syl2anc |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( t e. ( -u R [,] R ) <-> ( t e. RR /\ -u R <_ t /\ t <_ R ) ) ) |
89 |
|
simp3 |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> t e. RR ) |
90 |
89 18
|
absled |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( ( abs ` t ) <_ R <-> ( -u R <_ t /\ t <_ R ) ) ) |
91 |
89
|
biantrurd |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( ( -u R <_ t /\ t <_ R ) <-> ( t e. RR /\ ( -u R <_ t /\ t <_ R ) ) ) ) |
92 |
90 91
|
bitrd |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( ( abs ` t ) <_ R <-> ( t e. RR /\ ( -u R <_ t /\ t <_ R ) ) ) ) |
93 |
85 88 92
|
3bitr4rd |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( ( abs ` t ) <_ R <-> t e. ( -u R [,] R ) ) ) |
94 |
93
|
biimpd |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( ( abs ` t ) <_ R -> t e. ( -u R [,] R ) ) ) |
95 |
94
|
con3d |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( -. t e. ( -u R [,] R ) -> -. ( abs ` t ) <_ R ) ) |
96 |
95
|
3expia |
|- ( ( R e. RR /\ 0 <_ R ) -> ( t e. RR -> ( -. t e. ( -u R [,] R ) -> -. ( abs ` t ) <_ R ) ) ) |
97 |
96
|
impd |
|- ( ( R e. RR /\ 0 <_ R ) -> ( ( t e. RR /\ -. t e. ( -u R [,] R ) ) -> -. ( abs ` t ) <_ R ) ) |
98 |
83 97
|
syl5bi |
|- ( ( R e. RR /\ 0 <_ R ) -> ( t e. ( RR \ ( -u R [,] R ) ) -> -. ( abs ` t ) <_ R ) ) |
99 |
98
|
imp |
|- ( ( ( R e. RR /\ 0 <_ R ) /\ t e. ( RR \ ( -u R [,] R ) ) ) -> -. ( abs ` t ) <_ R ) |
100 |
|
iffalse |
|- ( -. ( abs ` t ) <_ R -> if ( ( abs ` t ) <_ R , ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) , (/) ) = (/) ) |
101 |
100
|
fveq2d |
|- ( -. ( abs ` t ) <_ R -> ( vol ` if ( ( abs ` t ) <_ R , ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) , (/) ) ) = ( vol ` (/) ) ) |
102 |
101 61
|
eqtrdi |
|- ( -. ( abs ` t ) <_ R -> ( vol ` if ( ( abs ` t ) <_ R , ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) , (/) ) ) = 0 ) |
103 |
99 102
|
syl |
|- ( ( ( R e. RR /\ 0 <_ R ) /\ t e. ( RR \ ( -u R [,] R ) ) ) -> ( vol ` if ( ( abs ` t ) <_ R , ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) , (/) ) ) = 0 ) |
104 |
76 77 87
|
syl2anc |
|- ( ( R e. RR /\ 0 <_ R ) -> ( t e. ( -u R [,] R ) <-> ( t e. RR /\ -u R <_ t /\ t <_ R ) ) ) |
105 |
90
|
biimprd |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( ( -u R <_ t /\ t <_ R ) -> ( abs ` t ) <_ R ) ) |
106 |
105
|
expd |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( -u R <_ t -> ( t <_ R -> ( abs ` t ) <_ R ) ) ) |
107 |
106
|
3expia |
|- ( ( R e. RR /\ 0 <_ R ) -> ( t e. RR -> ( -u R <_ t -> ( t <_ R -> ( abs ` t ) <_ R ) ) ) ) |
108 |
107
|
3impd |
|- ( ( R e. RR /\ 0 <_ R ) -> ( ( t e. RR /\ -u R <_ t /\ t <_ R ) -> ( abs ` t ) <_ R ) ) |
109 |
104 108
|
sylbid |
|- ( ( R e. RR /\ 0 <_ R ) -> ( t e. ( -u R [,] R ) -> ( abs ` t ) <_ R ) ) |
110 |
109
|
3impia |
|- ( ( R e. RR /\ 0 <_ R /\ t e. ( -u R [,] R ) ) -> ( abs ` t ) <_ R ) |
111 |
|
iftrue |
|- ( ( abs ` t ) <_ R -> if ( ( abs ` t ) <_ R , ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) , (/) ) = ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) |
112 |
111
|
fveq2d |
|- ( ( abs ` t ) <_ R -> ( vol ` if ( ( abs ` t ) <_ R , ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) , (/) ) ) = ( vol ` ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) ) |
113 |
110 112
|
syl |
|- ( ( R e. RR /\ 0 <_ R /\ t e. ( -u R [,] R ) ) -> ( vol ` if ( ( abs ` t ) <_ R , ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) , (/) ) ) = ( vol ` ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) ) |
114 |
6
|
3ad2ant1 |
|- ( ( R e. RR /\ 0 <_ R /\ t e. ( -u R [,] R ) ) -> ( R ^ 2 ) e. RR ) |
115 |
75 78
|
mpancom |
|- ( R e. RR -> ( -u R [,] R ) C_ RR ) |
116 |
115
|
sselda |
|- ( ( R e. RR /\ t e. ( -u R [,] R ) ) -> t e. RR ) |
117 |
116
|
3adant2 |
|- ( ( R e. RR /\ 0 <_ R /\ t e. ( -u R [,] R ) ) -> t e. RR ) |
118 |
117
|
resqcld |
|- ( ( R e. RR /\ 0 <_ R /\ t e. ( -u R [,] R ) ) -> ( t ^ 2 ) e. RR ) |
119 |
114 118
|
resubcld |
|- ( ( R e. RR /\ 0 <_ R /\ t e. ( -u R [,] R ) ) -> ( ( R ^ 2 ) - ( t ^ 2 ) ) e. RR ) |
120 |
75 87
|
mpancom |
|- ( R e. RR -> ( t e. ( -u R [,] R ) <-> ( t e. RR /\ -u R <_ t /\ t <_ R ) ) ) |
121 |
120
|
adantr |
|- ( ( R e. RR /\ 0 <_ R ) -> ( t e. ( -u R [,] R ) <-> ( t e. RR /\ -u R <_ t /\ t <_ R ) ) ) |
122 |
22 90 14
|
3bitr3rd |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( ( t ^ 2 ) <_ ( R ^ 2 ) <-> ( -u R <_ t /\ t <_ R ) ) ) |
123 |
23 122
|
bitrd |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( 0 <_ ( ( R ^ 2 ) - ( t ^ 2 ) ) <-> ( -u R <_ t /\ t <_ R ) ) ) |
124 |
123
|
biimprd |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( ( -u R <_ t /\ t <_ R ) -> 0 <_ ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) |
125 |
124
|
expd |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( -u R <_ t -> ( t <_ R -> 0 <_ ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) |
126 |
125
|
3expia |
|- ( ( R e. RR /\ 0 <_ R ) -> ( t e. RR -> ( -u R <_ t -> ( t <_ R -> 0 <_ ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) ) |
127 |
126
|
3impd |
|- ( ( R e. RR /\ 0 <_ R ) -> ( ( t e. RR /\ -u R <_ t /\ t <_ R ) -> 0 <_ ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) |
128 |
121 127
|
sylbid |
|- ( ( R e. RR /\ 0 <_ R ) -> ( t e. ( -u R [,] R ) -> 0 <_ ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) |
129 |
128
|
3impia |
|- ( ( R e. RR /\ 0 <_ R /\ t e. ( -u R [,] R ) ) -> 0 <_ ( ( R ^ 2 ) - ( t ^ 2 ) ) ) |
130 |
119 129
|
resqrtcld |
|- ( ( R e. RR /\ 0 <_ R /\ t e. ( -u R [,] R ) ) -> ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) e. RR ) |
131 |
130
|
renegcld |
|- ( ( R e. RR /\ 0 <_ R /\ t e. ( -u R [,] R ) ) -> -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) e. RR ) |
132 |
131 130 28
|
syl2anc |
|- ( ( R e. RR /\ 0 <_ R /\ t e. ( -u R [,] R ) ) -> ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) e. dom vol ) |
133 |
132 30
|
syl |
|- ( ( R e. RR /\ 0 <_ R /\ t e. ( -u R [,] R ) ) -> ( vol ` ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) = ( vol* ` ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) ) |
134 |
119
|
recnd |
|- ( ( R e. RR /\ 0 <_ R /\ t e. ( -u R [,] R ) ) -> ( ( R ^ 2 ) - ( t ^ 2 ) ) e. CC ) |
135 |
134
|
sqrtcld |
|- ( ( R e. RR /\ 0 <_ R /\ t e. ( -u R [,] R ) ) -> ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) e. CC ) |
136 |
135 135
|
subnegd |
|- ( ( R e. RR /\ 0 <_ R /\ t e. ( -u R [,] R ) ) -> ( ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) - -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) = ( ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) + ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) |
137 |
119 129
|
sqrtge0d |
|- ( ( R e. RR /\ 0 <_ R /\ t e. ( -u R [,] R ) ) -> 0 <_ ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) |
138 |
130 130 137 137
|
addge0d |
|- ( ( R e. RR /\ 0 <_ R /\ t e. ( -u R [,] R ) ) -> 0 <_ ( ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) + ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) |
139 |
136
|
breq2d |
|- ( ( R e. RR /\ 0 <_ R /\ t e. ( -u R [,] R ) ) -> ( 0 <_ ( ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) - -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) <-> 0 <_ ( ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) + ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) ) |
140 |
130 131
|
subge0d |
|- ( ( R e. RR /\ 0 <_ R /\ t e. ( -u R [,] R ) ) -> ( 0 <_ ( ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) - -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) <-> -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) <_ ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) |
141 |
139 140
|
bitr3d |
|- ( ( R e. RR /\ 0 <_ R /\ t e. ( -u R [,] R ) ) -> ( 0 <_ ( ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) + ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) <-> -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) <_ ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) |
142 |
138 141
|
mpbid |
|- ( ( R e. RR /\ 0 <_ R /\ t e. ( -u R [,] R ) ) -> -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) <_ ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) |
143 |
131 130 142 47
|
syl3anc |
|- ( ( R e. RR /\ 0 <_ R /\ t e. ( -u R [,] R ) ) -> ( vol* ` ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) = ( ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) - -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) |
144 |
135
|
2timesd |
|- ( ( R e. RR /\ 0 <_ R /\ t e. ( -u R [,] R ) ) -> ( 2 x. ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) = ( ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) + ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) |
145 |
136 143 144
|
3eqtr4d |
|- ( ( R e. RR /\ 0 <_ R /\ t e. ( -u R [,] R ) ) -> ( vol* ` ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) = ( 2 x. ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) |
146 |
113 133 145
|
3eqtrd |
|- ( ( R e. RR /\ 0 <_ R /\ t e. ( -u R [,] R ) ) -> ( vol ` if ( ( abs ` t ) <_ R , ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) , (/) ) ) = ( 2 x. ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) |
147 |
146
|
3expa |
|- ( ( ( R e. RR /\ 0 <_ R ) /\ t e. ( -u R [,] R ) ) -> ( vol ` if ( ( abs ` t ) <_ R , ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) , (/) ) ) = ( 2 x. ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) |
148 |
147
|
mpteq2dva |
|- ( ( R e. RR /\ 0 <_ R ) -> ( t e. ( -u R [,] R ) |-> ( vol ` if ( ( abs ` t ) <_ R , ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) , (/) ) ) ) = ( t e. ( -u R [,] R ) |-> ( 2 x. ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) ) |
149 |
|
areacirclem3 |
|- ( ( R e. RR /\ 0 <_ R ) -> ( t e. ( -u R [,] R ) |-> ( 2 x. ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) e. L^1 ) |
150 |
148 149
|
eqeltrd |
|- ( ( R e. RR /\ 0 <_ R ) -> ( t e. ( -u R [,] R ) |-> ( vol ` if ( ( abs ` t ) <_ R , ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) , (/) ) ) ) e. L^1 ) |
151 |
79 81 82 103 150
|
iblss2 |
|- ( ( R e. RR /\ 0 <_ R ) -> ( t e. RR |-> ( vol ` if ( ( abs ` t ) <_ R , ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) , (/) ) ) ) e. L^1 ) |
152 |
74 151
|
eqeltrd |
|- ( ( R e. RR /\ 0 <_ R ) -> ( t e. RR |-> ( vol ` ( S " { t } ) ) ) e. L^1 ) |
153 |
|
dmarea |
|- ( S e. dom area <-> ( S C_ ( RR X. RR ) /\ A. t e. RR ( S " { t } ) e. ( `' vol " RR ) /\ ( t e. RR |-> ( vol ` ( S " { t } ) ) ) e. L^1 ) ) |
154 |
4 71 152 153
|
syl3anbrc |
|- ( ( R e. RR /\ 0 <_ R ) -> S e. dom area ) |
155 |
|
areaval |
|- ( S e. dom area -> ( area ` S ) = S. RR ( vol ` ( S " { t } ) ) _d t ) |
156 |
154 155
|
syl |
|- ( ( R e. RR /\ 0 <_ R ) -> ( area ` S ) = S. RR ( vol ` ( S " { t } ) ) _d t ) |
157 |
|
elioore |
|- ( t e. ( -u R (,) R ) -> t e. RR ) |
158 |
5
|
3expa |
|- ( ( ( R e. RR /\ 0 <_ R ) /\ t e. RR ) -> ( S " { t } ) = if ( ( abs ` t ) <_ R , ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) , (/) ) ) |
159 |
157 158
|
sylan2 |
|- ( ( ( R e. RR /\ 0 <_ R ) /\ t e. ( -u R (,) R ) ) -> ( S " { t } ) = if ( ( abs ` t ) <_ R , ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) , (/) ) ) |
160 |
159
|
fveq2d |
|- ( ( ( R e. RR /\ 0 <_ R ) /\ t e. ( -u R (,) R ) ) -> ( vol ` ( S " { t } ) ) = ( vol ` if ( ( abs ` t ) <_ R , ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) , (/) ) ) ) |
161 |
160
|
itgeq2dv |
|- ( ( R e. RR /\ 0 <_ R ) -> S. ( -u R (,) R ) ( vol ` ( S " { t } ) ) _d t = S. ( -u R (,) R ) ( vol ` if ( ( abs ` t ) <_ R , ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) , (/) ) ) _d t ) |
162 |
|
ioossre |
|- ( -u R (,) R ) C_ RR |
163 |
162
|
a1i |
|- ( ( R e. RR /\ 0 <_ R ) -> ( -u R (,) R ) C_ RR ) |
164 |
|
eldif |
|- ( t e. ( RR \ ( -u R (,) R ) ) <-> ( t e. RR /\ -. t e. ( -u R (,) R ) ) ) |
165 |
75
|
rexrd |
|- ( R e. RR -> -u R e. RR* ) |
166 |
|
rexr |
|- ( R e. RR -> R e. RR* ) |
167 |
|
elioo2 |
|- ( ( -u R e. RR* /\ R e. RR* ) -> ( t e. ( -u R (,) R ) <-> ( t e. RR /\ -u R < t /\ t < R ) ) ) |
168 |
165 166 167
|
syl2anc |
|- ( R e. RR -> ( t e. ( -u R (,) R ) <-> ( t e. RR /\ -u R < t /\ t < R ) ) ) |
169 |
168
|
3ad2ant1 |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( t e. ( -u R (,) R ) <-> ( t e. RR /\ -u R < t /\ t < R ) ) ) |
170 |
89
|
biantrurd |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( ( -u R < t /\ t < R ) <-> ( t e. RR /\ ( -u R < t /\ t < R ) ) ) ) |
171 |
89 18
|
absltd |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( ( abs ` t ) < R <-> ( -u R < t /\ t < R ) ) ) |
172 |
|
3anass |
|- ( ( t e. RR /\ -u R < t /\ t < R ) <-> ( t e. RR /\ ( -u R < t /\ t < R ) ) ) |
173 |
172
|
a1i |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( ( t e. RR /\ -u R < t /\ t < R ) <-> ( t e. RR /\ ( -u R < t /\ t < R ) ) ) ) |
174 |
170 171 173
|
3bitr4rd |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( ( t e. RR /\ -u R < t /\ t < R ) <-> ( abs ` t ) < R ) ) |
175 |
169 174
|
bitrd |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( t e. ( -u R (,) R ) <-> ( abs ` t ) < R ) ) |
176 |
175
|
notbid |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( -. t e. ( -u R (,) R ) <-> -. ( abs ` t ) < R ) ) |
177 |
18 17
|
lenltd |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( R <_ ( abs ` t ) <-> -. ( abs ` t ) < R ) ) |
178 |
176 177
|
bitr4d |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( -. t e. ( -u R (,) R ) <-> R <_ ( abs ` t ) ) ) |
179 |
5
|
adantr |
|- ( ( ( R e. RR /\ 0 <_ R /\ t e. RR ) /\ R <_ ( abs ` t ) ) -> ( S " { t } ) = if ( ( abs ` t ) <_ R , ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) , (/) ) ) |
180 |
179
|
fveq2d |
|- ( ( ( R e. RR /\ 0 <_ R /\ t e. RR ) /\ R <_ ( abs ` t ) ) -> ( vol ` ( S " { t } ) ) = ( vol ` if ( ( abs ` t ) <_ R , ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) , (/) ) ) ) |
181 |
17
|
anim1i |
|- ( ( ( R e. RR /\ 0 <_ R /\ t e. RR ) /\ ( abs ` t ) = R ) -> ( ( abs ` t ) e. RR /\ ( abs ` t ) = R ) ) |
182 |
|
eqle |
|- ( ( ( abs ` t ) e. RR /\ ( abs ` t ) = R ) -> ( abs ` t ) <_ R ) |
183 |
181 182 112
|
3syl |
|- ( ( ( R e. RR /\ 0 <_ R /\ t e. RR ) /\ ( abs ` t ) = R ) -> ( vol ` if ( ( abs ` t ) <_ R , ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) , (/) ) ) = ( vol ` ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) ) |
184 |
|
oveq1 |
|- ( ( abs ` t ) = R -> ( ( abs ` t ) ^ 2 ) = ( R ^ 2 ) ) |
185 |
184
|
adantl |
|- ( ( ( R e. RR /\ 0 <_ R /\ t e. RR ) /\ ( abs ` t ) = R ) -> ( ( abs ` t ) ^ 2 ) = ( R ^ 2 ) ) |
186 |
13
|
adantr |
|- ( ( ( R e. RR /\ 0 <_ R /\ t e. RR ) /\ ( abs ` t ) = R ) -> ( ( abs ` t ) ^ 2 ) = ( t ^ 2 ) ) |
187 |
185 186
|
eqtr3d |
|- ( ( ( R e. RR /\ 0 <_ R /\ t e. RR ) /\ ( abs ` t ) = R ) -> ( R ^ 2 ) = ( t ^ 2 ) ) |
188 |
|
fvoveq1 |
|- ( ( R ^ 2 ) = ( t ^ 2 ) -> ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) = ( sqrt ` ( ( t ^ 2 ) - ( t ^ 2 ) ) ) ) |
189 |
188
|
negeqd |
|- ( ( R ^ 2 ) = ( t ^ 2 ) -> -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) = -u ( sqrt ` ( ( t ^ 2 ) - ( t ^ 2 ) ) ) ) |
190 |
189 188
|
oveq12d |
|- ( ( R ^ 2 ) = ( t ^ 2 ) -> ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) = ( -u ( sqrt ` ( ( t ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( t ^ 2 ) - ( t ^ 2 ) ) ) ) ) |
191 |
8
|
recnd |
|- ( t e. RR -> ( t ^ 2 ) e. CC ) |
192 |
191
|
subidd |
|- ( t e. RR -> ( ( t ^ 2 ) - ( t ^ 2 ) ) = 0 ) |
193 |
192
|
fveq2d |
|- ( t e. RR -> ( sqrt ` ( ( t ^ 2 ) - ( t ^ 2 ) ) ) = ( sqrt ` 0 ) ) |
194 |
193
|
negeqd |
|- ( t e. RR -> -u ( sqrt ` ( ( t ^ 2 ) - ( t ^ 2 ) ) ) = -u ( sqrt ` 0 ) ) |
195 |
|
sqrt0 |
|- ( sqrt ` 0 ) = 0 |
196 |
195
|
negeqi |
|- -u ( sqrt ` 0 ) = -u 0 |
197 |
|
neg0 |
|- -u 0 = 0 |
198 |
196 197
|
eqtri |
|- -u ( sqrt ` 0 ) = 0 |
199 |
194 198
|
eqtrdi |
|- ( t e. RR -> -u ( sqrt ` ( ( t ^ 2 ) - ( t ^ 2 ) ) ) = 0 ) |
200 |
193 195
|
eqtrdi |
|- ( t e. RR -> ( sqrt ` ( ( t ^ 2 ) - ( t ^ 2 ) ) ) = 0 ) |
201 |
199 200
|
oveq12d |
|- ( t e. RR -> ( -u ( sqrt ` ( ( t ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( t ^ 2 ) - ( t ^ 2 ) ) ) ) = ( 0 [,] 0 ) ) |
202 |
201
|
3ad2ant3 |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( -u ( sqrt ` ( ( t ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( t ^ 2 ) - ( t ^ 2 ) ) ) ) = ( 0 [,] 0 ) ) |
203 |
190 202
|
sylan9eqr |
|- ( ( ( R e. RR /\ 0 <_ R /\ t e. RR ) /\ ( R ^ 2 ) = ( t ^ 2 ) ) -> ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) = ( 0 [,] 0 ) ) |
204 |
203
|
fveq2d |
|- ( ( ( R e. RR /\ 0 <_ R /\ t e. RR ) /\ ( R ^ 2 ) = ( t ^ 2 ) ) -> ( vol ` ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) = ( vol ` ( 0 [,] 0 ) ) ) |
205 |
|
iccmbl |
|- ( ( 0 e. RR /\ 0 e. RR ) -> ( 0 [,] 0 ) e. dom vol ) |
206 |
62 62 205
|
mp2an |
|- ( 0 [,] 0 ) e. dom vol |
207 |
|
mblvol |
|- ( ( 0 [,] 0 ) e. dom vol -> ( vol ` ( 0 [,] 0 ) ) = ( vol* ` ( 0 [,] 0 ) ) ) |
208 |
206 207
|
ax-mp |
|- ( vol ` ( 0 [,] 0 ) ) = ( vol* ` ( 0 [,] 0 ) ) |
209 |
|
0xr |
|- 0 e. RR* |
210 |
|
iccid |
|- ( 0 e. RR* -> ( 0 [,] 0 ) = { 0 } ) |
211 |
210
|
fveq2d |
|- ( 0 e. RR* -> ( vol* ` ( 0 [,] 0 ) ) = ( vol* ` { 0 } ) ) |
212 |
209 211
|
ax-mp |
|- ( vol* ` ( 0 [,] 0 ) ) = ( vol* ` { 0 } ) |
213 |
|
ovolsn |
|- ( 0 e. RR -> ( vol* ` { 0 } ) = 0 ) |
214 |
62 213
|
ax-mp |
|- ( vol* ` { 0 } ) = 0 |
215 |
212 214
|
eqtri |
|- ( vol* ` ( 0 [,] 0 ) ) = 0 |
216 |
208 215
|
eqtri |
|- ( vol ` ( 0 [,] 0 ) ) = 0 |
217 |
204 216
|
eqtrdi |
|- ( ( ( R e. RR /\ 0 <_ R /\ t e. RR ) /\ ( R ^ 2 ) = ( t ^ 2 ) ) -> ( vol ` ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) = 0 ) |
218 |
187 217
|
syldan |
|- ( ( ( R e. RR /\ 0 <_ R /\ t e. RR ) /\ ( abs ` t ) = R ) -> ( vol ` ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) = 0 ) |
219 |
183 218
|
eqtrd |
|- ( ( ( R e. RR /\ 0 <_ R /\ t e. RR ) /\ ( abs ` t ) = R ) -> ( vol ` if ( ( abs ` t ) <_ R , ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) , (/) ) ) = 0 ) |
220 |
219
|
ex |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( ( abs ` t ) = R -> ( vol ` if ( ( abs ` t ) <_ R , ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) , (/) ) ) = 0 ) ) |
221 |
220
|
adantr |
|- ( ( ( R e. RR /\ 0 <_ R /\ t e. RR ) /\ R <_ ( abs ` t ) ) -> ( ( abs ` t ) = R -> ( vol ` if ( ( abs ` t ) <_ R , ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) , (/) ) ) = 0 ) ) |
222 |
18 17
|
ltnled |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( R < ( abs ` t ) <-> -. ( abs ` t ) <_ R ) ) |
223 |
222
|
adantr |
|- ( ( ( R e. RR /\ 0 <_ R /\ t e. RR ) /\ R <_ ( abs ` t ) ) -> ( R < ( abs ` t ) <-> -. ( abs ` t ) <_ R ) ) |
224 |
|
simpl1 |
|- ( ( ( R e. RR /\ 0 <_ R /\ t e. RR ) /\ R <_ ( abs ` t ) ) -> R e. RR ) |
225 |
17
|
adantr |
|- ( ( ( R e. RR /\ 0 <_ R /\ t e. RR ) /\ R <_ ( abs ` t ) ) -> ( abs ` t ) e. RR ) |
226 |
|
simpr |
|- ( ( ( R e. RR /\ 0 <_ R /\ t e. RR ) /\ R <_ ( abs ` t ) ) -> R <_ ( abs ` t ) ) |
227 |
224 225 226
|
leltned |
|- ( ( ( R e. RR /\ 0 <_ R /\ t e. RR ) /\ R <_ ( abs ` t ) ) -> ( R < ( abs ` t ) <-> ( abs ` t ) =/= R ) ) |
228 |
223 227
|
bitr3d |
|- ( ( ( R e. RR /\ 0 <_ R /\ t e. RR ) /\ R <_ ( abs ` t ) ) -> ( -. ( abs ` t ) <_ R <-> ( abs ` t ) =/= R ) ) |
229 |
228 102
|
syl6bir |
|- ( ( ( R e. RR /\ 0 <_ R /\ t e. RR ) /\ R <_ ( abs ` t ) ) -> ( ( abs ` t ) =/= R -> ( vol ` if ( ( abs ` t ) <_ R , ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) , (/) ) ) = 0 ) ) |
230 |
221 229
|
pm2.61dne |
|- ( ( ( R e. RR /\ 0 <_ R /\ t e. RR ) /\ R <_ ( abs ` t ) ) -> ( vol ` if ( ( abs ` t ) <_ R , ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) , (/) ) ) = 0 ) |
231 |
180 230
|
eqtrd |
|- ( ( ( R e. RR /\ 0 <_ R /\ t e. RR ) /\ R <_ ( abs ` t ) ) -> ( vol ` ( S " { t } ) ) = 0 ) |
232 |
231
|
ex |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( R <_ ( abs ` t ) -> ( vol ` ( S " { t } ) ) = 0 ) ) |
233 |
178 232
|
sylbid |
|- ( ( R e. RR /\ 0 <_ R /\ t e. RR ) -> ( -. t e. ( -u R (,) R ) -> ( vol ` ( S " { t } ) ) = 0 ) ) |
234 |
233
|
3expia |
|- ( ( R e. RR /\ 0 <_ R ) -> ( t e. RR -> ( -. t e. ( -u R (,) R ) -> ( vol ` ( S " { t } ) ) = 0 ) ) ) |
235 |
234
|
impd |
|- ( ( R e. RR /\ 0 <_ R ) -> ( ( t e. RR /\ -. t e. ( -u R (,) R ) ) -> ( vol ` ( S " { t } ) ) = 0 ) ) |
236 |
164 235
|
syl5bi |
|- ( ( R e. RR /\ 0 <_ R ) -> ( t e. ( RR \ ( -u R (,) R ) ) -> ( vol ` ( S " { t } ) ) = 0 ) ) |
237 |
236
|
imp |
|- ( ( ( R e. RR /\ 0 <_ R ) /\ t e. ( RR \ ( -u R (,) R ) ) ) -> ( vol ` ( S " { t } ) ) = 0 ) |
238 |
163 237
|
itgss |
|- ( ( R e. RR /\ 0 <_ R ) -> S. ( -u R (,) R ) ( vol ` ( S " { t } ) ) _d t = S. RR ( vol ` ( S " { t } ) ) _d t ) |
239 |
|
negeq |
|- ( R = 0 -> -u R = -u 0 ) |
240 |
239 197
|
eqtrdi |
|- ( R = 0 -> -u R = 0 ) |
241 |
|
id |
|- ( R = 0 -> R = 0 ) |
242 |
240 241
|
oveq12d |
|- ( R = 0 -> ( -u R (,) R ) = ( 0 (,) 0 ) ) |
243 |
|
iooid |
|- ( 0 (,) 0 ) = (/) |
244 |
242 243
|
eqtrdi |
|- ( R = 0 -> ( -u R (,) R ) = (/) ) |
245 |
244
|
adantl |
|- ( ( ( R e. RR /\ 0 <_ R ) /\ R = 0 ) -> ( -u R (,) R ) = (/) ) |
246 |
|
itgeq1 |
|- ( ( -u R (,) R ) = (/) -> S. ( -u R (,) R ) ( vol ` if ( ( abs ` t ) <_ R , ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) , (/) ) ) _d t = S. (/) ( vol ` if ( ( abs ` t ) <_ R , ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) , (/) ) ) _d t ) |
247 |
245 246
|
syl |
|- ( ( ( R e. RR /\ 0 <_ R ) /\ R = 0 ) -> S. ( -u R (,) R ) ( vol ` if ( ( abs ` t ) <_ R , ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) , (/) ) ) _d t = S. (/) ( vol ` if ( ( abs ` t ) <_ R , ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) , (/) ) ) _d t ) |
248 |
|
itg0 |
|- S. (/) ( vol ` if ( ( abs ` t ) <_ R , ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) , (/) ) ) _d t = 0 |
249 |
|
sq0 |
|- ( 0 ^ 2 ) = 0 |
250 |
249
|
oveq2i |
|- ( _pi x. ( 0 ^ 2 ) ) = ( _pi x. 0 ) |
251 |
|
picn |
|- _pi e. CC |
252 |
251
|
mul01i |
|- ( _pi x. 0 ) = 0 |
253 |
250 252
|
eqtr2i |
|- 0 = ( _pi x. ( 0 ^ 2 ) ) |
254 |
|
oveq1 |
|- ( R = 0 -> ( R ^ 2 ) = ( 0 ^ 2 ) ) |
255 |
254
|
oveq2d |
|- ( R = 0 -> ( _pi x. ( R ^ 2 ) ) = ( _pi x. ( 0 ^ 2 ) ) ) |
256 |
253 255
|
eqtr4id |
|- ( R = 0 -> 0 = ( _pi x. ( R ^ 2 ) ) ) |
257 |
256
|
adantl |
|- ( ( ( R e. RR /\ 0 <_ R ) /\ R = 0 ) -> 0 = ( _pi x. ( R ^ 2 ) ) ) |
258 |
248 257
|
syl5eq |
|- ( ( ( R e. RR /\ 0 <_ R ) /\ R = 0 ) -> S. (/) ( vol ` if ( ( abs ` t ) <_ R , ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) , (/) ) ) _d t = ( _pi x. ( R ^ 2 ) ) ) |
259 |
247 258
|
eqtrd |
|- ( ( ( R e. RR /\ 0 <_ R ) /\ R = 0 ) -> S. ( -u R (,) R ) ( vol ` if ( ( abs ` t ) <_ R , ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) , (/) ) ) _d t = ( _pi x. ( R ^ 2 ) ) ) |
260 |
|
simp1 |
|- ( ( R e. RR /\ 0 <_ R /\ R =/= 0 ) -> R e. RR ) |
261 |
|
0red |
|- ( ( R e. RR /\ 0 <_ R ) -> 0 e. RR ) |
262 |
|
simpr |
|- ( ( R e. RR /\ 0 <_ R ) -> 0 <_ R ) |
263 |
261 77 262
|
leltned |
|- ( ( R e. RR /\ 0 <_ R ) -> ( 0 < R <-> R =/= 0 ) ) |
264 |
263
|
biimp3ar |
|- ( ( R e. RR /\ 0 <_ R /\ R =/= 0 ) -> 0 < R ) |
265 |
260 264
|
elrpd |
|- ( ( R e. RR /\ 0 <_ R /\ R =/= 0 ) -> R e. RR+ ) |
266 |
265
|
3expa |
|- ( ( ( R e. RR /\ 0 <_ R ) /\ R =/= 0 ) -> R e. RR+ ) |
267 |
157 16
|
syl |
|- ( t e. ( -u R (,) R ) -> ( abs ` t ) e. RR ) |
268 |
267
|
adantl |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( abs ` t ) e. RR ) |
269 |
|
rpre |
|- ( R e. RR+ -> R e. RR ) |
270 |
269
|
adantr |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> R e. RR ) |
271 |
269
|
renegcld |
|- ( R e. RR+ -> -u R e. RR ) |
272 |
271
|
rexrd |
|- ( R e. RR+ -> -u R e. RR* ) |
273 |
|
rpxr |
|- ( R e. RR+ -> R e. RR* ) |
274 |
272 273 167
|
syl2anc |
|- ( R e. RR+ -> ( t e. ( -u R (,) R ) <-> ( t e. RR /\ -u R < t /\ t < R ) ) ) |
275 |
|
simpr |
|- ( ( R e. RR+ /\ t e. RR ) -> t e. RR ) |
276 |
269
|
adantr |
|- ( ( R e. RR+ /\ t e. RR ) -> R e. RR ) |
277 |
275 276
|
absltd |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( abs ` t ) < R <-> ( -u R < t /\ t < R ) ) ) |
278 |
277
|
biimprd |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( -u R < t /\ t < R ) -> ( abs ` t ) < R ) ) |
279 |
278
|
exp4b |
|- ( R e. RR+ -> ( t e. RR -> ( -u R < t -> ( t < R -> ( abs ` t ) < R ) ) ) ) |
280 |
279
|
3impd |
|- ( R e. RR+ -> ( ( t e. RR /\ -u R < t /\ t < R ) -> ( abs ` t ) < R ) ) |
281 |
274 280
|
sylbid |
|- ( R e. RR+ -> ( t e. ( -u R (,) R ) -> ( abs ` t ) < R ) ) |
282 |
281
|
imp |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( abs ` t ) < R ) |
283 |
268 270 282
|
ltled |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( abs ` t ) <_ R ) |
284 |
283 112
|
syl |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( vol ` if ( ( abs ` t ) <_ R , ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) , (/) ) ) = ( vol ` ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) ) |
285 |
269
|
resqcld |
|- ( R e. RR+ -> ( R ^ 2 ) e. RR ) |
286 |
285
|
recnd |
|- ( R e. RR+ -> ( R ^ 2 ) e. CC ) |
287 |
286
|
adantr |
|- ( ( R e. RR+ /\ t e. RR ) -> ( R ^ 2 ) e. CC ) |
288 |
191
|
adantl |
|- ( ( R e. RR+ /\ t e. RR ) -> ( t ^ 2 ) e. CC ) |
289 |
287 288
|
subcld |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( R ^ 2 ) - ( t ^ 2 ) ) e. CC ) |
290 |
289
|
sqrtcld |
|- ( ( R e. RR+ /\ t e. RR ) -> ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) e. CC ) |
291 |
290 290
|
subnegd |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) - -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) = ( ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) + ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) |
292 |
157 291
|
sylan2 |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) - -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) = ( ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) + ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) |
293 |
285
|
adantr |
|- ( ( R e. RR+ /\ t e. RR ) -> ( R ^ 2 ) e. RR ) |
294 |
8
|
adantl |
|- ( ( R e. RR+ /\ t e. RR ) -> ( t ^ 2 ) e. RR ) |
295 |
293 294
|
resubcld |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( R ^ 2 ) - ( t ^ 2 ) ) e. RR ) |
296 |
157 295
|
sylan2 |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( R ^ 2 ) - ( t ^ 2 ) ) e. RR ) |
297 |
|
0red |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> 0 e. RR ) |
298 |
16
|
adantl |
|- ( ( R e. RR+ /\ t e. RR ) -> ( abs ` t ) e. RR ) |
299 |
19
|
adantl |
|- ( ( R e. RR+ /\ t e. RR ) -> 0 <_ ( abs ` t ) ) |
300 |
|
rpge0 |
|- ( R e. RR+ -> 0 <_ R ) |
301 |
300
|
adantr |
|- ( ( R e. RR+ /\ t e. RR ) -> 0 <_ R ) |
302 |
298 276 299 301
|
lt2sqd |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( abs ` t ) < R <-> ( ( abs ` t ) ^ 2 ) < ( R ^ 2 ) ) ) |
303 |
12
|
adantl |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( abs ` t ) ^ 2 ) = ( t ^ 2 ) ) |
304 |
303
|
breq1d |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( ( abs ` t ) ^ 2 ) < ( R ^ 2 ) <-> ( t ^ 2 ) < ( R ^ 2 ) ) ) |
305 |
302 277 304
|
3bitr3rd |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( t ^ 2 ) < ( R ^ 2 ) <-> ( -u R < t /\ t < R ) ) ) |
306 |
294 293
|
posdifd |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( t ^ 2 ) < ( R ^ 2 ) <-> 0 < ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) |
307 |
305 306
|
bitr3d |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( -u R < t /\ t < R ) <-> 0 < ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) |
308 |
307
|
biimpd |
|- ( ( R e. RR+ /\ t e. RR ) -> ( ( -u R < t /\ t < R ) -> 0 < ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) |
309 |
308
|
exp4b |
|- ( R e. RR+ -> ( t e. RR -> ( -u R < t -> ( t < R -> 0 < ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) ) |
310 |
309
|
3impd |
|- ( R e. RR+ -> ( ( t e. RR /\ -u R < t /\ t < R ) -> 0 < ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) |
311 |
274 310
|
sylbid |
|- ( R e. RR+ -> ( t e. ( -u R (,) R ) -> 0 < ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) |
312 |
311
|
imp |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> 0 < ( ( R ^ 2 ) - ( t ^ 2 ) ) ) |
313 |
297 296 312
|
ltled |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> 0 <_ ( ( R ^ 2 ) - ( t ^ 2 ) ) ) |
314 |
296 313
|
resqrtcld |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) e. RR ) |
315 |
314
|
renegcld |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) e. RR ) |
316 |
315 314 28
|
syl2anc |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) e. dom vol ) |
317 |
316 30
|
syl |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( vol ` ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) = ( vol* ` ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) ) |
318 |
296 313
|
sqrtge0d |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> 0 <_ ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) |
319 |
314 314 318 318
|
addge0d |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> 0 <_ ( ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) + ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) |
320 |
292
|
breq2d |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( 0 <_ ( ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) - -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) <-> 0 <_ ( ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) + ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) ) |
321 |
314 315
|
subge0d |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( 0 <_ ( ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) - -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) <-> -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) <_ ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) |
322 |
320 321
|
bitr3d |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( 0 <_ ( ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) + ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) <-> -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) <_ ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) |
323 |
319 322
|
mpbid |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) <_ ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) |
324 |
315 314 323 47
|
syl3anc |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( vol* ` ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) = ( ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) - -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) |
325 |
317 324
|
eqtrd |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( vol ` ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) = ( ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) - -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) |
326 |
|
ax-resscn |
|- RR C_ CC |
327 |
326
|
a1i |
|- ( R e. RR+ -> RR C_ CC ) |
328 |
271 269 78
|
syl2anc |
|- ( R e. RR+ -> ( -u R [,] R ) C_ RR ) |
329 |
|
rpcn |
|- ( R e. RR+ -> R e. CC ) |
330 |
329
|
sqcld |
|- ( R e. RR+ -> ( R ^ 2 ) e. CC ) |
331 |
330
|
adantr |
|- ( ( R e. RR+ /\ u e. ( -u R [,] R ) ) -> ( R ^ 2 ) e. CC ) |
332 |
328
|
sselda |
|- ( ( R e. RR+ /\ u e. ( -u R [,] R ) ) -> u e. RR ) |
333 |
332
|
recnd |
|- ( ( R e. RR+ /\ u e. ( -u R [,] R ) ) -> u e. CC ) |
334 |
329
|
adantr |
|- ( ( R e. RR+ /\ u e. ( -u R [,] R ) ) -> R e. CC ) |
335 |
|
rpne0 |
|- ( R e. RR+ -> R =/= 0 ) |
336 |
335
|
adantr |
|- ( ( R e. RR+ /\ u e. ( -u R [,] R ) ) -> R =/= 0 ) |
337 |
333 334 336
|
divcld |
|- ( ( R e. RR+ /\ u e. ( -u R [,] R ) ) -> ( u / R ) e. CC ) |
338 |
|
asincl |
|- ( ( u / R ) e. CC -> ( arcsin ` ( u / R ) ) e. CC ) |
339 |
337 338
|
syl |
|- ( ( R e. RR+ /\ u e. ( -u R [,] R ) ) -> ( arcsin ` ( u / R ) ) e. CC ) |
340 |
|
1cnd |
|- ( ( R e. RR+ /\ u e. ( -u R [,] R ) ) -> 1 e. CC ) |
341 |
337
|
sqcld |
|- ( ( R e. RR+ /\ u e. ( -u R [,] R ) ) -> ( ( u / R ) ^ 2 ) e. CC ) |
342 |
340 341
|
subcld |
|- ( ( R e. RR+ /\ u e. ( -u R [,] R ) ) -> ( 1 - ( ( u / R ) ^ 2 ) ) e. CC ) |
343 |
342
|
sqrtcld |
|- ( ( R e. RR+ /\ u e. ( -u R [,] R ) ) -> ( sqrt ` ( 1 - ( ( u / R ) ^ 2 ) ) ) e. CC ) |
344 |
337 343
|
mulcld |
|- ( ( R e. RR+ /\ u e. ( -u R [,] R ) ) -> ( ( u / R ) x. ( sqrt ` ( 1 - ( ( u / R ) ^ 2 ) ) ) ) e. CC ) |
345 |
339 344
|
addcld |
|- ( ( R e. RR+ /\ u e. ( -u R [,] R ) ) -> ( ( arcsin ` ( u / R ) ) + ( ( u / R ) x. ( sqrt ` ( 1 - ( ( u / R ) ^ 2 ) ) ) ) ) e. CC ) |
346 |
331 345
|
mulcld |
|- ( ( R e. RR+ /\ u e. ( -u R [,] R ) ) -> ( ( R ^ 2 ) x. ( ( arcsin ` ( u / R ) ) + ( ( u / R ) x. ( sqrt ` ( 1 - ( ( u / R ) ^ 2 ) ) ) ) ) ) e. CC ) |
347 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
348 |
347
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
349 |
|
iccntr |
|- ( ( -u R e. RR /\ R e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( -u R [,] R ) ) = ( -u R (,) R ) ) |
350 |
271 269 349
|
syl2anc |
|- ( R e. RR+ -> ( ( int ` ( topGen ` ran (,) ) ) ` ( -u R [,] R ) ) = ( -u R (,) R ) ) |
351 |
327 328 346 348 347 350
|
dvmptntr |
|- ( R e. RR+ -> ( RR _D ( u e. ( -u R [,] R ) |-> ( ( R ^ 2 ) x. ( ( arcsin ` ( u / R ) ) + ( ( u / R ) x. ( sqrt ` ( 1 - ( ( u / R ) ^ 2 ) ) ) ) ) ) ) ) = ( RR _D ( u e. ( -u R (,) R ) |-> ( ( R ^ 2 ) x. ( ( arcsin ` ( u / R ) ) + ( ( u / R ) x. ( sqrt ` ( 1 - ( ( u / R ) ^ 2 ) ) ) ) ) ) ) ) ) |
352 |
|
areacirclem1 |
|- ( R e. RR+ -> ( RR _D ( u e. ( -u R (,) R ) |-> ( ( R ^ 2 ) x. ( ( arcsin ` ( u / R ) ) + ( ( u / R ) x. ( sqrt ` ( 1 - ( ( u / R ) ^ 2 ) ) ) ) ) ) ) ) = ( u e. ( -u R (,) R ) |-> ( 2 x. ( sqrt ` ( ( R ^ 2 ) - ( u ^ 2 ) ) ) ) ) ) |
353 |
351 352
|
eqtrd |
|- ( R e. RR+ -> ( RR _D ( u e. ( -u R [,] R ) |-> ( ( R ^ 2 ) x. ( ( arcsin ` ( u / R ) ) + ( ( u / R ) x. ( sqrt ` ( 1 - ( ( u / R ) ^ 2 ) ) ) ) ) ) ) ) = ( u e. ( -u R (,) R ) |-> ( 2 x. ( sqrt ` ( ( R ^ 2 ) - ( u ^ 2 ) ) ) ) ) ) |
354 |
353
|
adantr |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( RR _D ( u e. ( -u R [,] R ) |-> ( ( R ^ 2 ) x. ( ( arcsin ` ( u / R ) ) + ( ( u / R ) x. ( sqrt ` ( 1 - ( ( u / R ) ^ 2 ) ) ) ) ) ) ) ) = ( u e. ( -u R (,) R ) |-> ( 2 x. ( sqrt ` ( ( R ^ 2 ) - ( u ^ 2 ) ) ) ) ) ) |
355 |
|
oveq1 |
|- ( u = t -> ( u ^ 2 ) = ( t ^ 2 ) ) |
356 |
355
|
oveq2d |
|- ( u = t -> ( ( R ^ 2 ) - ( u ^ 2 ) ) = ( ( R ^ 2 ) - ( t ^ 2 ) ) ) |
357 |
356
|
fveq2d |
|- ( u = t -> ( sqrt ` ( ( R ^ 2 ) - ( u ^ 2 ) ) ) = ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) |
358 |
357
|
oveq2d |
|- ( u = t -> ( 2 x. ( sqrt ` ( ( R ^ 2 ) - ( u ^ 2 ) ) ) ) = ( 2 x. ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) |
359 |
358
|
adantl |
|- ( ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) /\ u = t ) -> ( 2 x. ( sqrt ` ( ( R ^ 2 ) - ( u ^ 2 ) ) ) ) = ( 2 x. ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) |
360 |
|
simpr |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> t e. ( -u R (,) R ) ) |
361 |
|
ovexd |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( 2 x. ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) e. _V ) |
362 |
354 359 360 361
|
fvmptd |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( RR _D ( u e. ( -u R [,] R ) |-> ( ( R ^ 2 ) x. ( ( arcsin ` ( u / R ) ) + ( ( u / R ) x. ( sqrt ` ( 1 - ( ( u / R ) ^ 2 ) ) ) ) ) ) ) ) ` t ) = ( 2 x. ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) |
363 |
157 290
|
sylan2 |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) e. CC ) |
364 |
363
|
2timesd |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( 2 x. ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) = ( ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) + ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) |
365 |
362 364
|
eqtrd |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( RR _D ( u e. ( -u R [,] R ) |-> ( ( R ^ 2 ) x. ( ( arcsin ` ( u / R ) ) + ( ( u / R ) x. ( sqrt ` ( 1 - ( ( u / R ) ^ 2 ) ) ) ) ) ) ) ) ` t ) = ( ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) + ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) |
366 |
292 325 365
|
3eqtr4rd |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( ( RR _D ( u e. ( -u R [,] R ) |-> ( ( R ^ 2 ) x. ( ( arcsin ` ( u / R ) ) + ( ( u / R ) x. ( sqrt ` ( 1 - ( ( u / R ) ^ 2 ) ) ) ) ) ) ) ) ` t ) = ( vol ` ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) ) ) |
367 |
284 366
|
eqtr4d |
|- ( ( R e. RR+ /\ t e. ( -u R (,) R ) ) -> ( vol ` if ( ( abs ` t ) <_ R , ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) , (/) ) ) = ( ( RR _D ( u e. ( -u R [,] R ) |-> ( ( R ^ 2 ) x. ( ( arcsin ` ( u / R ) ) + ( ( u / R ) x. ( sqrt ` ( 1 - ( ( u / R ) ^ 2 ) ) ) ) ) ) ) ) ` t ) ) |
368 |
367
|
itgeq2dv |
|- ( R e. RR+ -> S. ( -u R (,) R ) ( vol ` if ( ( abs ` t ) <_ R , ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) , (/) ) ) _d t = S. ( -u R (,) R ) ( ( RR _D ( u e. ( -u R [,] R ) |-> ( ( R ^ 2 ) x. ( ( arcsin ` ( u / R ) ) + ( ( u / R ) x. ( sqrt ` ( 1 - ( ( u / R ) ^ 2 ) ) ) ) ) ) ) ) ` t ) _d t ) |
369 |
269 269 300 300
|
addge0d |
|- ( R e. RR+ -> 0 <_ ( R + R ) ) |
370 |
329 329
|
subnegd |
|- ( R e. RR+ -> ( R - -u R ) = ( R + R ) ) |
371 |
370
|
breq2d |
|- ( R e. RR+ -> ( 0 <_ ( R - -u R ) <-> 0 <_ ( R + R ) ) ) |
372 |
269 271
|
subge0d |
|- ( R e. RR+ -> ( 0 <_ ( R - -u R ) <-> -u R <_ R ) ) |
373 |
371 372
|
bitr3d |
|- ( R e. RR+ -> ( 0 <_ ( R + R ) <-> -u R <_ R ) ) |
374 |
369 373
|
mpbid |
|- ( R e. RR+ -> -u R <_ R ) |
375 |
|
2cn |
|- 2 e. CC |
376 |
162 326
|
sstri |
|- ( -u R (,) R ) C_ CC |
377 |
|
ssid |
|- CC C_ CC |
378 |
375 376 377
|
3pm3.2i |
|- ( 2 e. CC /\ ( -u R (,) R ) C_ CC /\ CC C_ CC ) |
379 |
|
cncfmptc |
|- ( ( 2 e. CC /\ ( -u R (,) R ) C_ CC /\ CC C_ CC ) -> ( u e. ( -u R (,) R ) |-> 2 ) e. ( ( -u R (,) R ) -cn-> CC ) ) |
380 |
378 379
|
mp1i |
|- ( R e. RR+ -> ( u e. ( -u R (,) R ) |-> 2 ) e. ( ( -u R (,) R ) -cn-> CC ) ) |
381 |
|
ioossicc |
|- ( -u R (,) R ) C_ ( -u R [,] R ) |
382 |
|
resmpt |
|- ( ( -u R (,) R ) C_ ( -u R [,] R ) -> ( ( u e. ( -u R [,] R ) |-> ( sqrt ` ( ( R ^ 2 ) - ( u ^ 2 ) ) ) ) |` ( -u R (,) R ) ) = ( u e. ( -u R (,) R ) |-> ( sqrt ` ( ( R ^ 2 ) - ( u ^ 2 ) ) ) ) ) |
383 |
381 382
|
ax-mp |
|- ( ( u e. ( -u R [,] R ) |-> ( sqrt ` ( ( R ^ 2 ) - ( u ^ 2 ) ) ) ) |` ( -u R (,) R ) ) = ( u e. ( -u R (,) R ) |-> ( sqrt ` ( ( R ^ 2 ) - ( u ^ 2 ) ) ) ) |
384 |
|
areacirclem2 |
|- ( ( R e. RR /\ 0 <_ R ) -> ( u e. ( -u R [,] R ) |-> ( sqrt ` ( ( R ^ 2 ) - ( u ^ 2 ) ) ) ) e. ( ( -u R [,] R ) -cn-> CC ) ) |
385 |
269 300 384
|
syl2anc |
|- ( R e. RR+ -> ( u e. ( -u R [,] R ) |-> ( sqrt ` ( ( R ^ 2 ) - ( u ^ 2 ) ) ) ) e. ( ( -u R [,] R ) -cn-> CC ) ) |
386 |
|
rescncf |
|- ( ( -u R (,) R ) C_ ( -u R [,] R ) -> ( ( u e. ( -u R [,] R ) |-> ( sqrt ` ( ( R ^ 2 ) - ( u ^ 2 ) ) ) ) e. ( ( -u R [,] R ) -cn-> CC ) -> ( ( u e. ( -u R [,] R ) |-> ( sqrt ` ( ( R ^ 2 ) - ( u ^ 2 ) ) ) ) |` ( -u R (,) R ) ) e. ( ( -u R (,) R ) -cn-> CC ) ) ) |
387 |
381 385 386
|
mpsyl |
|- ( R e. RR+ -> ( ( u e. ( -u R [,] R ) |-> ( sqrt ` ( ( R ^ 2 ) - ( u ^ 2 ) ) ) ) |` ( -u R (,) R ) ) e. ( ( -u R (,) R ) -cn-> CC ) ) |
388 |
383 387
|
eqeltrrid |
|- ( R e. RR+ -> ( u e. ( -u R (,) R ) |-> ( sqrt ` ( ( R ^ 2 ) - ( u ^ 2 ) ) ) ) e. ( ( -u R (,) R ) -cn-> CC ) ) |
389 |
380 388
|
mulcncf |
|- ( R e. RR+ -> ( u e. ( -u R (,) R ) |-> ( 2 x. ( sqrt ` ( ( R ^ 2 ) - ( u ^ 2 ) ) ) ) ) e. ( ( -u R (,) R ) -cn-> CC ) ) |
390 |
353 389
|
eqeltrd |
|- ( R e. RR+ -> ( RR _D ( u e. ( -u R [,] R ) |-> ( ( R ^ 2 ) x. ( ( arcsin ` ( u / R ) ) + ( ( u / R ) x. ( sqrt ` ( 1 - ( ( u / R ) ^ 2 ) ) ) ) ) ) ) ) e. ( ( -u R (,) R ) -cn-> CC ) ) |
391 |
381
|
a1i |
|- ( ( R e. RR /\ 0 <_ R ) -> ( -u R (,) R ) C_ ( -u R [,] R ) ) |
392 |
|
ioombl |
|- ( -u R (,) R ) e. dom vol |
393 |
392
|
a1i |
|- ( ( R e. RR /\ 0 <_ R ) -> ( -u R (,) R ) e. dom vol ) |
394 |
|
ovexd |
|- ( ( ( R e. RR /\ 0 <_ R ) /\ u e. ( -u R [,] R ) ) -> ( 2 x. ( sqrt ` ( ( R ^ 2 ) - ( u ^ 2 ) ) ) ) e. _V ) |
395 |
|
areacirclem3 |
|- ( ( R e. RR /\ 0 <_ R ) -> ( u e. ( -u R [,] R ) |-> ( 2 x. ( sqrt ` ( ( R ^ 2 ) - ( u ^ 2 ) ) ) ) ) e. L^1 ) |
396 |
391 393 394 395
|
iblss |
|- ( ( R e. RR /\ 0 <_ R ) -> ( u e. ( -u R (,) R ) |-> ( 2 x. ( sqrt ` ( ( R ^ 2 ) - ( u ^ 2 ) ) ) ) ) e. L^1 ) |
397 |
269 300 396
|
syl2anc |
|- ( R e. RR+ -> ( u e. ( -u R (,) R ) |-> ( 2 x. ( sqrt ` ( ( R ^ 2 ) - ( u ^ 2 ) ) ) ) ) e. L^1 ) |
398 |
353 397
|
eqeltrd |
|- ( R e. RR+ -> ( RR _D ( u e. ( -u R [,] R ) |-> ( ( R ^ 2 ) x. ( ( arcsin ` ( u / R ) ) + ( ( u / R ) x. ( sqrt ` ( 1 - ( ( u / R ) ^ 2 ) ) ) ) ) ) ) ) e. L^1 ) |
399 |
|
areacirclem4 |
|- ( R e. RR+ -> ( u e. ( -u R [,] R ) |-> ( ( R ^ 2 ) x. ( ( arcsin ` ( u / R ) ) + ( ( u / R ) x. ( sqrt ` ( 1 - ( ( u / R ) ^ 2 ) ) ) ) ) ) ) e. ( ( -u R [,] R ) -cn-> CC ) ) |
400 |
271 269 374 390 398 399
|
ftc2nc |
|- ( R e. RR+ -> S. ( -u R (,) R ) ( ( RR _D ( u e. ( -u R [,] R ) |-> ( ( R ^ 2 ) x. ( ( arcsin ` ( u / R ) ) + ( ( u / R ) x. ( sqrt ` ( 1 - ( ( u / R ) ^ 2 ) ) ) ) ) ) ) ) ` t ) _d t = ( ( ( u e. ( -u R [,] R ) |-> ( ( R ^ 2 ) x. ( ( arcsin ` ( u / R ) ) + ( ( u / R ) x. ( sqrt ` ( 1 - ( ( u / R ) ^ 2 ) ) ) ) ) ) ) ` R ) - ( ( u e. ( -u R [,] R ) |-> ( ( R ^ 2 ) x. ( ( arcsin ` ( u / R ) ) + ( ( u / R ) x. ( sqrt ` ( 1 - ( ( u / R ) ^ 2 ) ) ) ) ) ) ) ` -u R ) ) ) |
401 |
|
eqidd |
|- ( R e. RR+ -> ( u e. ( -u R [,] R ) |-> ( ( R ^ 2 ) x. ( ( arcsin ` ( u / R ) ) + ( ( u / R ) x. ( sqrt ` ( 1 - ( ( u / R ) ^ 2 ) ) ) ) ) ) ) = ( u e. ( -u R [,] R ) |-> ( ( R ^ 2 ) x. ( ( arcsin ` ( u / R ) ) + ( ( u / R ) x. ( sqrt ` ( 1 - ( ( u / R ) ^ 2 ) ) ) ) ) ) ) ) |
402 |
|
fvoveq1 |
|- ( u = R -> ( arcsin ` ( u / R ) ) = ( arcsin ` ( R / R ) ) ) |
403 |
|
oveq1 |
|- ( u = R -> ( u / R ) = ( R / R ) ) |
404 |
403
|
oveq1d |
|- ( u = R -> ( ( u / R ) ^ 2 ) = ( ( R / R ) ^ 2 ) ) |
405 |
404
|
oveq2d |
|- ( u = R -> ( 1 - ( ( u / R ) ^ 2 ) ) = ( 1 - ( ( R / R ) ^ 2 ) ) ) |
406 |
405
|
fveq2d |
|- ( u = R -> ( sqrt ` ( 1 - ( ( u / R ) ^ 2 ) ) ) = ( sqrt ` ( 1 - ( ( R / R ) ^ 2 ) ) ) ) |
407 |
403 406
|
oveq12d |
|- ( u = R -> ( ( u / R ) x. ( sqrt ` ( 1 - ( ( u / R ) ^ 2 ) ) ) ) = ( ( R / R ) x. ( sqrt ` ( 1 - ( ( R / R ) ^ 2 ) ) ) ) ) |
408 |
402 407
|
oveq12d |
|- ( u = R -> ( ( arcsin ` ( u / R ) ) + ( ( u / R ) x. ( sqrt ` ( 1 - ( ( u / R ) ^ 2 ) ) ) ) ) = ( ( arcsin ` ( R / R ) ) + ( ( R / R ) x. ( sqrt ` ( 1 - ( ( R / R ) ^ 2 ) ) ) ) ) ) |
409 |
408
|
oveq2d |
|- ( u = R -> ( ( R ^ 2 ) x. ( ( arcsin ` ( u / R ) ) + ( ( u / R ) x. ( sqrt ` ( 1 - ( ( u / R ) ^ 2 ) ) ) ) ) ) = ( ( R ^ 2 ) x. ( ( arcsin ` ( R / R ) ) + ( ( R / R ) x. ( sqrt ` ( 1 - ( ( R / R ) ^ 2 ) ) ) ) ) ) ) |
410 |
409
|
adantl |
|- ( ( R e. RR+ /\ u = R ) -> ( ( R ^ 2 ) x. ( ( arcsin ` ( u / R ) ) + ( ( u / R ) x. ( sqrt ` ( 1 - ( ( u / R ) ^ 2 ) ) ) ) ) ) = ( ( R ^ 2 ) x. ( ( arcsin ` ( R / R ) ) + ( ( R / R ) x. ( sqrt ` ( 1 - ( ( R / R ) ^ 2 ) ) ) ) ) ) ) |
411 |
|
ubicc2 |
|- ( ( -u R e. RR* /\ R e. RR* /\ -u R <_ R ) -> R e. ( -u R [,] R ) ) |
412 |
272 273 374 411
|
syl3anc |
|- ( R e. RR+ -> R e. ( -u R [,] R ) ) |
413 |
|
ovexd |
|- ( R e. RR+ -> ( ( R ^ 2 ) x. ( ( arcsin ` ( R / R ) ) + ( ( R / R ) x. ( sqrt ` ( 1 - ( ( R / R ) ^ 2 ) ) ) ) ) ) e. _V ) |
414 |
401 410 412 413
|
fvmptd |
|- ( R e. RR+ -> ( ( u e. ( -u R [,] R ) |-> ( ( R ^ 2 ) x. ( ( arcsin ` ( u / R ) ) + ( ( u / R ) x. ( sqrt ` ( 1 - ( ( u / R ) ^ 2 ) ) ) ) ) ) ) ` R ) = ( ( R ^ 2 ) x. ( ( arcsin ` ( R / R ) ) + ( ( R / R ) x. ( sqrt ` ( 1 - ( ( R / R ) ^ 2 ) ) ) ) ) ) ) |
415 |
329 335
|
dividd |
|- ( R e. RR+ -> ( R / R ) = 1 ) |
416 |
415
|
fveq2d |
|- ( R e. RR+ -> ( arcsin ` ( R / R ) ) = ( arcsin ` 1 ) ) |
417 |
|
asin1 |
|- ( arcsin ` 1 ) = ( _pi / 2 ) |
418 |
416 417
|
eqtrdi |
|- ( R e. RR+ -> ( arcsin ` ( R / R ) ) = ( _pi / 2 ) ) |
419 |
415
|
oveq1d |
|- ( R e. RR+ -> ( ( R / R ) ^ 2 ) = ( 1 ^ 2 ) ) |
420 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
421 |
419 420
|
eqtrdi |
|- ( R e. RR+ -> ( ( R / R ) ^ 2 ) = 1 ) |
422 |
421
|
oveq2d |
|- ( R e. RR+ -> ( 1 - ( ( R / R ) ^ 2 ) ) = ( 1 - 1 ) ) |
423 |
|
1cnd |
|- ( R e. RR+ -> 1 e. CC ) |
424 |
423
|
subidd |
|- ( R e. RR+ -> ( 1 - 1 ) = 0 ) |
425 |
422 424
|
eqtrd |
|- ( R e. RR+ -> ( 1 - ( ( R / R ) ^ 2 ) ) = 0 ) |
426 |
425
|
fveq2d |
|- ( R e. RR+ -> ( sqrt ` ( 1 - ( ( R / R ) ^ 2 ) ) ) = ( sqrt ` 0 ) ) |
427 |
426 195
|
eqtrdi |
|- ( R e. RR+ -> ( sqrt ` ( 1 - ( ( R / R ) ^ 2 ) ) ) = 0 ) |
428 |
427
|
oveq2d |
|- ( R e. RR+ -> ( ( R / R ) x. ( sqrt ` ( 1 - ( ( R / R ) ^ 2 ) ) ) ) = ( ( R / R ) x. 0 ) ) |
429 |
329 329 335
|
divcld |
|- ( R e. RR+ -> ( R / R ) e. CC ) |
430 |
429
|
mul01d |
|- ( R e. RR+ -> ( ( R / R ) x. 0 ) = 0 ) |
431 |
428 430
|
eqtrd |
|- ( R e. RR+ -> ( ( R / R ) x. ( sqrt ` ( 1 - ( ( R / R ) ^ 2 ) ) ) ) = 0 ) |
432 |
418 431
|
oveq12d |
|- ( R e. RR+ -> ( ( arcsin ` ( R / R ) ) + ( ( R / R ) x. ( sqrt ` ( 1 - ( ( R / R ) ^ 2 ) ) ) ) ) = ( ( _pi / 2 ) + 0 ) ) |
433 |
|
2ne0 |
|- 2 =/= 0 |
434 |
251 375 433
|
divcli |
|- ( _pi / 2 ) e. CC |
435 |
434
|
a1i |
|- ( R e. RR+ -> ( _pi / 2 ) e. CC ) |
436 |
435
|
addid1d |
|- ( R e. RR+ -> ( ( _pi / 2 ) + 0 ) = ( _pi / 2 ) ) |
437 |
432 436
|
eqtrd |
|- ( R e. RR+ -> ( ( arcsin ` ( R / R ) ) + ( ( R / R ) x. ( sqrt ` ( 1 - ( ( R / R ) ^ 2 ) ) ) ) ) = ( _pi / 2 ) ) |
438 |
437
|
oveq2d |
|- ( R e. RR+ -> ( ( R ^ 2 ) x. ( ( arcsin ` ( R / R ) ) + ( ( R / R ) x. ( sqrt ` ( 1 - ( ( R / R ) ^ 2 ) ) ) ) ) ) = ( ( R ^ 2 ) x. ( _pi / 2 ) ) ) |
439 |
414 438
|
eqtrd |
|- ( R e. RR+ -> ( ( u e. ( -u R [,] R ) |-> ( ( R ^ 2 ) x. ( ( arcsin ` ( u / R ) ) + ( ( u / R ) x. ( sqrt ` ( 1 - ( ( u / R ) ^ 2 ) ) ) ) ) ) ) ` R ) = ( ( R ^ 2 ) x. ( _pi / 2 ) ) ) |
440 |
|
fvoveq1 |
|- ( u = -u R -> ( arcsin ` ( u / R ) ) = ( arcsin ` ( -u R / R ) ) ) |
441 |
|
oveq1 |
|- ( u = -u R -> ( u / R ) = ( -u R / R ) ) |
442 |
441
|
oveq1d |
|- ( u = -u R -> ( ( u / R ) ^ 2 ) = ( ( -u R / R ) ^ 2 ) ) |
443 |
442
|
oveq2d |
|- ( u = -u R -> ( 1 - ( ( u / R ) ^ 2 ) ) = ( 1 - ( ( -u R / R ) ^ 2 ) ) ) |
444 |
443
|
fveq2d |
|- ( u = -u R -> ( sqrt ` ( 1 - ( ( u / R ) ^ 2 ) ) ) = ( sqrt ` ( 1 - ( ( -u R / R ) ^ 2 ) ) ) ) |
445 |
441 444
|
oveq12d |
|- ( u = -u R -> ( ( u / R ) x. ( sqrt ` ( 1 - ( ( u / R ) ^ 2 ) ) ) ) = ( ( -u R / R ) x. ( sqrt ` ( 1 - ( ( -u R / R ) ^ 2 ) ) ) ) ) |
446 |
440 445
|
oveq12d |
|- ( u = -u R -> ( ( arcsin ` ( u / R ) ) + ( ( u / R ) x. ( sqrt ` ( 1 - ( ( u / R ) ^ 2 ) ) ) ) ) = ( ( arcsin ` ( -u R / R ) ) + ( ( -u R / R ) x. ( sqrt ` ( 1 - ( ( -u R / R ) ^ 2 ) ) ) ) ) ) |
447 |
446
|
adantl |
|- ( ( R e. RR+ /\ u = -u R ) -> ( ( arcsin ` ( u / R ) ) + ( ( u / R ) x. ( sqrt ` ( 1 - ( ( u / R ) ^ 2 ) ) ) ) ) = ( ( arcsin ` ( -u R / R ) ) + ( ( -u R / R ) x. ( sqrt ` ( 1 - ( ( -u R / R ) ^ 2 ) ) ) ) ) ) |
448 |
447
|
oveq2d |
|- ( ( R e. RR+ /\ u = -u R ) -> ( ( R ^ 2 ) x. ( ( arcsin ` ( u / R ) ) + ( ( u / R ) x. ( sqrt ` ( 1 - ( ( u / R ) ^ 2 ) ) ) ) ) ) = ( ( R ^ 2 ) x. ( ( arcsin ` ( -u R / R ) ) + ( ( -u R / R ) x. ( sqrt ` ( 1 - ( ( -u R / R ) ^ 2 ) ) ) ) ) ) ) |
449 |
|
lbicc2 |
|- ( ( -u R e. RR* /\ R e. RR* /\ -u R <_ R ) -> -u R e. ( -u R [,] R ) ) |
450 |
272 273 374 449
|
syl3anc |
|- ( R e. RR+ -> -u R e. ( -u R [,] R ) ) |
451 |
|
ovexd |
|- ( R e. RR+ -> ( ( R ^ 2 ) x. ( ( arcsin ` ( -u R / R ) ) + ( ( -u R / R ) x. ( sqrt ` ( 1 - ( ( -u R / R ) ^ 2 ) ) ) ) ) ) e. _V ) |
452 |
401 448 450 451
|
fvmptd |
|- ( R e. RR+ -> ( ( u e. ( -u R [,] R ) |-> ( ( R ^ 2 ) x. ( ( arcsin ` ( u / R ) ) + ( ( u / R ) x. ( sqrt ` ( 1 - ( ( u / R ) ^ 2 ) ) ) ) ) ) ) ` -u R ) = ( ( R ^ 2 ) x. ( ( arcsin ` ( -u R / R ) ) + ( ( -u R / R ) x. ( sqrt ` ( 1 - ( ( -u R / R ) ^ 2 ) ) ) ) ) ) ) |
453 |
329 329 335
|
divnegd |
|- ( R e. RR+ -> -u ( R / R ) = ( -u R / R ) ) |
454 |
415
|
negeqd |
|- ( R e. RR+ -> -u ( R / R ) = -u 1 ) |
455 |
453 454
|
eqtr3d |
|- ( R e. RR+ -> ( -u R / R ) = -u 1 ) |
456 |
455
|
fveq2d |
|- ( R e. RR+ -> ( arcsin ` ( -u R / R ) ) = ( arcsin ` -u 1 ) ) |
457 |
|
ax-1cn |
|- 1 e. CC |
458 |
|
asinneg |
|- ( 1 e. CC -> ( arcsin ` -u 1 ) = -u ( arcsin ` 1 ) ) |
459 |
457 458
|
ax-mp |
|- ( arcsin ` -u 1 ) = -u ( arcsin ` 1 ) |
460 |
417
|
negeqi |
|- -u ( arcsin ` 1 ) = -u ( _pi / 2 ) |
461 |
459 460
|
eqtri |
|- ( arcsin ` -u 1 ) = -u ( _pi / 2 ) |
462 |
456 461
|
eqtrdi |
|- ( R e. RR+ -> ( arcsin ` ( -u R / R ) ) = -u ( _pi / 2 ) ) |
463 |
455
|
oveq1d |
|- ( R e. RR+ -> ( ( -u R / R ) ^ 2 ) = ( -u 1 ^ 2 ) ) |
464 |
|
neg1sqe1 |
|- ( -u 1 ^ 2 ) = 1 |
465 |
463 464
|
eqtrdi |
|- ( R e. RR+ -> ( ( -u R / R ) ^ 2 ) = 1 ) |
466 |
465
|
oveq2d |
|- ( R e. RR+ -> ( 1 - ( ( -u R / R ) ^ 2 ) ) = ( 1 - 1 ) ) |
467 |
466 424
|
eqtrd |
|- ( R e. RR+ -> ( 1 - ( ( -u R / R ) ^ 2 ) ) = 0 ) |
468 |
467
|
fveq2d |
|- ( R e. RR+ -> ( sqrt ` ( 1 - ( ( -u R / R ) ^ 2 ) ) ) = ( sqrt ` 0 ) ) |
469 |
468 195
|
eqtrdi |
|- ( R e. RR+ -> ( sqrt ` ( 1 - ( ( -u R / R ) ^ 2 ) ) ) = 0 ) |
470 |
469
|
oveq2d |
|- ( R e. RR+ -> ( ( -u R / R ) x. ( sqrt ` ( 1 - ( ( -u R / R ) ^ 2 ) ) ) ) = ( ( -u R / R ) x. 0 ) ) |
471 |
271
|
recnd |
|- ( R e. RR+ -> -u R e. CC ) |
472 |
471 329 335
|
divcld |
|- ( R e. RR+ -> ( -u R / R ) e. CC ) |
473 |
472
|
mul01d |
|- ( R e. RR+ -> ( ( -u R / R ) x. 0 ) = 0 ) |
474 |
470 473
|
eqtrd |
|- ( R e. RR+ -> ( ( -u R / R ) x. ( sqrt ` ( 1 - ( ( -u R / R ) ^ 2 ) ) ) ) = 0 ) |
475 |
462 474
|
oveq12d |
|- ( R e. RR+ -> ( ( arcsin ` ( -u R / R ) ) + ( ( -u R / R ) x. ( sqrt ` ( 1 - ( ( -u R / R ) ^ 2 ) ) ) ) ) = ( -u ( _pi / 2 ) + 0 ) ) |
476 |
434
|
negcli |
|- -u ( _pi / 2 ) e. CC |
477 |
476
|
a1i |
|- ( R e. RR+ -> -u ( _pi / 2 ) e. CC ) |
478 |
477
|
addid1d |
|- ( R e. RR+ -> ( -u ( _pi / 2 ) + 0 ) = -u ( _pi / 2 ) ) |
479 |
475 478
|
eqtrd |
|- ( R e. RR+ -> ( ( arcsin ` ( -u R / R ) ) + ( ( -u R / R ) x. ( sqrt ` ( 1 - ( ( -u R / R ) ^ 2 ) ) ) ) ) = -u ( _pi / 2 ) ) |
480 |
479
|
oveq2d |
|- ( R e. RR+ -> ( ( R ^ 2 ) x. ( ( arcsin ` ( -u R / R ) ) + ( ( -u R / R ) x. ( sqrt ` ( 1 - ( ( -u R / R ) ^ 2 ) ) ) ) ) ) = ( ( R ^ 2 ) x. -u ( _pi / 2 ) ) ) |
481 |
452 480
|
eqtrd |
|- ( R e. RR+ -> ( ( u e. ( -u R [,] R ) |-> ( ( R ^ 2 ) x. ( ( arcsin ` ( u / R ) ) + ( ( u / R ) x. ( sqrt ` ( 1 - ( ( u / R ) ^ 2 ) ) ) ) ) ) ) ` -u R ) = ( ( R ^ 2 ) x. -u ( _pi / 2 ) ) ) |
482 |
439 481
|
oveq12d |
|- ( R e. RR+ -> ( ( ( u e. ( -u R [,] R ) |-> ( ( R ^ 2 ) x. ( ( arcsin ` ( u / R ) ) + ( ( u / R ) x. ( sqrt ` ( 1 - ( ( u / R ) ^ 2 ) ) ) ) ) ) ) ` R ) - ( ( u e. ( -u R [,] R ) |-> ( ( R ^ 2 ) x. ( ( arcsin ` ( u / R ) ) + ( ( u / R ) x. ( sqrt ` ( 1 - ( ( u / R ) ^ 2 ) ) ) ) ) ) ) ` -u R ) ) = ( ( ( R ^ 2 ) x. ( _pi / 2 ) ) - ( ( R ^ 2 ) x. -u ( _pi / 2 ) ) ) ) |
483 |
434 434
|
subnegi |
|- ( ( _pi / 2 ) - -u ( _pi / 2 ) ) = ( ( _pi / 2 ) + ( _pi / 2 ) ) |
484 |
|
pidiv2halves |
|- ( ( _pi / 2 ) + ( _pi / 2 ) ) = _pi |
485 |
483 484
|
eqtri |
|- ( ( _pi / 2 ) - -u ( _pi / 2 ) ) = _pi |
486 |
485
|
a1i |
|- ( R e. RR+ -> ( ( _pi / 2 ) - -u ( _pi / 2 ) ) = _pi ) |
487 |
486
|
oveq2d |
|- ( R e. RR+ -> ( ( R ^ 2 ) x. ( ( _pi / 2 ) - -u ( _pi / 2 ) ) ) = ( ( R ^ 2 ) x. _pi ) ) |
488 |
330 435 477
|
subdid |
|- ( R e. RR+ -> ( ( R ^ 2 ) x. ( ( _pi / 2 ) - -u ( _pi / 2 ) ) ) = ( ( ( R ^ 2 ) x. ( _pi / 2 ) ) - ( ( R ^ 2 ) x. -u ( _pi / 2 ) ) ) ) |
489 |
251
|
a1i |
|- ( R e. RR+ -> _pi e. CC ) |
490 |
330 489
|
mulcomd |
|- ( R e. RR+ -> ( ( R ^ 2 ) x. _pi ) = ( _pi x. ( R ^ 2 ) ) ) |
491 |
487 488 490
|
3eqtr3d |
|- ( R e. RR+ -> ( ( ( R ^ 2 ) x. ( _pi / 2 ) ) - ( ( R ^ 2 ) x. -u ( _pi / 2 ) ) ) = ( _pi x. ( R ^ 2 ) ) ) |
492 |
482 491
|
eqtrd |
|- ( R e. RR+ -> ( ( ( u e. ( -u R [,] R ) |-> ( ( R ^ 2 ) x. ( ( arcsin ` ( u / R ) ) + ( ( u / R ) x. ( sqrt ` ( 1 - ( ( u / R ) ^ 2 ) ) ) ) ) ) ) ` R ) - ( ( u e. ( -u R [,] R ) |-> ( ( R ^ 2 ) x. ( ( arcsin ` ( u / R ) ) + ( ( u / R ) x. ( sqrt ` ( 1 - ( ( u / R ) ^ 2 ) ) ) ) ) ) ) ` -u R ) ) = ( _pi x. ( R ^ 2 ) ) ) |
493 |
368 400 492
|
3eqtrd |
|- ( R e. RR+ -> S. ( -u R (,) R ) ( vol ` if ( ( abs ` t ) <_ R , ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) , (/) ) ) _d t = ( _pi x. ( R ^ 2 ) ) ) |
494 |
266 493
|
syl |
|- ( ( ( R e. RR /\ 0 <_ R ) /\ R =/= 0 ) -> S. ( -u R (,) R ) ( vol ` if ( ( abs ` t ) <_ R , ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) , (/) ) ) _d t = ( _pi x. ( R ^ 2 ) ) ) |
495 |
259 494
|
pm2.61dane |
|- ( ( R e. RR /\ 0 <_ R ) -> S. ( -u R (,) R ) ( vol ` if ( ( abs ` t ) <_ R , ( -u ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) [,] ( sqrt ` ( ( R ^ 2 ) - ( t ^ 2 ) ) ) ) , (/) ) ) _d t = ( _pi x. ( R ^ 2 ) ) ) |
496 |
161 238 495
|
3eqtr3d |
|- ( ( R e. RR /\ 0 <_ R ) -> S. RR ( vol ` ( S " { t } ) ) _d t = ( _pi x. ( R ^ 2 ) ) ) |
497 |
156 496
|
eqtrd |
|- ( ( R e. RR /\ 0 <_ R ) -> ( area ` S ) = ( _pi x. ( R ^ 2 ) ) ) |