| Step |
Hyp |
Ref |
Expression |
| 1 |
|
plypf1.r |
|- R = ( CCfld |`s S ) |
| 2 |
|
plypf1.p |
|- P = ( Poly1 ` R ) |
| 3 |
|
plypf1.a |
|- A = ( Base ` P ) |
| 4 |
|
plypf1.e |
|- E = ( eval1 ` CCfld ) |
| 5 |
|
elply |
|- ( f e. ( Poly ` S ) <-> ( S C_ CC /\ E. n e. NN0 E. a e. ( ( S u. { 0 } ) ^m NN0 ) f = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) ) |
| 6 |
5
|
simprbi |
|- ( f e. ( Poly ` S ) -> E. n e. NN0 E. a e. ( ( S u. { 0 } ) ^m NN0 ) f = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) |
| 7 |
|
eqid |
|- ( CCfld ^s CC ) = ( CCfld ^s CC ) |
| 8 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 9 |
|
eqid |
|- ( 0g ` ( CCfld ^s CC ) ) = ( 0g ` ( CCfld ^s CC ) ) |
| 10 |
|
cnex |
|- CC e. _V |
| 11 |
10
|
a1i |
|- ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) -> CC e. _V ) |
| 12 |
|
fzfid |
|- ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) -> ( 0 ... n ) e. Fin ) |
| 13 |
|
cnring |
|- CCfld e. Ring |
| 14 |
|
ringcmn |
|- ( CCfld e. Ring -> CCfld e. CMnd ) |
| 15 |
13 14
|
mp1i |
|- ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) -> CCfld e. CMnd ) |
| 16 |
8
|
subrgss |
|- ( S e. ( SubRing ` CCfld ) -> S C_ CC ) |
| 17 |
16
|
ad2antrr |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) -> S C_ CC ) |
| 18 |
|
elmapi |
|- ( a e. ( ( S u. { 0 } ) ^m NN0 ) -> a : NN0 --> ( S u. { 0 } ) ) |
| 19 |
18
|
ad2antll |
|- ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) -> a : NN0 --> ( S u. { 0 } ) ) |
| 20 |
|
subrgsubg |
|- ( S e. ( SubRing ` CCfld ) -> S e. ( SubGrp ` CCfld ) ) |
| 21 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
| 22 |
21
|
subg0cl |
|- ( S e. ( SubGrp ` CCfld ) -> 0 e. S ) |
| 23 |
20 22
|
syl |
|- ( S e. ( SubRing ` CCfld ) -> 0 e. S ) |
| 24 |
23
|
adantr |
|- ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) -> 0 e. S ) |
| 25 |
24
|
snssd |
|- ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) -> { 0 } C_ S ) |
| 26 |
|
ssequn2 |
|- ( { 0 } C_ S <-> ( S u. { 0 } ) = S ) |
| 27 |
25 26
|
sylib |
|- ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) -> ( S u. { 0 } ) = S ) |
| 28 |
27
|
feq3d |
|- ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) -> ( a : NN0 --> ( S u. { 0 } ) <-> a : NN0 --> S ) ) |
| 29 |
19 28
|
mpbid |
|- ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) -> a : NN0 --> S ) |
| 30 |
|
elfznn0 |
|- ( k e. ( 0 ... n ) -> k e. NN0 ) |
| 31 |
|
ffvelcdm |
|- ( ( a : NN0 --> S /\ k e. NN0 ) -> ( a ` k ) e. S ) |
| 32 |
29 30 31
|
syl2an |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) -> ( a ` k ) e. S ) |
| 33 |
17 32
|
sseldd |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) -> ( a ` k ) e. CC ) |
| 34 |
33
|
adantrl |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ ( z e. CC /\ k e. ( 0 ... n ) ) ) -> ( a ` k ) e. CC ) |
| 35 |
|
simprl |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ ( z e. CC /\ k e. ( 0 ... n ) ) ) -> z e. CC ) |
| 36 |
30
|
ad2antll |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ ( z e. CC /\ k e. ( 0 ... n ) ) ) -> k e. NN0 ) |
| 37 |
|
expcl |
|- ( ( z e. CC /\ k e. NN0 ) -> ( z ^ k ) e. CC ) |
| 38 |
35 36 37
|
syl2anc |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ ( z e. CC /\ k e. ( 0 ... n ) ) ) -> ( z ^ k ) e. CC ) |
| 39 |
34 38
|
mulcld |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ ( z e. CC /\ k e. ( 0 ... n ) ) ) -> ( ( a ` k ) x. ( z ^ k ) ) e. CC ) |
| 40 |
|
eqid |
|- ( k e. ( 0 ... n ) |-> ( z e. CC |-> ( ( a ` k ) x. ( z ^ k ) ) ) ) = ( k e. ( 0 ... n ) |-> ( z e. CC |-> ( ( a ` k ) x. ( z ^ k ) ) ) ) |
| 41 |
10
|
mptex |
|- ( z e. CC |-> ( ( a ` k ) x. ( z ^ k ) ) ) e. _V |
| 42 |
41
|
a1i |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) -> ( z e. CC |-> ( ( a ` k ) x. ( z ^ k ) ) ) e. _V ) |
| 43 |
|
fvex |
|- ( 0g ` ( CCfld ^s CC ) ) e. _V |
| 44 |
43
|
a1i |
|- ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) -> ( 0g ` ( CCfld ^s CC ) ) e. _V ) |
| 45 |
40 12 42 44
|
fsuppmptdm |
|- ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) -> ( k e. ( 0 ... n ) |-> ( z e. CC |-> ( ( a ` k ) x. ( z ^ k ) ) ) ) finSupp ( 0g ` ( CCfld ^s CC ) ) ) |
| 46 |
7 8 9 11 12 15 39 45
|
pwsgsum |
|- ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) -> ( ( CCfld ^s CC ) gsum ( k e. ( 0 ... n ) |-> ( z e. CC |-> ( ( a ` k ) x. ( z ^ k ) ) ) ) ) = ( z e. CC |-> ( CCfld gsum ( k e. ( 0 ... n ) |-> ( ( a ` k ) x. ( z ^ k ) ) ) ) ) ) |
| 47 |
|
fzfid |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ z e. CC ) -> ( 0 ... n ) e. Fin ) |
| 48 |
39
|
anassrs |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ z e. CC ) /\ k e. ( 0 ... n ) ) -> ( ( a ` k ) x. ( z ^ k ) ) e. CC ) |
| 49 |
47 48
|
gsumfsum |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ z e. CC ) -> ( CCfld gsum ( k e. ( 0 ... n ) |-> ( ( a ` k ) x. ( z ^ k ) ) ) ) = sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) |
| 50 |
49
|
mpteq2dva |
|- ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) -> ( z e. CC |-> ( CCfld gsum ( k e. ( 0 ... n ) |-> ( ( a ` k ) x. ( z ^ k ) ) ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) |
| 51 |
46 50
|
eqtrd |
|- ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) -> ( ( CCfld ^s CC ) gsum ( k e. ( 0 ... n ) |-> ( z e. CC |-> ( ( a ` k ) x. ( z ^ k ) ) ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) ) |
| 52 |
7
|
pwsring |
|- ( ( CCfld e. Ring /\ CC e. _V ) -> ( CCfld ^s CC ) e. Ring ) |
| 53 |
13 10 52
|
mp2an |
|- ( CCfld ^s CC ) e. Ring |
| 54 |
|
ringcmn |
|- ( ( CCfld ^s CC ) e. Ring -> ( CCfld ^s CC ) e. CMnd ) |
| 55 |
53 54
|
mp1i |
|- ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) -> ( CCfld ^s CC ) e. CMnd ) |
| 56 |
|
cncrng |
|- CCfld e. CRing |
| 57 |
|
eqid |
|- ( Poly1 ` CCfld ) = ( Poly1 ` CCfld ) |
| 58 |
4 57 7 8
|
evl1rhm |
|- ( CCfld e. CRing -> E e. ( ( Poly1 ` CCfld ) RingHom ( CCfld ^s CC ) ) ) |
| 59 |
56 58
|
ax-mp |
|- E e. ( ( Poly1 ` CCfld ) RingHom ( CCfld ^s CC ) ) |
| 60 |
57 1 2 3
|
subrgply1 |
|- ( S e. ( SubRing ` CCfld ) -> A e. ( SubRing ` ( Poly1 ` CCfld ) ) ) |
| 61 |
60
|
adantr |
|- ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) -> A e. ( SubRing ` ( Poly1 ` CCfld ) ) ) |
| 62 |
|
rhmima |
|- ( ( E e. ( ( Poly1 ` CCfld ) RingHom ( CCfld ^s CC ) ) /\ A e. ( SubRing ` ( Poly1 ` CCfld ) ) ) -> ( E " A ) e. ( SubRing ` ( CCfld ^s CC ) ) ) |
| 63 |
59 61 62
|
sylancr |
|- ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) -> ( E " A ) e. ( SubRing ` ( CCfld ^s CC ) ) ) |
| 64 |
|
subrgsubg |
|- ( ( E " A ) e. ( SubRing ` ( CCfld ^s CC ) ) -> ( E " A ) e. ( SubGrp ` ( CCfld ^s CC ) ) ) |
| 65 |
|
subgsubm |
|- ( ( E " A ) e. ( SubGrp ` ( CCfld ^s CC ) ) -> ( E " A ) e. ( SubMnd ` ( CCfld ^s CC ) ) ) |
| 66 |
63 64 65
|
3syl |
|- ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) -> ( E " A ) e. ( SubMnd ` ( CCfld ^s CC ) ) ) |
| 67 |
|
eqid |
|- ( Base ` ( CCfld ^s CC ) ) = ( Base ` ( CCfld ^s CC ) ) |
| 68 |
13
|
a1i |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) -> CCfld e. Ring ) |
| 69 |
10
|
a1i |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) -> CC e. _V ) |
| 70 |
|
fconst6g |
|- ( ( a ` k ) e. CC -> ( CC X. { ( a ` k ) } ) : CC --> CC ) |
| 71 |
33 70
|
syl |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) -> ( CC X. { ( a ` k ) } ) : CC --> CC ) |
| 72 |
7 8 67
|
pwselbasb |
|- ( ( CCfld e. Ring /\ CC e. _V ) -> ( ( CC X. { ( a ` k ) } ) e. ( Base ` ( CCfld ^s CC ) ) <-> ( CC X. { ( a ` k ) } ) : CC --> CC ) ) |
| 73 |
13 10 72
|
mp2an |
|- ( ( CC X. { ( a ` k ) } ) e. ( Base ` ( CCfld ^s CC ) ) <-> ( CC X. { ( a ` k ) } ) : CC --> CC ) |
| 74 |
71 73
|
sylibr |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) -> ( CC X. { ( a ` k ) } ) e. ( Base ` ( CCfld ^s CC ) ) ) |
| 75 |
38
|
anass1rs |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) /\ z e. CC ) -> ( z ^ k ) e. CC ) |
| 76 |
75
|
fmpttd |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) -> ( z e. CC |-> ( z ^ k ) ) : CC --> CC ) |
| 77 |
7 8 67
|
pwselbasb |
|- ( ( CCfld e. Ring /\ CC e. _V ) -> ( ( z e. CC |-> ( z ^ k ) ) e. ( Base ` ( CCfld ^s CC ) ) <-> ( z e. CC |-> ( z ^ k ) ) : CC --> CC ) ) |
| 78 |
13 10 77
|
mp2an |
|- ( ( z e. CC |-> ( z ^ k ) ) e. ( Base ` ( CCfld ^s CC ) ) <-> ( z e. CC |-> ( z ^ k ) ) : CC --> CC ) |
| 79 |
76 78
|
sylibr |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) -> ( z e. CC |-> ( z ^ k ) ) e. ( Base ` ( CCfld ^s CC ) ) ) |
| 80 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
| 81 |
|
eqid |
|- ( .r ` ( CCfld ^s CC ) ) = ( .r ` ( CCfld ^s CC ) ) |
| 82 |
7 67 68 69 74 79 80 81
|
pwsmulrval |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) -> ( ( CC X. { ( a ` k ) } ) ( .r ` ( CCfld ^s CC ) ) ( z e. CC |-> ( z ^ k ) ) ) = ( ( CC X. { ( a ` k ) } ) oF x. ( z e. CC |-> ( z ^ k ) ) ) ) |
| 83 |
33
|
adantr |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) /\ z e. CC ) -> ( a ` k ) e. CC ) |
| 84 |
|
fconstmpt |
|- ( CC X. { ( a ` k ) } ) = ( z e. CC |-> ( a ` k ) ) |
| 85 |
84
|
a1i |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) -> ( CC X. { ( a ` k ) } ) = ( z e. CC |-> ( a ` k ) ) ) |
| 86 |
|
eqidd |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) -> ( z e. CC |-> ( z ^ k ) ) = ( z e. CC |-> ( z ^ k ) ) ) |
| 87 |
69 83 75 85 86
|
offval2 |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) -> ( ( CC X. { ( a ` k ) } ) oF x. ( z e. CC |-> ( z ^ k ) ) ) = ( z e. CC |-> ( ( a ` k ) x. ( z ^ k ) ) ) ) |
| 88 |
82 87
|
eqtrd |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) -> ( ( CC X. { ( a ` k ) } ) ( .r ` ( CCfld ^s CC ) ) ( z e. CC |-> ( z ^ k ) ) ) = ( z e. CC |-> ( ( a ` k ) x. ( z ^ k ) ) ) ) |
| 89 |
63
|
adantr |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) -> ( E " A ) e. ( SubRing ` ( CCfld ^s CC ) ) ) |
| 90 |
|
eqid |
|- ( algSc ` ( Poly1 ` CCfld ) ) = ( algSc ` ( Poly1 ` CCfld ) ) |
| 91 |
4 57 8 90
|
evl1sca |
|- ( ( CCfld e. CRing /\ ( a ` k ) e. CC ) -> ( E ` ( ( algSc ` ( Poly1 ` CCfld ) ) ` ( a ` k ) ) ) = ( CC X. { ( a ` k ) } ) ) |
| 92 |
56 33 91
|
sylancr |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) -> ( E ` ( ( algSc ` ( Poly1 ` CCfld ) ) ` ( a ` k ) ) ) = ( CC X. { ( a ` k ) } ) ) |
| 93 |
|
eqid |
|- ( Base ` ( Poly1 ` CCfld ) ) = ( Base ` ( Poly1 ` CCfld ) ) |
| 94 |
93 67
|
rhmf |
|- ( E e. ( ( Poly1 ` CCfld ) RingHom ( CCfld ^s CC ) ) -> E : ( Base ` ( Poly1 ` CCfld ) ) --> ( Base ` ( CCfld ^s CC ) ) ) |
| 95 |
59 94
|
ax-mp |
|- E : ( Base ` ( Poly1 ` CCfld ) ) --> ( Base ` ( CCfld ^s CC ) ) |
| 96 |
|
ffn |
|- ( E : ( Base ` ( Poly1 ` CCfld ) ) --> ( Base ` ( CCfld ^s CC ) ) -> E Fn ( Base ` ( Poly1 ` CCfld ) ) ) |
| 97 |
95 96
|
mp1i |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) -> E Fn ( Base ` ( Poly1 ` CCfld ) ) ) |
| 98 |
93
|
subrgss |
|- ( A e. ( SubRing ` ( Poly1 ` CCfld ) ) -> A C_ ( Base ` ( Poly1 ` CCfld ) ) ) |
| 99 |
60 98
|
syl |
|- ( S e. ( SubRing ` CCfld ) -> A C_ ( Base ` ( Poly1 ` CCfld ) ) ) |
| 100 |
99
|
ad2antrr |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) -> A C_ ( Base ` ( Poly1 ` CCfld ) ) ) |
| 101 |
|
simpll |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) -> S e. ( SubRing ` CCfld ) ) |
| 102 |
57 90 1 2 101 3 8 33
|
subrg1asclcl |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) -> ( ( ( algSc ` ( Poly1 ` CCfld ) ) ` ( a ` k ) ) e. A <-> ( a ` k ) e. S ) ) |
| 103 |
32 102
|
mpbird |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) -> ( ( algSc ` ( Poly1 ` CCfld ) ) ` ( a ` k ) ) e. A ) |
| 104 |
|
fnfvima |
|- ( ( E Fn ( Base ` ( Poly1 ` CCfld ) ) /\ A C_ ( Base ` ( Poly1 ` CCfld ) ) /\ ( ( algSc ` ( Poly1 ` CCfld ) ) ` ( a ` k ) ) e. A ) -> ( E ` ( ( algSc ` ( Poly1 ` CCfld ) ) ` ( a ` k ) ) ) e. ( E " A ) ) |
| 105 |
97 100 103 104
|
syl3anc |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) -> ( E ` ( ( algSc ` ( Poly1 ` CCfld ) ) ` ( a ` k ) ) ) e. ( E " A ) ) |
| 106 |
92 105
|
eqeltrrd |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) -> ( CC X. { ( a ` k ) } ) e. ( E " A ) ) |
| 107 |
67
|
subrgss |
|- ( ( E " A ) e. ( SubRing ` ( CCfld ^s CC ) ) -> ( E " A ) C_ ( Base ` ( CCfld ^s CC ) ) ) |
| 108 |
89 107
|
syl |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) -> ( E " A ) C_ ( Base ` ( CCfld ^s CC ) ) ) |
| 109 |
60
|
ad2antrr |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) -> A e. ( SubRing ` ( Poly1 ` CCfld ) ) ) |
| 110 |
|
eqid |
|- ( mulGrp ` ( Poly1 ` CCfld ) ) = ( mulGrp ` ( Poly1 ` CCfld ) ) |
| 111 |
110
|
subrgsubm |
|- ( A e. ( SubRing ` ( Poly1 ` CCfld ) ) -> A e. ( SubMnd ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ) |
| 112 |
109 111
|
syl |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) -> A e. ( SubMnd ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ) |
| 113 |
30
|
adantl |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) -> k e. NN0 ) |
| 114 |
|
eqid |
|- ( var1 ` CCfld ) = ( var1 ` CCfld ) |
| 115 |
114 101 1 2 3
|
subrgvr1cl |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) -> ( var1 ` CCfld ) e. A ) |
| 116 |
|
eqid |
|- ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) = ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) |
| 117 |
116
|
submmulgcl |
|- ( ( A e. ( SubMnd ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) /\ k e. NN0 /\ ( var1 ` CCfld ) e. A ) -> ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) e. A ) |
| 118 |
112 113 115 117
|
syl3anc |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) -> ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) e. A ) |
| 119 |
|
fnfvima |
|- ( ( E Fn ( Base ` ( Poly1 ` CCfld ) ) /\ A C_ ( Base ` ( Poly1 ` CCfld ) ) /\ ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) e. A ) -> ( E ` ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) e. ( E " A ) ) |
| 120 |
97 100 118 119
|
syl3anc |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) -> ( E ` ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) e. ( E " A ) ) |
| 121 |
108 120
|
sseldd |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) -> ( E ` ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) e. ( Base ` ( CCfld ^s CC ) ) ) |
| 122 |
7 8 67 68 69 121
|
pwselbas |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) -> ( E ` ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) : CC --> CC ) |
| 123 |
122
|
feqmptd |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) -> ( E ` ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) = ( z e. CC |-> ( ( E ` ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) ` z ) ) ) |
| 124 |
56
|
a1i |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) /\ z e. CC ) -> CCfld e. CRing ) |
| 125 |
|
simpr |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) /\ z e. CC ) -> z e. CC ) |
| 126 |
4 114 8 57 93 124 125
|
evl1vard |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) /\ z e. CC ) -> ( ( var1 ` CCfld ) e. ( Base ` ( Poly1 ` CCfld ) ) /\ ( ( E ` ( var1 ` CCfld ) ) ` z ) = z ) ) |
| 127 |
|
eqid |
|- ( .g ` ( mulGrp ` CCfld ) ) = ( .g ` ( mulGrp ` CCfld ) ) |
| 128 |
113
|
adantr |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) /\ z e. CC ) -> k e. NN0 ) |
| 129 |
4 57 8 93 124 125 126 116 127 128
|
evl1expd |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) /\ z e. CC ) -> ( ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) e. ( Base ` ( Poly1 ` CCfld ) ) /\ ( ( E ` ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) ` z ) = ( k ( .g ` ( mulGrp ` CCfld ) ) z ) ) ) |
| 130 |
129
|
simprd |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) /\ z e. CC ) -> ( ( E ` ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) ` z ) = ( k ( .g ` ( mulGrp ` CCfld ) ) z ) ) |
| 131 |
|
cnfldexp |
|- ( ( z e. CC /\ k e. NN0 ) -> ( k ( .g ` ( mulGrp ` CCfld ) ) z ) = ( z ^ k ) ) |
| 132 |
125 128 131
|
syl2anc |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) /\ z e. CC ) -> ( k ( .g ` ( mulGrp ` CCfld ) ) z ) = ( z ^ k ) ) |
| 133 |
130 132
|
eqtrd |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) /\ z e. CC ) -> ( ( E ` ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) ` z ) = ( z ^ k ) ) |
| 134 |
133
|
mpteq2dva |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) -> ( z e. CC |-> ( ( E ` ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) ` z ) ) = ( z e. CC |-> ( z ^ k ) ) ) |
| 135 |
123 134
|
eqtrd |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) -> ( E ` ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) = ( z e. CC |-> ( z ^ k ) ) ) |
| 136 |
135 120
|
eqeltrrd |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) -> ( z e. CC |-> ( z ^ k ) ) e. ( E " A ) ) |
| 137 |
81
|
subrgmcl |
|- ( ( ( E " A ) e. ( SubRing ` ( CCfld ^s CC ) ) /\ ( CC X. { ( a ` k ) } ) e. ( E " A ) /\ ( z e. CC |-> ( z ^ k ) ) e. ( E " A ) ) -> ( ( CC X. { ( a ` k ) } ) ( .r ` ( CCfld ^s CC ) ) ( z e. CC |-> ( z ^ k ) ) ) e. ( E " A ) ) |
| 138 |
89 106 136 137
|
syl3anc |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) -> ( ( CC X. { ( a ` k ) } ) ( .r ` ( CCfld ^s CC ) ) ( z e. CC |-> ( z ^ k ) ) ) e. ( E " A ) ) |
| 139 |
88 138
|
eqeltrrd |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) /\ k e. ( 0 ... n ) ) -> ( z e. CC |-> ( ( a ` k ) x. ( z ^ k ) ) ) e. ( E " A ) ) |
| 140 |
139
|
fmpttd |
|- ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) -> ( k e. ( 0 ... n ) |-> ( z e. CC |-> ( ( a ` k ) x. ( z ^ k ) ) ) ) : ( 0 ... n ) --> ( E " A ) ) |
| 141 |
40 12 139 44
|
fsuppmptdm |
|- ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) -> ( k e. ( 0 ... n ) |-> ( z e. CC |-> ( ( a ` k ) x. ( z ^ k ) ) ) ) finSupp ( 0g ` ( CCfld ^s CC ) ) ) |
| 142 |
9 55 12 66 140 141
|
gsumsubmcl |
|- ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) -> ( ( CCfld ^s CC ) gsum ( k e. ( 0 ... n ) |-> ( z e. CC |-> ( ( a ` k ) x. ( z ^ k ) ) ) ) ) e. ( E " A ) ) |
| 143 |
51 142
|
eqeltrrd |
|- ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) -> ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) e. ( E " A ) ) |
| 144 |
|
eleq1 |
|- ( f = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) -> ( f e. ( E " A ) <-> ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) e. ( E " A ) ) ) |
| 145 |
143 144
|
syl5ibrcom |
|- ( ( S e. ( SubRing ` CCfld ) /\ ( n e. NN0 /\ a e. ( ( S u. { 0 } ) ^m NN0 ) ) ) -> ( f = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) -> f e. ( E " A ) ) ) |
| 146 |
145
|
rexlimdvva |
|- ( S e. ( SubRing ` CCfld ) -> ( E. n e. NN0 E. a e. ( ( S u. { 0 } ) ^m NN0 ) f = ( z e. CC |-> sum_ k e. ( 0 ... n ) ( ( a ` k ) x. ( z ^ k ) ) ) -> f e. ( E " A ) ) ) |
| 147 |
6 146
|
syl5 |
|- ( S e. ( SubRing ` CCfld ) -> ( f e. ( Poly ` S ) -> f e. ( E " A ) ) ) |
| 148 |
|
ffun |
|- ( E : ( Base ` ( Poly1 ` CCfld ) ) --> ( Base ` ( CCfld ^s CC ) ) -> Fun E ) |
| 149 |
95 148
|
ax-mp |
|- Fun E |
| 150 |
|
fvelima |
|- ( ( Fun E /\ f e. ( E " A ) ) -> E. a e. A ( E ` a ) = f ) |
| 151 |
149 150
|
mpan |
|- ( f e. ( E " A ) -> E. a e. A ( E ` a ) = f ) |
| 152 |
99
|
sselda |
|- ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) -> a e. ( Base ` ( Poly1 ` CCfld ) ) ) |
| 153 |
|
eqid |
|- ( .s ` ( Poly1 ` CCfld ) ) = ( .s ` ( Poly1 ` CCfld ) ) |
| 154 |
|
eqid |
|- ( coe1 ` a ) = ( coe1 ` a ) |
| 155 |
57 114 93 153 110 116 154
|
ply1coe |
|- ( ( CCfld e. Ring /\ a e. ( Base ` ( Poly1 ` CCfld ) ) ) -> a = ( ( Poly1 ` CCfld ) gsum ( k e. NN0 |-> ( ( ( coe1 ` a ) ` k ) ( .s ` ( Poly1 ` CCfld ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) ) ) ) |
| 156 |
13 152 155
|
sylancr |
|- ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) -> a = ( ( Poly1 ` CCfld ) gsum ( k e. NN0 |-> ( ( ( coe1 ` a ) ` k ) ( .s ` ( Poly1 ` CCfld ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) ) ) ) |
| 157 |
156
|
fveq2d |
|- ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) -> ( E ` a ) = ( E ` ( ( Poly1 ` CCfld ) gsum ( k e. NN0 |-> ( ( ( coe1 ` a ) ` k ) ( .s ` ( Poly1 ` CCfld ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) ) ) ) ) |
| 158 |
|
eqid |
|- ( 0g ` ( Poly1 ` CCfld ) ) = ( 0g ` ( Poly1 ` CCfld ) ) |
| 159 |
57
|
ply1ring |
|- ( CCfld e. Ring -> ( Poly1 ` CCfld ) e. Ring ) |
| 160 |
13 159
|
ax-mp |
|- ( Poly1 ` CCfld ) e. Ring |
| 161 |
|
ringcmn |
|- ( ( Poly1 ` CCfld ) e. Ring -> ( Poly1 ` CCfld ) e. CMnd ) |
| 162 |
160 161
|
mp1i |
|- ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) -> ( Poly1 ` CCfld ) e. CMnd ) |
| 163 |
|
ringmnd |
|- ( ( CCfld ^s CC ) e. Ring -> ( CCfld ^s CC ) e. Mnd ) |
| 164 |
53 163
|
mp1i |
|- ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) -> ( CCfld ^s CC ) e. Mnd ) |
| 165 |
|
nn0ex |
|- NN0 e. _V |
| 166 |
165
|
a1i |
|- ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) -> NN0 e. _V ) |
| 167 |
|
rhmghm |
|- ( E e. ( ( Poly1 ` CCfld ) RingHom ( CCfld ^s CC ) ) -> E e. ( ( Poly1 ` CCfld ) GrpHom ( CCfld ^s CC ) ) ) |
| 168 |
59 167
|
ax-mp |
|- E e. ( ( Poly1 ` CCfld ) GrpHom ( CCfld ^s CC ) ) |
| 169 |
|
ghmmhm |
|- ( E e. ( ( Poly1 ` CCfld ) GrpHom ( CCfld ^s CC ) ) -> E e. ( ( Poly1 ` CCfld ) MndHom ( CCfld ^s CC ) ) ) |
| 170 |
168 169
|
mp1i |
|- ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) -> E e. ( ( Poly1 ` CCfld ) MndHom ( CCfld ^s CC ) ) ) |
| 171 |
57
|
ply1lmod |
|- ( CCfld e. Ring -> ( Poly1 ` CCfld ) e. LMod ) |
| 172 |
13 171
|
mp1i |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ k e. NN0 ) -> ( Poly1 ` CCfld ) e. LMod ) |
| 173 |
16
|
ad2antrr |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ k e. NN0 ) -> S C_ CC ) |
| 174 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 175 |
154 3 2 174
|
coe1f |
|- ( a e. A -> ( coe1 ` a ) : NN0 --> ( Base ` R ) ) |
| 176 |
1
|
subrgbas |
|- ( S e. ( SubRing ` CCfld ) -> S = ( Base ` R ) ) |
| 177 |
176
|
feq3d |
|- ( S e. ( SubRing ` CCfld ) -> ( ( coe1 ` a ) : NN0 --> S <-> ( coe1 ` a ) : NN0 --> ( Base ` R ) ) ) |
| 178 |
175 177
|
imbitrrid |
|- ( S e. ( SubRing ` CCfld ) -> ( a e. A -> ( coe1 ` a ) : NN0 --> S ) ) |
| 179 |
178
|
imp |
|- ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) -> ( coe1 ` a ) : NN0 --> S ) |
| 180 |
179
|
ffvelcdmda |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ k e. NN0 ) -> ( ( coe1 ` a ) ` k ) e. S ) |
| 181 |
173 180
|
sseldd |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ k e. NN0 ) -> ( ( coe1 ` a ) ` k ) e. CC ) |
| 182 |
110 93
|
mgpbas |
|- ( Base ` ( Poly1 ` CCfld ) ) = ( Base ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) |
| 183 |
110
|
ringmgp |
|- ( ( Poly1 ` CCfld ) e. Ring -> ( mulGrp ` ( Poly1 ` CCfld ) ) e. Mnd ) |
| 184 |
160 183
|
mp1i |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ k e. NN0 ) -> ( mulGrp ` ( Poly1 ` CCfld ) ) e. Mnd ) |
| 185 |
|
simpr |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ k e. NN0 ) -> k e. NN0 ) |
| 186 |
114 57 93
|
vr1cl |
|- ( CCfld e. Ring -> ( var1 ` CCfld ) e. ( Base ` ( Poly1 ` CCfld ) ) ) |
| 187 |
13 186
|
mp1i |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ k e. NN0 ) -> ( var1 ` CCfld ) e. ( Base ` ( Poly1 ` CCfld ) ) ) |
| 188 |
182 116 184 185 187
|
mulgnn0cld |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ k e. NN0 ) -> ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) e. ( Base ` ( Poly1 ` CCfld ) ) ) |
| 189 |
57
|
ply1sca |
|- ( CCfld e. Ring -> CCfld = ( Scalar ` ( Poly1 ` CCfld ) ) ) |
| 190 |
13 189
|
ax-mp |
|- CCfld = ( Scalar ` ( Poly1 ` CCfld ) ) |
| 191 |
93 190 153 8
|
lmodvscl |
|- ( ( ( Poly1 ` CCfld ) e. LMod /\ ( ( coe1 ` a ) ` k ) e. CC /\ ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) e. ( Base ` ( Poly1 ` CCfld ) ) ) -> ( ( ( coe1 ` a ) ` k ) ( .s ` ( Poly1 ` CCfld ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) e. ( Base ` ( Poly1 ` CCfld ) ) ) |
| 192 |
172 181 188 191
|
syl3anc |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ k e. NN0 ) -> ( ( ( coe1 ` a ) ` k ) ( .s ` ( Poly1 ` CCfld ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) e. ( Base ` ( Poly1 ` CCfld ) ) ) |
| 193 |
192
|
fmpttd |
|- ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) -> ( k e. NN0 |-> ( ( ( coe1 ` a ) ` k ) ( .s ` ( Poly1 ` CCfld ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) ) : NN0 --> ( Base ` ( Poly1 ` CCfld ) ) ) |
| 194 |
165
|
mptex |
|- ( k e. NN0 |-> ( ( ( coe1 ` a ) ` k ) ( .s ` ( Poly1 ` CCfld ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) ) e. _V |
| 195 |
|
funmpt |
|- Fun ( k e. NN0 |-> ( ( ( coe1 ` a ) ` k ) ( .s ` ( Poly1 ` CCfld ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) ) |
| 196 |
|
fvex |
|- ( 0g ` ( Poly1 ` CCfld ) ) e. _V |
| 197 |
194 195 196
|
3pm3.2i |
|- ( ( k e. NN0 |-> ( ( ( coe1 ` a ) ` k ) ( .s ` ( Poly1 ` CCfld ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) ) e. _V /\ Fun ( k e. NN0 |-> ( ( ( coe1 ` a ) ` k ) ( .s ` ( Poly1 ` CCfld ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) ) /\ ( 0g ` ( Poly1 ` CCfld ) ) e. _V ) |
| 198 |
197
|
a1i |
|- ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) -> ( ( k e. NN0 |-> ( ( ( coe1 ` a ) ` k ) ( .s ` ( Poly1 ` CCfld ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) ) e. _V /\ Fun ( k e. NN0 |-> ( ( ( coe1 ` a ) ` k ) ( .s ` ( Poly1 ` CCfld ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) ) /\ ( 0g ` ( Poly1 ` CCfld ) ) e. _V ) ) |
| 199 |
154 93 57 21
|
coe1sfi |
|- ( a e. ( Base ` ( Poly1 ` CCfld ) ) -> ( coe1 ` a ) finSupp 0 ) |
| 200 |
152 199
|
syl |
|- ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) -> ( coe1 ` a ) finSupp 0 ) |
| 201 |
200
|
fsuppimpd |
|- ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) -> ( ( coe1 ` a ) supp 0 ) e. Fin ) |
| 202 |
179
|
feqmptd |
|- ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) -> ( coe1 ` a ) = ( k e. NN0 |-> ( ( coe1 ` a ) ` k ) ) ) |
| 203 |
202
|
oveq1d |
|- ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) -> ( ( coe1 ` a ) supp 0 ) = ( ( k e. NN0 |-> ( ( coe1 ` a ) ` k ) ) supp 0 ) ) |
| 204 |
|
eqimss2 |
|- ( ( ( coe1 ` a ) supp 0 ) = ( ( k e. NN0 |-> ( ( coe1 ` a ) ` k ) ) supp 0 ) -> ( ( k e. NN0 |-> ( ( coe1 ` a ) ` k ) ) supp 0 ) C_ ( ( coe1 ` a ) supp 0 ) ) |
| 205 |
203 204
|
syl |
|- ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) -> ( ( k e. NN0 |-> ( ( coe1 ` a ) ` k ) ) supp 0 ) C_ ( ( coe1 ` a ) supp 0 ) ) |
| 206 |
13 171
|
mp1i |
|- ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) -> ( Poly1 ` CCfld ) e. LMod ) |
| 207 |
93 190 153 21 158
|
lmod0vs |
|- ( ( ( Poly1 ` CCfld ) e. LMod /\ x e. ( Base ` ( Poly1 ` CCfld ) ) ) -> ( 0 ( .s ` ( Poly1 ` CCfld ) ) x ) = ( 0g ` ( Poly1 ` CCfld ) ) ) |
| 208 |
206 207
|
sylan |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ x e. ( Base ` ( Poly1 ` CCfld ) ) ) -> ( 0 ( .s ` ( Poly1 ` CCfld ) ) x ) = ( 0g ` ( Poly1 ` CCfld ) ) ) |
| 209 |
|
c0ex |
|- 0 e. _V |
| 210 |
209
|
a1i |
|- ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) -> 0 e. _V ) |
| 211 |
205 208 180 188 210
|
suppssov1 |
|- ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) -> ( ( k e. NN0 |-> ( ( ( coe1 ` a ) ` k ) ( .s ` ( Poly1 ` CCfld ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) ) supp ( 0g ` ( Poly1 ` CCfld ) ) ) C_ ( ( coe1 ` a ) supp 0 ) ) |
| 212 |
|
suppssfifsupp |
|- ( ( ( ( k e. NN0 |-> ( ( ( coe1 ` a ) ` k ) ( .s ` ( Poly1 ` CCfld ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) ) e. _V /\ Fun ( k e. NN0 |-> ( ( ( coe1 ` a ) ` k ) ( .s ` ( Poly1 ` CCfld ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) ) /\ ( 0g ` ( Poly1 ` CCfld ) ) e. _V ) /\ ( ( ( coe1 ` a ) supp 0 ) e. Fin /\ ( ( k e. NN0 |-> ( ( ( coe1 ` a ) ` k ) ( .s ` ( Poly1 ` CCfld ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) ) supp ( 0g ` ( Poly1 ` CCfld ) ) ) C_ ( ( coe1 ` a ) supp 0 ) ) ) -> ( k e. NN0 |-> ( ( ( coe1 ` a ) ` k ) ( .s ` ( Poly1 ` CCfld ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) ) finSupp ( 0g ` ( Poly1 ` CCfld ) ) ) |
| 213 |
198 201 211 212
|
syl12anc |
|- ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) -> ( k e. NN0 |-> ( ( ( coe1 ` a ) ` k ) ( .s ` ( Poly1 ` CCfld ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) ) finSupp ( 0g ` ( Poly1 ` CCfld ) ) ) |
| 214 |
93 158 162 164 166 170 193 213
|
gsummhm |
|- ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) -> ( ( CCfld ^s CC ) gsum ( E o. ( k e. NN0 |-> ( ( ( coe1 ` a ) ` k ) ( .s ` ( Poly1 ` CCfld ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) ) ) ) = ( E ` ( ( Poly1 ` CCfld ) gsum ( k e. NN0 |-> ( ( ( coe1 ` a ) ` k ) ( .s ` ( Poly1 ` CCfld ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) ) ) ) ) |
| 215 |
95
|
a1i |
|- ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) -> E : ( Base ` ( Poly1 ` CCfld ) ) --> ( Base ` ( CCfld ^s CC ) ) ) |
| 216 |
215 192
|
cofmpt |
|- ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) -> ( E o. ( k e. NN0 |-> ( ( ( coe1 ` a ) ` k ) ( .s ` ( Poly1 ` CCfld ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) ) ) = ( k e. NN0 |-> ( E ` ( ( ( coe1 ` a ) ` k ) ( .s ` ( Poly1 ` CCfld ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) ) ) ) |
| 217 |
13
|
a1i |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ k e. NN0 ) -> CCfld e. Ring ) |
| 218 |
10
|
a1i |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ k e. NN0 ) -> CC e. _V ) |
| 219 |
95
|
ffvelcdmi |
|- ( ( ( ( coe1 ` a ) ` k ) ( .s ` ( Poly1 ` CCfld ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) e. ( Base ` ( Poly1 ` CCfld ) ) -> ( E ` ( ( ( coe1 ` a ) ` k ) ( .s ` ( Poly1 ` CCfld ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) ) e. ( Base ` ( CCfld ^s CC ) ) ) |
| 220 |
192 219
|
syl |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ k e. NN0 ) -> ( E ` ( ( ( coe1 ` a ) ` k ) ( .s ` ( Poly1 ` CCfld ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) ) e. ( Base ` ( CCfld ^s CC ) ) ) |
| 221 |
7 8 67 217 218 220
|
pwselbas |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ k e. NN0 ) -> ( E ` ( ( ( coe1 ` a ) ` k ) ( .s ` ( Poly1 ` CCfld ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) ) : CC --> CC ) |
| 222 |
221
|
feqmptd |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ k e. NN0 ) -> ( E ` ( ( ( coe1 ` a ) ` k ) ( .s ` ( Poly1 ` CCfld ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) ) = ( z e. CC |-> ( ( E ` ( ( ( coe1 ` a ) ` k ) ( .s ` ( Poly1 ` CCfld ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) ) ` z ) ) ) |
| 223 |
56
|
a1i |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ k e. NN0 ) /\ z e. CC ) -> CCfld e. CRing ) |
| 224 |
|
simpr |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ k e. NN0 ) /\ z e. CC ) -> z e. CC ) |
| 225 |
4 114 8 57 93 223 224
|
evl1vard |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ k e. NN0 ) /\ z e. CC ) -> ( ( var1 ` CCfld ) e. ( Base ` ( Poly1 ` CCfld ) ) /\ ( ( E ` ( var1 ` CCfld ) ) ` z ) = z ) ) |
| 226 |
185
|
adantr |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ k e. NN0 ) /\ z e. CC ) -> k e. NN0 ) |
| 227 |
4 57 8 93 223 224 225 116 127 226
|
evl1expd |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ k e. NN0 ) /\ z e. CC ) -> ( ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) e. ( Base ` ( Poly1 ` CCfld ) ) /\ ( ( E ` ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) ` z ) = ( k ( .g ` ( mulGrp ` CCfld ) ) z ) ) ) |
| 228 |
224 226 131
|
syl2anc |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ k e. NN0 ) /\ z e. CC ) -> ( k ( .g ` ( mulGrp ` CCfld ) ) z ) = ( z ^ k ) ) |
| 229 |
228
|
eqeq2d |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ k e. NN0 ) /\ z e. CC ) -> ( ( ( E ` ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) ` z ) = ( k ( .g ` ( mulGrp ` CCfld ) ) z ) <-> ( ( E ` ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) ` z ) = ( z ^ k ) ) ) |
| 230 |
229
|
anbi2d |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ k e. NN0 ) /\ z e. CC ) -> ( ( ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) e. ( Base ` ( Poly1 ` CCfld ) ) /\ ( ( E ` ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) ` z ) = ( k ( .g ` ( mulGrp ` CCfld ) ) z ) ) <-> ( ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) e. ( Base ` ( Poly1 ` CCfld ) ) /\ ( ( E ` ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) ` z ) = ( z ^ k ) ) ) ) |
| 231 |
227 230
|
mpbid |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ k e. NN0 ) /\ z e. CC ) -> ( ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) e. ( Base ` ( Poly1 ` CCfld ) ) /\ ( ( E ` ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) ` z ) = ( z ^ k ) ) ) |
| 232 |
181
|
adantr |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ k e. NN0 ) /\ z e. CC ) -> ( ( coe1 ` a ) ` k ) e. CC ) |
| 233 |
4 57 8 93 223 224 231 232 153 80
|
evl1vsd |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ k e. NN0 ) /\ z e. CC ) -> ( ( ( ( coe1 ` a ) ` k ) ( .s ` ( Poly1 ` CCfld ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) e. ( Base ` ( Poly1 ` CCfld ) ) /\ ( ( E ` ( ( ( coe1 ` a ) ` k ) ( .s ` ( Poly1 ` CCfld ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) ) ` z ) = ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) ) |
| 234 |
233
|
simprd |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ k e. NN0 ) /\ z e. CC ) -> ( ( E ` ( ( ( coe1 ` a ) ` k ) ( .s ` ( Poly1 ` CCfld ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) ) ` z ) = ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) |
| 235 |
234
|
mpteq2dva |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ k e. NN0 ) -> ( z e. CC |-> ( ( E ` ( ( ( coe1 ` a ) ` k ) ( .s ` ( Poly1 ` CCfld ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) ) ` z ) ) = ( z e. CC |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) ) |
| 236 |
222 235
|
eqtrd |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ k e. NN0 ) -> ( E ` ( ( ( coe1 ` a ) ` k ) ( .s ` ( Poly1 ` CCfld ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) ) = ( z e. CC |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) ) |
| 237 |
236
|
mpteq2dva |
|- ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) -> ( k e. NN0 |-> ( E ` ( ( ( coe1 ` a ) ` k ) ( .s ` ( Poly1 ` CCfld ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) ) ) = ( k e. NN0 |-> ( z e. CC |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) ) ) |
| 238 |
216 237
|
eqtrd |
|- ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) -> ( E o. ( k e. NN0 |-> ( ( ( coe1 ` a ) ` k ) ( .s ` ( Poly1 ` CCfld ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) ) ) = ( k e. NN0 |-> ( z e. CC |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) ) ) |
| 239 |
238
|
oveq2d |
|- ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) -> ( ( CCfld ^s CC ) gsum ( E o. ( k e. NN0 |-> ( ( ( coe1 ` a ) ` k ) ( .s ` ( Poly1 ` CCfld ) ) ( k ( .g ` ( mulGrp ` ( Poly1 ` CCfld ) ) ) ( var1 ` CCfld ) ) ) ) ) ) = ( ( CCfld ^s CC ) gsum ( k e. NN0 |-> ( z e. CC |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) ) ) ) |
| 240 |
157 214 239
|
3eqtr2d |
|- ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) -> ( E ` a ) = ( ( CCfld ^s CC ) gsum ( k e. NN0 |-> ( z e. CC |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) ) ) ) |
| 241 |
10
|
a1i |
|- ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) -> CC e. _V ) |
| 242 |
13 14
|
mp1i |
|- ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) -> CCfld e. CMnd ) |
| 243 |
181
|
adantlr |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ z e. CC ) /\ k e. NN0 ) -> ( ( coe1 ` a ) ` k ) e. CC ) |
| 244 |
37
|
adantll |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ z e. CC ) /\ k e. NN0 ) -> ( z ^ k ) e. CC ) |
| 245 |
243 244
|
mulcld |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ z e. CC ) /\ k e. NN0 ) -> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) e. CC ) |
| 246 |
245
|
anasss |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ ( z e. CC /\ k e. NN0 ) ) -> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) e. CC ) |
| 247 |
165
|
mptex |
|- ( k e. NN0 |-> ( z e. CC |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) ) e. _V |
| 248 |
|
funmpt |
|- Fun ( k e. NN0 |-> ( z e. CC |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) ) |
| 249 |
247 248 43
|
3pm3.2i |
|- ( ( k e. NN0 |-> ( z e. CC |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) ) e. _V /\ Fun ( k e. NN0 |-> ( z e. CC |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) ) /\ ( 0g ` ( CCfld ^s CC ) ) e. _V ) |
| 250 |
249
|
a1i |
|- ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) -> ( ( k e. NN0 |-> ( z e. CC |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) ) e. _V /\ Fun ( k e. NN0 |-> ( z e. CC |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) ) /\ ( 0g ` ( CCfld ^s CC ) ) e. _V ) ) |
| 251 |
|
fzfid |
|- ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) -> ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) e. Fin ) |
| 252 |
|
eldifn |
|- ( k e. ( NN0 \ ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) -> -. k e. ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) |
| 253 |
252
|
adantl |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ z e. CC ) /\ k e. ( NN0 \ ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) ) -> -. k e. ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) |
| 254 |
152
|
ad2antrr |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ z e. CC ) /\ k e. ( NN0 \ ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) ) -> a e. ( Base ` ( Poly1 ` CCfld ) ) ) |
| 255 |
|
eldifi |
|- ( k e. ( NN0 \ ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) -> k e. NN0 ) |
| 256 |
255
|
adantl |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ z e. CC ) /\ k e. ( NN0 \ ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) ) -> k e. NN0 ) |
| 257 |
|
eqid |
|- ( deg1 ` CCfld ) = ( deg1 ` CCfld ) |
| 258 |
257 57 93 21 154
|
deg1ge |
|- ( ( a e. ( Base ` ( Poly1 ` CCfld ) ) /\ k e. NN0 /\ ( ( coe1 ` a ) ` k ) =/= 0 ) -> k <_ ( ( deg1 ` CCfld ) ` a ) ) |
| 259 |
258
|
3expia |
|- ( ( a e. ( Base ` ( Poly1 ` CCfld ) ) /\ k e. NN0 ) -> ( ( ( coe1 ` a ) ` k ) =/= 0 -> k <_ ( ( deg1 ` CCfld ) ` a ) ) ) |
| 260 |
254 256 259
|
syl2anc |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ z e. CC ) /\ k e. ( NN0 \ ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) ) -> ( ( ( coe1 ` a ) ` k ) =/= 0 -> k <_ ( ( deg1 ` CCfld ) ` a ) ) ) |
| 261 |
|
0xr |
|- 0 e. RR* |
| 262 |
257 57 93
|
deg1xrcl |
|- ( a e. ( Base ` ( Poly1 ` CCfld ) ) -> ( ( deg1 ` CCfld ) ` a ) e. RR* ) |
| 263 |
152 262
|
syl |
|- ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) -> ( ( deg1 ` CCfld ) ` a ) e. RR* ) |
| 264 |
263
|
ad2antrr |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ z e. CC ) /\ k e. ( NN0 \ ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) ) -> ( ( deg1 ` CCfld ) ` a ) e. RR* ) |
| 265 |
|
xrmax2 |
|- ( ( 0 e. RR* /\ ( ( deg1 ` CCfld ) ` a ) e. RR* ) -> ( ( deg1 ` CCfld ) ` a ) <_ if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) |
| 266 |
261 264 265
|
sylancr |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ z e. CC ) /\ k e. ( NN0 \ ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) ) -> ( ( deg1 ` CCfld ) ` a ) <_ if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) |
| 267 |
256
|
nn0red |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ z e. CC ) /\ k e. ( NN0 \ ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) ) -> k e. RR ) |
| 268 |
267
|
rexrd |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ z e. CC ) /\ k e. ( NN0 \ ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) ) -> k e. RR* ) |
| 269 |
|
ifcl |
|- ( ( ( ( deg1 ` CCfld ) ` a ) e. RR* /\ 0 e. RR* ) -> if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) e. RR* ) |
| 270 |
264 261 269
|
sylancl |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ z e. CC ) /\ k e. ( NN0 \ ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) ) -> if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) e. RR* ) |
| 271 |
|
xrletr |
|- ( ( k e. RR* /\ ( ( deg1 ` CCfld ) ` a ) e. RR* /\ if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) e. RR* ) -> ( ( k <_ ( ( deg1 ` CCfld ) ` a ) /\ ( ( deg1 ` CCfld ) ` a ) <_ if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) -> k <_ if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) |
| 272 |
268 264 270 271
|
syl3anc |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ z e. CC ) /\ k e. ( NN0 \ ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) ) -> ( ( k <_ ( ( deg1 ` CCfld ) ` a ) /\ ( ( deg1 ` CCfld ) ` a ) <_ if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) -> k <_ if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) |
| 273 |
266 272
|
mpan2d |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ z e. CC ) /\ k e. ( NN0 \ ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) ) -> ( k <_ ( ( deg1 ` CCfld ) ` a ) -> k <_ if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) |
| 274 |
260 273
|
syld |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ z e. CC ) /\ k e. ( NN0 \ ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) ) -> ( ( ( coe1 ` a ) ` k ) =/= 0 -> k <_ if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) |
| 275 |
274 256
|
jctild |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ z e. CC ) /\ k e. ( NN0 \ ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) ) -> ( ( ( coe1 ` a ) ` k ) =/= 0 -> ( k e. NN0 /\ k <_ if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) ) |
| 276 |
257 57 93
|
deg1cl |
|- ( a e. ( Base ` ( Poly1 ` CCfld ) ) -> ( ( deg1 ` CCfld ) ` a ) e. ( NN0 u. { -oo } ) ) |
| 277 |
152 276
|
syl |
|- ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) -> ( ( deg1 ` CCfld ) ` a ) e. ( NN0 u. { -oo } ) ) |
| 278 |
|
elun |
|- ( ( ( deg1 ` CCfld ) ` a ) e. ( NN0 u. { -oo } ) <-> ( ( ( deg1 ` CCfld ) ` a ) e. NN0 \/ ( ( deg1 ` CCfld ) ` a ) e. { -oo } ) ) |
| 279 |
277 278
|
sylib |
|- ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) -> ( ( ( deg1 ` CCfld ) ` a ) e. NN0 \/ ( ( deg1 ` CCfld ) ` a ) e. { -oo } ) ) |
| 280 |
|
nn0ge0 |
|- ( ( ( deg1 ` CCfld ) ` a ) e. NN0 -> 0 <_ ( ( deg1 ` CCfld ) ` a ) ) |
| 281 |
280
|
iftrued |
|- ( ( ( deg1 ` CCfld ) ` a ) e. NN0 -> if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) = ( ( deg1 ` CCfld ) ` a ) ) |
| 282 |
|
id |
|- ( ( ( deg1 ` CCfld ) ` a ) e. NN0 -> ( ( deg1 ` CCfld ) ` a ) e. NN0 ) |
| 283 |
281 282
|
eqeltrd |
|- ( ( ( deg1 ` CCfld ) ` a ) e. NN0 -> if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) e. NN0 ) |
| 284 |
|
mnflt0 |
|- -oo < 0 |
| 285 |
|
mnfxr |
|- -oo e. RR* |
| 286 |
|
xrltnle |
|- ( ( -oo e. RR* /\ 0 e. RR* ) -> ( -oo < 0 <-> -. 0 <_ -oo ) ) |
| 287 |
285 261 286
|
mp2an |
|- ( -oo < 0 <-> -. 0 <_ -oo ) |
| 288 |
284 287
|
mpbi |
|- -. 0 <_ -oo |
| 289 |
|
elsni |
|- ( ( ( deg1 ` CCfld ) ` a ) e. { -oo } -> ( ( deg1 ` CCfld ) ` a ) = -oo ) |
| 290 |
289
|
breq2d |
|- ( ( ( deg1 ` CCfld ) ` a ) e. { -oo } -> ( 0 <_ ( ( deg1 ` CCfld ) ` a ) <-> 0 <_ -oo ) ) |
| 291 |
288 290
|
mtbiri |
|- ( ( ( deg1 ` CCfld ) ` a ) e. { -oo } -> -. 0 <_ ( ( deg1 ` CCfld ) ` a ) ) |
| 292 |
291
|
iffalsed |
|- ( ( ( deg1 ` CCfld ) ` a ) e. { -oo } -> if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) = 0 ) |
| 293 |
|
0nn0 |
|- 0 e. NN0 |
| 294 |
292 293
|
eqeltrdi |
|- ( ( ( deg1 ` CCfld ) ` a ) e. { -oo } -> if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) e. NN0 ) |
| 295 |
283 294
|
jaoi |
|- ( ( ( ( deg1 ` CCfld ) ` a ) e. NN0 \/ ( ( deg1 ` CCfld ) ` a ) e. { -oo } ) -> if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) e. NN0 ) |
| 296 |
279 295
|
syl |
|- ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) -> if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) e. NN0 ) |
| 297 |
296
|
ad2antrr |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ z e. CC ) /\ k e. ( NN0 \ ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) ) -> if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) e. NN0 ) |
| 298 |
|
fznn0 |
|- ( if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) e. NN0 -> ( k e. ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) <-> ( k e. NN0 /\ k <_ if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) ) |
| 299 |
297 298
|
syl |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ z e. CC ) /\ k e. ( NN0 \ ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) ) -> ( k e. ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) <-> ( k e. NN0 /\ k <_ if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) ) |
| 300 |
275 299
|
sylibrd |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ z e. CC ) /\ k e. ( NN0 \ ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) ) -> ( ( ( coe1 ` a ) ` k ) =/= 0 -> k e. ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) ) |
| 301 |
300
|
necon1bd |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ z e. CC ) /\ k e. ( NN0 \ ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) ) -> ( -. k e. ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) -> ( ( coe1 ` a ) ` k ) = 0 ) ) |
| 302 |
253 301
|
mpd |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ z e. CC ) /\ k e. ( NN0 \ ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) ) -> ( ( coe1 ` a ) ` k ) = 0 ) |
| 303 |
302
|
oveq1d |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ z e. CC ) /\ k e. ( NN0 \ ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) ) -> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) = ( 0 x. ( z ^ k ) ) ) |
| 304 |
255 244
|
sylan2 |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ z e. CC ) /\ k e. ( NN0 \ ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) ) -> ( z ^ k ) e. CC ) |
| 305 |
304
|
mul02d |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ z e. CC ) /\ k e. ( NN0 \ ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) ) -> ( 0 x. ( z ^ k ) ) = 0 ) |
| 306 |
303 305
|
eqtrd |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ z e. CC ) /\ k e. ( NN0 \ ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) ) -> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) = 0 ) |
| 307 |
306
|
an32s |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ k e. ( NN0 \ ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) ) /\ z e. CC ) -> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) = 0 ) |
| 308 |
307
|
mpteq2dva |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ k e. ( NN0 \ ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) ) -> ( z e. CC |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) = ( z e. CC |-> 0 ) ) |
| 309 |
|
fconstmpt |
|- ( CC X. { 0 } ) = ( z e. CC |-> 0 ) |
| 310 |
|
ringmnd |
|- ( CCfld e. Ring -> CCfld e. Mnd ) |
| 311 |
13 310
|
ax-mp |
|- CCfld e. Mnd |
| 312 |
7 21
|
pws0g |
|- ( ( CCfld e. Mnd /\ CC e. _V ) -> ( CC X. { 0 } ) = ( 0g ` ( CCfld ^s CC ) ) ) |
| 313 |
311 10 312
|
mp2an |
|- ( CC X. { 0 } ) = ( 0g ` ( CCfld ^s CC ) ) |
| 314 |
309 313
|
eqtr3i |
|- ( z e. CC |-> 0 ) = ( 0g ` ( CCfld ^s CC ) ) |
| 315 |
308 314
|
eqtrdi |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ k e. ( NN0 \ ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) ) -> ( z e. CC |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) = ( 0g ` ( CCfld ^s CC ) ) ) |
| 316 |
315 166
|
suppss2 |
|- ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) -> ( ( k e. NN0 |-> ( z e. CC |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) ) supp ( 0g ` ( CCfld ^s CC ) ) ) C_ ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) |
| 317 |
|
suppssfifsupp |
|- ( ( ( ( k e. NN0 |-> ( z e. CC |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) ) e. _V /\ Fun ( k e. NN0 |-> ( z e. CC |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) ) /\ ( 0g ` ( CCfld ^s CC ) ) e. _V ) /\ ( ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) e. Fin /\ ( ( k e. NN0 |-> ( z e. CC |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) ) supp ( 0g ` ( CCfld ^s CC ) ) ) C_ ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) ) -> ( k e. NN0 |-> ( z e. CC |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) ) finSupp ( 0g ` ( CCfld ^s CC ) ) ) |
| 318 |
250 251 316 317
|
syl12anc |
|- ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) -> ( k e. NN0 |-> ( z e. CC |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) ) finSupp ( 0g ` ( CCfld ^s CC ) ) ) |
| 319 |
7 8 9 241 166 242 246 318
|
pwsgsum |
|- ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) -> ( ( CCfld ^s CC ) gsum ( k e. NN0 |-> ( z e. CC |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) ) ) = ( z e. CC |-> ( CCfld gsum ( k e. NN0 |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) ) ) ) |
| 320 |
|
fz0ssnn0 |
|- ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) C_ NN0 |
| 321 |
|
resmpt |
|- ( ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) C_ NN0 -> ( ( k e. NN0 |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) |` ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) = ( k e. ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) ) |
| 322 |
320 321
|
ax-mp |
|- ( ( k e. NN0 |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) |` ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) = ( k e. ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) |
| 323 |
322
|
oveq2i |
|- ( CCfld gsum ( ( k e. NN0 |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) |` ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) ) = ( CCfld gsum ( k e. ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) ) |
| 324 |
13 14
|
mp1i |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ z e. CC ) -> CCfld e. CMnd ) |
| 325 |
165
|
a1i |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ z e. CC ) -> NN0 e. _V ) |
| 326 |
245
|
fmpttd |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ z e. CC ) -> ( k e. NN0 |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) : NN0 --> CC ) |
| 327 |
306 325
|
suppss2 |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ z e. CC ) -> ( ( k e. NN0 |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) supp 0 ) C_ ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) |
| 328 |
165
|
mptex |
|- ( k e. NN0 |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) e. _V |
| 329 |
|
funmpt |
|- Fun ( k e. NN0 |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) |
| 330 |
328 329 209
|
3pm3.2i |
|- ( ( k e. NN0 |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) e. _V /\ Fun ( k e. NN0 |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) /\ 0 e. _V ) |
| 331 |
330
|
a1i |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ z e. CC ) -> ( ( k e. NN0 |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) e. _V /\ Fun ( k e. NN0 |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) /\ 0 e. _V ) ) |
| 332 |
|
fzfid |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ z e. CC ) -> ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) e. Fin ) |
| 333 |
|
suppssfifsupp |
|- ( ( ( ( k e. NN0 |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) e. _V /\ Fun ( k e. NN0 |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) /\ 0 e. _V ) /\ ( ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) e. Fin /\ ( ( k e. NN0 |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) supp 0 ) C_ ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) ) -> ( k e. NN0 |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) finSupp 0 ) |
| 334 |
331 332 327 333
|
syl12anc |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ z e. CC ) -> ( k e. NN0 |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) finSupp 0 ) |
| 335 |
8 21 324 325 326 327 334
|
gsumres |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ z e. CC ) -> ( CCfld gsum ( ( k e. NN0 |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) |` ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) ) = ( CCfld gsum ( k e. NN0 |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) ) ) |
| 336 |
|
elfznn0 |
|- ( k e. ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) -> k e. NN0 ) |
| 337 |
336 245
|
sylan2 |
|- ( ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ z e. CC ) /\ k e. ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ) -> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) e. CC ) |
| 338 |
332 337
|
gsumfsum |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ z e. CC ) -> ( CCfld gsum ( k e. ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) ) = sum_ k e. ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) |
| 339 |
323 335 338
|
3eqtr3a |
|- ( ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) /\ z e. CC ) -> ( CCfld gsum ( k e. NN0 |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) ) = sum_ k e. ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) |
| 340 |
339
|
mpteq2dva |
|- ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) -> ( z e. CC |-> ( CCfld gsum ( k e. NN0 |-> ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) ) |
| 341 |
240 319 340
|
3eqtrd |
|- ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) -> ( E ` a ) = ( z e. CC |-> sum_ k e. ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) ) |
| 342 |
16
|
adantr |
|- ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) -> S C_ CC ) |
| 343 |
|
elplyr |
|- ( ( S C_ CC /\ if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) e. NN0 /\ ( coe1 ` a ) : NN0 --> S ) -> ( z e. CC |-> sum_ k e. ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) e. ( Poly ` S ) ) |
| 344 |
342 296 179 343
|
syl3anc |
|- ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) -> ( z e. CC |-> sum_ k e. ( 0 ... if ( 0 <_ ( ( deg1 ` CCfld ) ` a ) , ( ( deg1 ` CCfld ) ` a ) , 0 ) ) ( ( ( coe1 ` a ) ` k ) x. ( z ^ k ) ) ) e. ( Poly ` S ) ) |
| 345 |
341 344
|
eqeltrd |
|- ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) -> ( E ` a ) e. ( Poly ` S ) ) |
| 346 |
|
eleq1 |
|- ( ( E ` a ) = f -> ( ( E ` a ) e. ( Poly ` S ) <-> f e. ( Poly ` S ) ) ) |
| 347 |
345 346
|
syl5ibcom |
|- ( ( S e. ( SubRing ` CCfld ) /\ a e. A ) -> ( ( E ` a ) = f -> f e. ( Poly ` S ) ) ) |
| 348 |
347
|
rexlimdva |
|- ( S e. ( SubRing ` CCfld ) -> ( E. a e. A ( E ` a ) = f -> f e. ( Poly ` S ) ) ) |
| 349 |
151 348
|
syl5 |
|- ( S e. ( SubRing ` CCfld ) -> ( f e. ( E " A ) -> f e. ( Poly ` S ) ) ) |
| 350 |
147 349
|
impbid |
|- ( S e. ( SubRing ` CCfld ) -> ( f e. ( Poly ` S ) <-> f e. ( E " A ) ) ) |
| 351 |
350
|
eqrdv |
|- ( S e. ( SubRing ` CCfld ) -> ( Poly ` S ) = ( E " A ) ) |