Step |
Hyp |
Ref |
Expression |
1 |
|
plypf1.r |
⊢ 𝑅 = ( ℂfld ↾s 𝑆 ) |
2 |
|
plypf1.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
3 |
|
plypf1.a |
⊢ 𝐴 = ( Base ‘ 𝑃 ) |
4 |
|
plypf1.e |
⊢ 𝐸 = ( eval1 ‘ ℂfld ) |
5 |
|
elply |
⊢ ( 𝑓 ∈ ( Poly ‘ 𝑆 ) ↔ ( 𝑆 ⊆ ℂ ∧ ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) |
6 |
5
|
simprbi |
⊢ ( 𝑓 ∈ ( Poly ‘ 𝑆 ) → ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
7 |
|
eqid |
⊢ ( ℂfld ↑s ℂ ) = ( ℂfld ↑s ℂ ) |
8 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
9 |
|
eqid |
⊢ ( 0g ‘ ( ℂfld ↑s ℂ ) ) = ( 0g ‘ ( ℂfld ↑s ℂ ) ) |
10 |
|
cnex |
⊢ ℂ ∈ V |
11 |
10
|
a1i |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → ℂ ∈ V ) |
12 |
|
fzfid |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → ( 0 ... 𝑛 ) ∈ Fin ) |
13 |
|
cnring |
⊢ ℂfld ∈ Ring |
14 |
|
ringcmn |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ CMnd ) |
15 |
13 14
|
mp1i |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → ℂfld ∈ CMnd ) |
16 |
8
|
subrgss |
⊢ ( 𝑆 ∈ ( SubRing ‘ ℂfld ) → 𝑆 ⊆ ℂ ) |
17 |
16
|
ad2antrr |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → 𝑆 ⊆ ℂ ) |
18 |
|
elmapi |
⊢ ( 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) → 𝑎 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ) |
19 |
18
|
ad2antll |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → 𝑎 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ) |
20 |
|
subrgsubg |
⊢ ( 𝑆 ∈ ( SubRing ‘ ℂfld ) → 𝑆 ∈ ( SubGrp ‘ ℂfld ) ) |
21 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
22 |
21
|
subg0cl |
⊢ ( 𝑆 ∈ ( SubGrp ‘ ℂfld ) → 0 ∈ 𝑆 ) |
23 |
20 22
|
syl |
⊢ ( 𝑆 ∈ ( SubRing ‘ ℂfld ) → 0 ∈ 𝑆 ) |
24 |
23
|
adantr |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → 0 ∈ 𝑆 ) |
25 |
24
|
snssd |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → { 0 } ⊆ 𝑆 ) |
26 |
|
ssequn2 |
⊢ ( { 0 } ⊆ 𝑆 ↔ ( 𝑆 ∪ { 0 } ) = 𝑆 ) |
27 |
25 26
|
sylib |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → ( 𝑆 ∪ { 0 } ) = 𝑆 ) |
28 |
27
|
feq3d |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → ( 𝑎 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ↔ 𝑎 : ℕ0 ⟶ 𝑆 ) ) |
29 |
19 28
|
mpbid |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → 𝑎 : ℕ0 ⟶ 𝑆 ) |
30 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑛 ) → 𝑘 ∈ ℕ0 ) |
31 |
|
ffvelrn |
⊢ ( ( 𝑎 : ℕ0 ⟶ 𝑆 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑎 ‘ 𝑘 ) ∈ 𝑆 ) |
32 |
29 30 31
|
syl2an |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝑎 ‘ 𝑘 ) ∈ 𝑆 ) |
33 |
17 32
|
sseldd |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝑎 ‘ 𝑘 ) ∈ ℂ ) |
34 |
33
|
adantrl |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ ( 𝑧 ∈ ℂ ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) ) → ( 𝑎 ‘ 𝑘 ) ∈ ℂ ) |
35 |
|
simprl |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ ( 𝑧 ∈ ℂ ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) ) → 𝑧 ∈ ℂ ) |
36 |
30
|
ad2antll |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ ( 𝑧 ∈ ℂ ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) ) → 𝑘 ∈ ℕ0 ) |
37 |
|
expcl |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑧 ↑ 𝑘 ) ∈ ℂ ) |
38 |
35 36 37
|
syl2anc |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ ( 𝑧 ∈ ℂ ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) ) → ( 𝑧 ↑ 𝑘 ) ∈ ℂ ) |
39 |
34 38
|
mulcld |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ ( 𝑧 ∈ ℂ ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) ) → ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ∈ ℂ ) |
40 |
|
eqid |
⊢ ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( 𝑧 ∈ ℂ ↦ ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) = ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( 𝑧 ∈ ℂ ↦ ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
41 |
10
|
mptex |
⊢ ( 𝑧 ∈ ℂ ↦ ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ∈ V |
42 |
41
|
a1i |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝑧 ∈ ℂ ↦ ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ∈ V ) |
43 |
|
fvex |
⊢ ( 0g ‘ ( ℂfld ↑s ℂ ) ) ∈ V |
44 |
43
|
a1i |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → ( 0g ‘ ( ℂfld ↑s ℂ ) ) ∈ V ) |
45 |
40 12 42 44
|
fsuppmptdm |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( 𝑧 ∈ ℂ ↦ ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) finSupp ( 0g ‘ ( ℂfld ↑s ℂ ) ) ) |
46 |
7 8 9 11 12 15 39 45
|
pwsgsum |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → ( ( ℂfld ↑s ℂ ) Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( 𝑧 ∈ ℂ ↦ ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) = ( 𝑧 ∈ ℂ ↦ ( ℂfld Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) |
47 |
|
fzfid |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑧 ∈ ℂ ) → ( 0 ... 𝑛 ) ∈ Fin ) |
48 |
39
|
anassrs |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ∈ ℂ ) |
49 |
47 48
|
gsumfsum |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑧 ∈ ℂ ) → ( ℂfld Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) = Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
50 |
49
|
mpteq2dva |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → ( 𝑧 ∈ ℂ ↦ ( ℂfld Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
51 |
46 50
|
eqtrd |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → ( ( ℂfld ↑s ℂ ) Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( 𝑧 ∈ ℂ ↦ ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
52 |
7
|
pwsring |
⊢ ( ( ℂfld ∈ Ring ∧ ℂ ∈ V ) → ( ℂfld ↑s ℂ ) ∈ Ring ) |
53 |
13 10 52
|
mp2an |
⊢ ( ℂfld ↑s ℂ ) ∈ Ring |
54 |
|
ringcmn |
⊢ ( ( ℂfld ↑s ℂ ) ∈ Ring → ( ℂfld ↑s ℂ ) ∈ CMnd ) |
55 |
53 54
|
mp1i |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → ( ℂfld ↑s ℂ ) ∈ CMnd ) |
56 |
|
cncrng |
⊢ ℂfld ∈ CRing |
57 |
|
eqid |
⊢ ( Poly1 ‘ ℂfld ) = ( Poly1 ‘ ℂfld ) |
58 |
4 57 7 8
|
evl1rhm |
⊢ ( ℂfld ∈ CRing → 𝐸 ∈ ( ( Poly1 ‘ ℂfld ) RingHom ( ℂfld ↑s ℂ ) ) ) |
59 |
56 58
|
ax-mp |
⊢ 𝐸 ∈ ( ( Poly1 ‘ ℂfld ) RingHom ( ℂfld ↑s ℂ ) ) |
60 |
57 1 2 3
|
subrgply1 |
⊢ ( 𝑆 ∈ ( SubRing ‘ ℂfld ) → 𝐴 ∈ ( SubRing ‘ ( Poly1 ‘ ℂfld ) ) ) |
61 |
60
|
adantr |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → 𝐴 ∈ ( SubRing ‘ ( Poly1 ‘ ℂfld ) ) ) |
62 |
|
rhmima |
⊢ ( ( 𝐸 ∈ ( ( Poly1 ‘ ℂfld ) RingHom ( ℂfld ↑s ℂ ) ) ∧ 𝐴 ∈ ( SubRing ‘ ( Poly1 ‘ ℂfld ) ) ) → ( 𝐸 “ 𝐴 ) ∈ ( SubRing ‘ ( ℂfld ↑s ℂ ) ) ) |
63 |
59 61 62
|
sylancr |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → ( 𝐸 “ 𝐴 ) ∈ ( SubRing ‘ ( ℂfld ↑s ℂ ) ) ) |
64 |
|
subrgsubg |
⊢ ( ( 𝐸 “ 𝐴 ) ∈ ( SubRing ‘ ( ℂfld ↑s ℂ ) ) → ( 𝐸 “ 𝐴 ) ∈ ( SubGrp ‘ ( ℂfld ↑s ℂ ) ) ) |
65 |
|
subgsubm |
⊢ ( ( 𝐸 “ 𝐴 ) ∈ ( SubGrp ‘ ( ℂfld ↑s ℂ ) ) → ( 𝐸 “ 𝐴 ) ∈ ( SubMnd ‘ ( ℂfld ↑s ℂ ) ) ) |
66 |
63 64 65
|
3syl |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → ( 𝐸 “ 𝐴 ) ∈ ( SubMnd ‘ ( ℂfld ↑s ℂ ) ) ) |
67 |
|
eqid |
⊢ ( Base ‘ ( ℂfld ↑s ℂ ) ) = ( Base ‘ ( ℂfld ↑s ℂ ) ) |
68 |
13
|
a1i |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ℂfld ∈ Ring ) |
69 |
10
|
a1i |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ℂ ∈ V ) |
70 |
|
fconst6g |
⊢ ( ( 𝑎 ‘ 𝑘 ) ∈ ℂ → ( ℂ × { ( 𝑎 ‘ 𝑘 ) } ) : ℂ ⟶ ℂ ) |
71 |
33 70
|
syl |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ℂ × { ( 𝑎 ‘ 𝑘 ) } ) : ℂ ⟶ ℂ ) |
72 |
7 8 67
|
pwselbasb |
⊢ ( ( ℂfld ∈ Ring ∧ ℂ ∈ V ) → ( ( ℂ × { ( 𝑎 ‘ 𝑘 ) } ) ∈ ( Base ‘ ( ℂfld ↑s ℂ ) ) ↔ ( ℂ × { ( 𝑎 ‘ 𝑘 ) } ) : ℂ ⟶ ℂ ) ) |
73 |
13 10 72
|
mp2an |
⊢ ( ( ℂ × { ( 𝑎 ‘ 𝑘 ) } ) ∈ ( Base ‘ ( ℂfld ↑s ℂ ) ) ↔ ( ℂ × { ( 𝑎 ‘ 𝑘 ) } ) : ℂ ⟶ ℂ ) |
74 |
71 73
|
sylibr |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ℂ × { ( 𝑎 ‘ 𝑘 ) } ) ∈ ( Base ‘ ( ℂfld ↑s ℂ ) ) ) |
75 |
38
|
anass1rs |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑧 ∈ ℂ ) → ( 𝑧 ↑ 𝑘 ) ∈ ℂ ) |
76 |
75
|
fmpttd |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 𝑘 ) ) : ℂ ⟶ ℂ ) |
77 |
7 8 67
|
pwselbasb |
⊢ ( ( ℂfld ∈ Ring ∧ ℂ ∈ V ) → ( ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 𝑘 ) ) ∈ ( Base ‘ ( ℂfld ↑s ℂ ) ) ↔ ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 𝑘 ) ) : ℂ ⟶ ℂ ) ) |
78 |
13 10 77
|
mp2an |
⊢ ( ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 𝑘 ) ) ∈ ( Base ‘ ( ℂfld ↑s ℂ ) ) ↔ ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 𝑘 ) ) : ℂ ⟶ ℂ ) |
79 |
76 78
|
sylibr |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 𝑘 ) ) ∈ ( Base ‘ ( ℂfld ↑s ℂ ) ) ) |
80 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
81 |
|
eqid |
⊢ ( .r ‘ ( ℂfld ↑s ℂ ) ) = ( .r ‘ ( ℂfld ↑s ℂ ) ) |
82 |
7 67 68 69 74 79 80 81
|
pwsmulrval |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ( ℂ × { ( 𝑎 ‘ 𝑘 ) } ) ( .r ‘ ( ℂfld ↑s ℂ ) ) ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 𝑘 ) ) ) = ( ( ℂ × { ( 𝑎 ‘ 𝑘 ) } ) ∘f · ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 𝑘 ) ) ) ) |
83 |
33
|
adantr |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑧 ∈ ℂ ) → ( 𝑎 ‘ 𝑘 ) ∈ ℂ ) |
84 |
|
fconstmpt |
⊢ ( ℂ × { ( 𝑎 ‘ 𝑘 ) } ) = ( 𝑧 ∈ ℂ ↦ ( 𝑎 ‘ 𝑘 ) ) |
85 |
84
|
a1i |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ℂ × { ( 𝑎 ‘ 𝑘 ) } ) = ( 𝑧 ∈ ℂ ↦ ( 𝑎 ‘ 𝑘 ) ) ) |
86 |
|
eqidd |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 𝑘 ) ) = ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 𝑘 ) ) ) |
87 |
69 83 75 85 86
|
offval2 |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ( ℂ × { ( 𝑎 ‘ 𝑘 ) } ) ∘f · ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
88 |
82 87
|
eqtrd |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ( ℂ × { ( 𝑎 ‘ 𝑘 ) } ) ( .r ‘ ( ℂfld ↑s ℂ ) ) ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
89 |
63
|
adantr |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝐸 “ 𝐴 ) ∈ ( SubRing ‘ ( ℂfld ↑s ℂ ) ) ) |
90 |
|
eqid |
⊢ ( algSc ‘ ( Poly1 ‘ ℂfld ) ) = ( algSc ‘ ( Poly1 ‘ ℂfld ) ) |
91 |
4 57 8 90
|
evl1sca |
⊢ ( ( ℂfld ∈ CRing ∧ ( 𝑎 ‘ 𝑘 ) ∈ ℂ ) → ( 𝐸 ‘ ( ( algSc ‘ ( Poly1 ‘ ℂfld ) ) ‘ ( 𝑎 ‘ 𝑘 ) ) ) = ( ℂ × { ( 𝑎 ‘ 𝑘 ) } ) ) |
92 |
56 33 91
|
sylancr |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝐸 ‘ ( ( algSc ‘ ( Poly1 ‘ ℂfld ) ) ‘ ( 𝑎 ‘ 𝑘 ) ) ) = ( ℂ × { ( 𝑎 ‘ 𝑘 ) } ) ) |
93 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ ℂfld ) ) = ( Base ‘ ( Poly1 ‘ ℂfld ) ) |
94 |
93 67
|
rhmf |
⊢ ( 𝐸 ∈ ( ( Poly1 ‘ ℂfld ) RingHom ( ℂfld ↑s ℂ ) ) → 𝐸 : ( Base ‘ ( Poly1 ‘ ℂfld ) ) ⟶ ( Base ‘ ( ℂfld ↑s ℂ ) ) ) |
95 |
59 94
|
ax-mp |
⊢ 𝐸 : ( Base ‘ ( Poly1 ‘ ℂfld ) ) ⟶ ( Base ‘ ( ℂfld ↑s ℂ ) ) |
96 |
|
ffn |
⊢ ( 𝐸 : ( Base ‘ ( Poly1 ‘ ℂfld ) ) ⟶ ( Base ‘ ( ℂfld ↑s ℂ ) ) → 𝐸 Fn ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) |
97 |
95 96
|
mp1i |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → 𝐸 Fn ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) |
98 |
93
|
subrgss |
⊢ ( 𝐴 ∈ ( SubRing ‘ ( Poly1 ‘ ℂfld ) ) → 𝐴 ⊆ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) |
99 |
60 98
|
syl |
⊢ ( 𝑆 ∈ ( SubRing ‘ ℂfld ) → 𝐴 ⊆ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) |
100 |
99
|
ad2antrr |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → 𝐴 ⊆ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) |
101 |
|
simpll |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → 𝑆 ∈ ( SubRing ‘ ℂfld ) ) |
102 |
57 90 1 2 101 3 8 33
|
subrg1asclcl |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ( ( algSc ‘ ( Poly1 ‘ ℂfld ) ) ‘ ( 𝑎 ‘ 𝑘 ) ) ∈ 𝐴 ↔ ( 𝑎 ‘ 𝑘 ) ∈ 𝑆 ) ) |
103 |
32 102
|
mpbird |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ( algSc ‘ ( Poly1 ‘ ℂfld ) ) ‘ ( 𝑎 ‘ 𝑘 ) ) ∈ 𝐴 ) |
104 |
|
fnfvima |
⊢ ( ( 𝐸 Fn ( Base ‘ ( Poly1 ‘ ℂfld ) ) ∧ 𝐴 ⊆ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ∧ ( ( algSc ‘ ( Poly1 ‘ ℂfld ) ) ‘ ( 𝑎 ‘ 𝑘 ) ) ∈ 𝐴 ) → ( 𝐸 ‘ ( ( algSc ‘ ( Poly1 ‘ ℂfld ) ) ‘ ( 𝑎 ‘ 𝑘 ) ) ) ∈ ( 𝐸 “ 𝐴 ) ) |
105 |
97 100 103 104
|
syl3anc |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝐸 ‘ ( ( algSc ‘ ( Poly1 ‘ ℂfld ) ) ‘ ( 𝑎 ‘ 𝑘 ) ) ) ∈ ( 𝐸 “ 𝐴 ) ) |
106 |
92 105
|
eqeltrrd |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ℂ × { ( 𝑎 ‘ 𝑘 ) } ) ∈ ( 𝐸 “ 𝐴 ) ) |
107 |
67
|
subrgss |
⊢ ( ( 𝐸 “ 𝐴 ) ∈ ( SubRing ‘ ( ℂfld ↑s ℂ ) ) → ( 𝐸 “ 𝐴 ) ⊆ ( Base ‘ ( ℂfld ↑s ℂ ) ) ) |
108 |
89 107
|
syl |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝐸 “ 𝐴 ) ⊆ ( Base ‘ ( ℂfld ↑s ℂ ) ) ) |
109 |
60
|
ad2antrr |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → 𝐴 ∈ ( SubRing ‘ ( Poly1 ‘ ℂfld ) ) ) |
110 |
|
eqid |
⊢ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) = ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) |
111 |
110
|
subrgsubm |
⊢ ( 𝐴 ∈ ( SubRing ‘ ( Poly1 ‘ ℂfld ) ) → 𝐴 ∈ ( SubMnd ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ) |
112 |
109 111
|
syl |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → 𝐴 ∈ ( SubMnd ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ) |
113 |
30
|
adantl |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → 𝑘 ∈ ℕ0 ) |
114 |
|
eqid |
⊢ ( var1 ‘ ℂfld ) = ( var1 ‘ ℂfld ) |
115 |
114 101 1 2 3
|
subrgvr1cl |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( var1 ‘ ℂfld ) ∈ 𝐴 ) |
116 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) = ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) |
117 |
116
|
submmulgcl |
⊢ ( ( 𝐴 ∈ ( SubMnd ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ∧ 𝑘 ∈ ℕ0 ∧ ( var1 ‘ ℂfld ) ∈ 𝐴 ) → ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ∈ 𝐴 ) |
118 |
112 113 115 117
|
syl3anc |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ∈ 𝐴 ) |
119 |
|
fnfvima |
⊢ ( ( 𝐸 Fn ( Base ‘ ( Poly1 ‘ ℂfld ) ) ∧ 𝐴 ⊆ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ∧ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ∈ 𝐴 ) → ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ∈ ( 𝐸 “ 𝐴 ) ) |
120 |
97 100 118 119
|
syl3anc |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ∈ ( 𝐸 “ 𝐴 ) ) |
121 |
108 120
|
sseldd |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ∈ ( Base ‘ ( ℂfld ↑s ℂ ) ) ) |
122 |
7 8 67 68 69 121
|
pwselbas |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) : ℂ ⟶ ℂ ) |
123 |
122
|
feqmptd |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) = ( 𝑧 ∈ ℂ ↦ ( ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ‘ 𝑧 ) ) ) |
124 |
56
|
a1i |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑧 ∈ ℂ ) → ℂfld ∈ CRing ) |
125 |
|
simpr |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑧 ∈ ℂ ) → 𝑧 ∈ ℂ ) |
126 |
4 114 8 57 93 124 125
|
evl1vard |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑧 ∈ ℂ ) → ( ( var1 ‘ ℂfld ) ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ∧ ( ( 𝐸 ‘ ( var1 ‘ ℂfld ) ) ‘ 𝑧 ) = 𝑧 ) ) |
127 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ ℂfld ) ) = ( .g ‘ ( mulGrp ‘ ℂfld ) ) |
128 |
113
|
adantr |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑧 ∈ ℂ ) → 𝑘 ∈ ℕ0 ) |
129 |
4 57 8 93 124 125 126 116 127 128
|
evl1expd |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑧 ∈ ℂ ) → ( ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ∧ ( ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ‘ 𝑧 ) = ( 𝑘 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑧 ) ) ) |
130 |
129
|
simprd |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑧 ∈ ℂ ) → ( ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ‘ 𝑧 ) = ( 𝑘 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑧 ) ) |
131 |
|
cnfldexp |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑧 ) = ( 𝑧 ↑ 𝑘 ) ) |
132 |
125 128 131
|
syl2anc |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑧 ∈ ℂ ) → ( 𝑘 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑧 ) = ( 𝑧 ↑ 𝑘 ) ) |
133 |
130 132
|
eqtrd |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑧 ∈ ℂ ) → ( ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ‘ 𝑧 ) = ( 𝑧 ↑ 𝑘 ) ) |
134 |
133
|
mpteq2dva |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝑧 ∈ ℂ ↦ ( ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ‘ 𝑧 ) ) = ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 𝑘 ) ) ) |
135 |
123 134
|
eqtrd |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) = ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 𝑘 ) ) ) |
136 |
135 120
|
eqeltrrd |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 𝑘 ) ) ∈ ( 𝐸 “ 𝐴 ) ) |
137 |
81
|
subrgmcl |
⊢ ( ( ( 𝐸 “ 𝐴 ) ∈ ( SubRing ‘ ( ℂfld ↑s ℂ ) ) ∧ ( ℂ × { ( 𝑎 ‘ 𝑘 ) } ) ∈ ( 𝐸 “ 𝐴 ) ∧ ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 𝑘 ) ) ∈ ( 𝐸 “ 𝐴 ) ) → ( ( ℂ × { ( 𝑎 ‘ 𝑘 ) } ) ( .r ‘ ( ℂfld ↑s ℂ ) ) ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 𝑘 ) ) ) ∈ ( 𝐸 “ 𝐴 ) ) |
138 |
89 106 136 137
|
syl3anc |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ( ℂ × { ( 𝑎 ‘ 𝑘 ) } ) ( .r ‘ ( ℂfld ↑s ℂ ) ) ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 𝑘 ) ) ) ∈ ( 𝐸 “ 𝐴 ) ) |
139 |
88 138
|
eqeltrrd |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝑧 ∈ ℂ ↦ ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ∈ ( 𝐸 “ 𝐴 ) ) |
140 |
139
|
fmpttd |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( 𝑧 ∈ ℂ ↦ ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) : ( 0 ... 𝑛 ) ⟶ ( 𝐸 “ 𝐴 ) ) |
141 |
40 12 139 44
|
fsuppmptdm |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( 𝑧 ∈ ℂ ↦ ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) finSupp ( 0g ‘ ( ℂfld ↑s ℂ ) ) ) |
142 |
9 55 12 66 140 141
|
gsumsubmcl |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → ( ( ℂfld ↑s ℂ ) Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( 𝑧 ∈ ℂ ↦ ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ∈ ( 𝐸 “ 𝐴 ) ) |
143 |
51 142
|
eqeltrrd |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ∈ ( 𝐸 “ 𝐴 ) ) |
144 |
|
eleq1 |
⊢ ( 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) → ( 𝑓 ∈ ( 𝐸 “ 𝐴 ) ↔ ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ∈ ( 𝐸 “ 𝐴 ) ) ) |
145 |
143 144
|
syl5ibrcom |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → ( 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) → 𝑓 ∈ ( 𝐸 “ 𝐴 ) ) ) |
146 |
145
|
rexlimdvva |
⊢ ( 𝑆 ∈ ( SubRing ‘ ℂfld ) → ( ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) → 𝑓 ∈ ( 𝐸 “ 𝐴 ) ) ) |
147 |
6 146
|
syl5 |
⊢ ( 𝑆 ∈ ( SubRing ‘ ℂfld ) → ( 𝑓 ∈ ( Poly ‘ 𝑆 ) → 𝑓 ∈ ( 𝐸 “ 𝐴 ) ) ) |
148 |
|
ffun |
⊢ ( 𝐸 : ( Base ‘ ( Poly1 ‘ ℂfld ) ) ⟶ ( Base ‘ ( ℂfld ↑s ℂ ) ) → Fun 𝐸 ) |
149 |
95 148
|
ax-mp |
⊢ Fun 𝐸 |
150 |
|
fvelima |
⊢ ( ( Fun 𝐸 ∧ 𝑓 ∈ ( 𝐸 “ 𝐴 ) ) → ∃ 𝑎 ∈ 𝐴 ( 𝐸 ‘ 𝑎 ) = 𝑓 ) |
151 |
149 150
|
mpan |
⊢ ( 𝑓 ∈ ( 𝐸 “ 𝐴 ) → ∃ 𝑎 ∈ 𝐴 ( 𝐸 ‘ 𝑎 ) = 𝑓 ) |
152 |
99
|
sselda |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) |
153 |
|
eqid |
⊢ ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) = ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) |
154 |
|
eqid |
⊢ ( coe1 ‘ 𝑎 ) = ( coe1 ‘ 𝑎 ) |
155 |
57 114 93 153 110 116 154
|
ply1coe |
⊢ ( ( ℂfld ∈ Ring ∧ 𝑎 ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) → 𝑎 = ( ( Poly1 ‘ ℂfld ) Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ) ) |
156 |
13 152 155
|
sylancr |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → 𝑎 = ( ( Poly1 ‘ ℂfld ) Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ) ) |
157 |
156
|
fveq2d |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐸 ‘ 𝑎 ) = ( 𝐸 ‘ ( ( Poly1 ‘ ℂfld ) Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ) ) ) |
158 |
|
eqid |
⊢ ( 0g ‘ ( Poly1 ‘ ℂfld ) ) = ( 0g ‘ ( Poly1 ‘ ℂfld ) ) |
159 |
57
|
ply1ring |
⊢ ( ℂfld ∈ Ring → ( Poly1 ‘ ℂfld ) ∈ Ring ) |
160 |
13 159
|
ax-mp |
⊢ ( Poly1 ‘ ℂfld ) ∈ Ring |
161 |
|
ringcmn |
⊢ ( ( Poly1 ‘ ℂfld ) ∈ Ring → ( Poly1 ‘ ℂfld ) ∈ CMnd ) |
162 |
160 161
|
mp1i |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( Poly1 ‘ ℂfld ) ∈ CMnd ) |
163 |
|
ringmnd |
⊢ ( ( ℂfld ↑s ℂ ) ∈ Ring → ( ℂfld ↑s ℂ ) ∈ Mnd ) |
164 |
53 163
|
mp1i |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( ℂfld ↑s ℂ ) ∈ Mnd ) |
165 |
|
nn0ex |
⊢ ℕ0 ∈ V |
166 |
165
|
a1i |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ℕ0 ∈ V ) |
167 |
|
rhmghm |
⊢ ( 𝐸 ∈ ( ( Poly1 ‘ ℂfld ) RingHom ( ℂfld ↑s ℂ ) ) → 𝐸 ∈ ( ( Poly1 ‘ ℂfld ) GrpHom ( ℂfld ↑s ℂ ) ) ) |
168 |
59 167
|
ax-mp |
⊢ 𝐸 ∈ ( ( Poly1 ‘ ℂfld ) GrpHom ( ℂfld ↑s ℂ ) ) |
169 |
|
ghmmhm |
⊢ ( 𝐸 ∈ ( ( Poly1 ‘ ℂfld ) GrpHom ( ℂfld ↑s ℂ ) ) → 𝐸 ∈ ( ( Poly1 ‘ ℂfld ) MndHom ( ℂfld ↑s ℂ ) ) ) |
170 |
168 169
|
mp1i |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → 𝐸 ∈ ( ( Poly1 ‘ ℂfld ) MndHom ( ℂfld ↑s ℂ ) ) ) |
171 |
57
|
ply1lmod |
⊢ ( ℂfld ∈ Ring → ( Poly1 ‘ ℂfld ) ∈ LMod ) |
172 |
13 171
|
mp1i |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) → ( Poly1 ‘ ℂfld ) ∈ LMod ) |
173 |
16
|
ad2antrr |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑆 ⊆ ℂ ) |
174 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
175 |
154 3 2 174
|
coe1f |
⊢ ( 𝑎 ∈ 𝐴 → ( coe1 ‘ 𝑎 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
176 |
1
|
subrgbas |
⊢ ( 𝑆 ∈ ( SubRing ‘ ℂfld ) → 𝑆 = ( Base ‘ 𝑅 ) ) |
177 |
176
|
feq3d |
⊢ ( 𝑆 ∈ ( SubRing ‘ ℂfld ) → ( ( coe1 ‘ 𝑎 ) : ℕ0 ⟶ 𝑆 ↔ ( coe1 ‘ 𝑎 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) ) |
178 |
175 177
|
syl5ibr |
⊢ ( 𝑆 ∈ ( SubRing ‘ ℂfld ) → ( 𝑎 ∈ 𝐴 → ( coe1 ‘ 𝑎 ) : ℕ0 ⟶ 𝑆 ) ) |
179 |
178
|
imp |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( coe1 ‘ 𝑎 ) : ℕ0 ⟶ 𝑆 ) |
180 |
179
|
ffvelrnda |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ∈ 𝑆 ) |
181 |
173 180
|
sseldd |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ∈ ℂ ) |
182 |
110
|
ringmgp |
⊢ ( ( Poly1 ‘ ℂfld ) ∈ Ring → ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ∈ Mnd ) |
183 |
160 182
|
mp1i |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) → ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ∈ Mnd ) |
184 |
|
simpr |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
185 |
114 57 93
|
vr1cl |
⊢ ( ℂfld ∈ Ring → ( var1 ‘ ℂfld ) ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) |
186 |
13 185
|
mp1i |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) → ( var1 ‘ ℂfld ) ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) |
187 |
110 93
|
mgpbas |
⊢ ( Base ‘ ( Poly1 ‘ ℂfld ) ) = ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) |
188 |
187 116
|
mulgnn0cl |
⊢ ( ( ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ∈ Mnd ∧ 𝑘 ∈ ℕ0 ∧ ( var1 ‘ ℂfld ) ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) → ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) |
189 |
183 184 186 188
|
syl3anc |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) |
190 |
57
|
ply1sca |
⊢ ( ℂfld ∈ Ring → ℂfld = ( Scalar ‘ ( Poly1 ‘ ℂfld ) ) ) |
191 |
13 190
|
ax-mp |
⊢ ℂfld = ( Scalar ‘ ( Poly1 ‘ ℂfld ) ) |
192 |
93 191 153 8
|
lmodvscl |
⊢ ( ( ( Poly1 ‘ ℂfld ) ∈ LMod ∧ ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ∈ ℂ ∧ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) → ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) |
193 |
172 181 189 192
|
syl3anc |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) |
194 |
193
|
fmpttd |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) : ℕ0 ⟶ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) |
195 |
165
|
mptex |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ∈ V |
196 |
|
funmpt |
⊢ Fun ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) |
197 |
|
fvex |
⊢ ( 0g ‘ ( Poly1 ‘ ℂfld ) ) ∈ V |
198 |
195 196 197
|
3pm3.2i |
⊢ ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ∧ ( 0g ‘ ( Poly1 ‘ ℂfld ) ) ∈ V ) |
199 |
198
|
a1i |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ∧ ( 0g ‘ ( Poly1 ‘ ℂfld ) ) ∈ V ) ) |
200 |
154 93 57 21
|
coe1sfi |
⊢ ( 𝑎 ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) → ( coe1 ‘ 𝑎 ) finSupp 0 ) |
201 |
152 200
|
syl |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( coe1 ‘ 𝑎 ) finSupp 0 ) |
202 |
201
|
fsuppimpd |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( ( coe1 ‘ 𝑎 ) supp 0 ) ∈ Fin ) |
203 |
179
|
feqmptd |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( coe1 ‘ 𝑎 ) = ( 𝑘 ∈ ℕ0 ↦ ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ) ) |
204 |
203
|
oveq1d |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( ( coe1 ‘ 𝑎 ) supp 0 ) = ( ( 𝑘 ∈ ℕ0 ↦ ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ) supp 0 ) ) |
205 |
|
eqimss2 |
⊢ ( ( ( coe1 ‘ 𝑎 ) supp 0 ) = ( ( 𝑘 ∈ ℕ0 ↦ ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ) supp 0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ) supp 0 ) ⊆ ( ( coe1 ‘ 𝑎 ) supp 0 ) ) |
206 |
204 205
|
syl |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ) supp 0 ) ⊆ ( ( coe1 ‘ 𝑎 ) supp 0 ) ) |
207 |
13 171
|
mp1i |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( Poly1 ‘ ℂfld ) ∈ LMod ) |
208 |
93 191 153 21 158
|
lmod0vs |
⊢ ( ( ( Poly1 ‘ ℂfld ) ∈ LMod ∧ 𝑥 ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) → ( 0 ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) 𝑥 ) = ( 0g ‘ ( Poly1 ‘ ℂfld ) ) ) |
209 |
207 208
|
sylan |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑥 ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) → ( 0 ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) 𝑥 ) = ( 0g ‘ ( Poly1 ‘ ℂfld ) ) ) |
210 |
|
c0ex |
⊢ 0 ∈ V |
211 |
210
|
a1i |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → 0 ∈ V ) |
212 |
206 209 180 189 211
|
suppssov1 |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) supp ( 0g ‘ ( Poly1 ‘ ℂfld ) ) ) ⊆ ( ( coe1 ‘ 𝑎 ) supp 0 ) ) |
213 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ∧ ( 0g ‘ ( Poly1 ‘ ℂfld ) ) ∈ V ) ∧ ( ( ( coe1 ‘ 𝑎 ) supp 0 ) ∈ Fin ∧ ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) supp ( 0g ‘ ( Poly1 ‘ ℂfld ) ) ) ⊆ ( ( coe1 ‘ 𝑎 ) supp 0 ) ) ) → ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) finSupp ( 0g ‘ ( Poly1 ‘ ℂfld ) ) ) |
214 |
199 202 212 213
|
syl12anc |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) finSupp ( 0g ‘ ( Poly1 ‘ ℂfld ) ) ) |
215 |
93 158 162 164 166 170 194 214
|
gsummhm |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( ( ℂfld ↑s ℂ ) Σg ( 𝐸 ∘ ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ) ) = ( 𝐸 ‘ ( ( Poly1 ‘ ℂfld ) Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ) ) ) |
216 |
95
|
a1i |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → 𝐸 : ( Base ‘ ( Poly1 ‘ ℂfld ) ) ⟶ ( Base ‘ ( ℂfld ↑s ℂ ) ) ) |
217 |
216 193
|
cofmpt |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐸 ∘ ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( 𝐸 ‘ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ) ) |
218 |
13
|
a1i |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) → ℂfld ∈ Ring ) |
219 |
10
|
a1i |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) → ℂ ∈ V ) |
220 |
95
|
ffvelrni |
⊢ ( ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) → ( 𝐸 ‘ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ∈ ( Base ‘ ( ℂfld ↑s ℂ ) ) ) |
221 |
193 220
|
syl |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐸 ‘ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ∈ ( Base ‘ ( ℂfld ↑s ℂ ) ) ) |
222 |
7 8 67 218 219 221
|
pwselbas |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐸 ‘ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) : ℂ ⟶ ℂ ) |
223 |
222
|
feqmptd |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐸 ‘ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) = ( 𝑧 ∈ ℂ ↦ ( ( 𝐸 ‘ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ‘ 𝑧 ) ) ) |
224 |
56
|
a1i |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ℂ ) → ℂfld ∈ CRing ) |
225 |
|
simpr |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ℂ ) → 𝑧 ∈ ℂ ) |
226 |
4 114 8 57 93 224 225
|
evl1vard |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ℂ ) → ( ( var1 ‘ ℂfld ) ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ∧ ( ( 𝐸 ‘ ( var1 ‘ ℂfld ) ) ‘ 𝑧 ) = 𝑧 ) ) |
227 |
184
|
adantr |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ℂ ) → 𝑘 ∈ ℕ0 ) |
228 |
4 57 8 93 224 225 226 116 127 227
|
evl1expd |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ℂ ) → ( ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ∧ ( ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ‘ 𝑧 ) = ( 𝑘 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑧 ) ) ) |
229 |
225 227 131
|
syl2anc |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ℂ ) → ( 𝑘 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑧 ) = ( 𝑧 ↑ 𝑘 ) ) |
230 |
229
|
eqeq2d |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ℂ ) → ( ( ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ‘ 𝑧 ) = ( 𝑘 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑧 ) ↔ ( ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ‘ 𝑧 ) = ( 𝑧 ↑ 𝑘 ) ) ) |
231 |
230
|
anbi2d |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ℂ ) → ( ( ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ∧ ( ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ‘ 𝑧 ) = ( 𝑘 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑧 ) ) ↔ ( ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ∧ ( ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ‘ 𝑧 ) = ( 𝑧 ↑ 𝑘 ) ) ) ) |
232 |
228 231
|
mpbid |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ℂ ) → ( ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ∧ ( ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ‘ 𝑧 ) = ( 𝑧 ↑ 𝑘 ) ) ) |
233 |
181
|
adantr |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ℂ ) → ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ∈ ℂ ) |
234 |
4 57 8 93 224 225 232 233 153 80
|
evl1vsd |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ℂ ) → ( ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ∧ ( ( 𝐸 ‘ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ‘ 𝑧 ) = ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
235 |
234
|
simprd |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ℂ ) → ( ( 𝐸 ‘ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ‘ 𝑧 ) = ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
236 |
235
|
mpteq2dva |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑧 ∈ ℂ ↦ ( ( 𝐸 ‘ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ‘ 𝑧 ) ) = ( 𝑧 ∈ ℂ ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
237 |
223 236
|
eqtrd |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐸 ‘ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) = ( 𝑧 ∈ ℂ ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
238 |
237
|
mpteq2dva |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝐸 ‘ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( 𝑧 ∈ ℂ ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) |
239 |
217 238
|
eqtrd |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐸 ∘ ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( 𝑧 ∈ ℂ ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) |
240 |
239
|
oveq2d |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( ( ℂfld ↑s ℂ ) Σg ( 𝐸 ∘ ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ) ) = ( ( ℂfld ↑s ℂ ) Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝑧 ∈ ℂ ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) |
241 |
157 215 240
|
3eqtr2d |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐸 ‘ 𝑎 ) = ( ( ℂfld ↑s ℂ ) Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝑧 ∈ ℂ ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) |
242 |
10
|
a1i |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ℂ ∈ V ) |
243 |
13 14
|
mp1i |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ℂfld ∈ CMnd ) |
244 |
181
|
adantlr |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ∈ ℂ ) |
245 |
37
|
adantll |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑧 ↑ 𝑘 ) ∈ ℂ ) |
246 |
244 245
|
mulcld |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ∈ ℂ ) |
247 |
246
|
anasss |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) ) → ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ∈ ℂ ) |
248 |
165
|
mptex |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( 𝑧 ∈ ℂ ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ∈ V |
249 |
|
funmpt |
⊢ Fun ( 𝑘 ∈ ℕ0 ↦ ( 𝑧 ∈ ℂ ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
250 |
248 249 43
|
3pm3.2i |
⊢ ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑧 ∈ ℂ ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ ℕ0 ↦ ( 𝑧 ∈ ℂ ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ∧ ( 0g ‘ ( ℂfld ↑s ℂ ) ) ∈ V ) |
251 |
250
|
a1i |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑧 ∈ ℂ ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ ℕ0 ↦ ( 𝑧 ∈ ℂ ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ∧ ( 0g ‘ ( ℂfld ↑s ℂ ) ) ∈ V ) ) |
252 |
|
fzfid |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ∈ Fin ) |
253 |
|
eldifn |
⊢ ( 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) → ¬ 𝑘 ∈ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) |
254 |
253
|
adantl |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → ¬ 𝑘 ∈ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) |
255 |
152
|
ad2antrr |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → 𝑎 ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) |
256 |
|
eldifi |
⊢ ( 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) → 𝑘 ∈ ℕ0 ) |
257 |
256
|
adantl |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → 𝑘 ∈ ℕ0 ) |
258 |
|
eqid |
⊢ ( deg1 ‘ ℂfld ) = ( deg1 ‘ ℂfld ) |
259 |
258 57 93 21 154
|
deg1ge |
⊢ ( ( 𝑎 ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ∧ 𝑘 ∈ ℕ0 ∧ ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ≠ 0 ) → 𝑘 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ) |
260 |
259
|
3expia |
⊢ ( ( 𝑎 ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ) ) |
261 |
255 257 260
|
syl2anc |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ) ) |
262 |
|
0xr |
⊢ 0 ∈ ℝ* |
263 |
258 57 93
|
deg1xrcl |
⊢ ( 𝑎 ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) → ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ ℝ* ) |
264 |
152 263
|
syl |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ ℝ* ) |
265 |
264
|
ad2antrr |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ ℝ* ) |
266 |
|
xrmax2 |
⊢ ( ( 0 ∈ ℝ* ∧ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ ℝ* ) → ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ≤ if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) |
267 |
262 265 266
|
sylancr |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ≤ if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) |
268 |
257
|
nn0red |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → 𝑘 ∈ ℝ ) |
269 |
268
|
rexrd |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → 𝑘 ∈ ℝ* ) |
270 |
|
ifcl |
⊢ ( ( ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ ℝ* ∧ 0 ∈ ℝ* ) → if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ∈ ℝ* ) |
271 |
265 262 270
|
sylancl |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ∈ ℝ* ) |
272 |
|
xrletr |
⊢ ( ( 𝑘 ∈ ℝ* ∧ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ ℝ* ∧ if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ∈ ℝ* ) → ( ( 𝑘 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∧ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ≤ if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) → 𝑘 ≤ if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) |
273 |
269 265 271 272
|
syl3anc |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → ( ( 𝑘 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∧ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ≤ if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) → 𝑘 ≤ if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) |
274 |
267 273
|
mpan2d |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → ( 𝑘 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) → 𝑘 ≤ if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) |
275 |
261 274
|
syld |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) |
276 |
275 257
|
jctild |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ≠ 0 → ( 𝑘 ∈ ℕ0 ∧ 𝑘 ≤ if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) |
277 |
258 57 93
|
deg1cl |
⊢ ( 𝑎 ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) → ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ ( ℕ0 ∪ { -∞ } ) ) |
278 |
152 277
|
syl |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ ( ℕ0 ∪ { -∞ } ) ) |
279 |
|
elun |
⊢ ( ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ ( ℕ0 ∪ { -∞ } ) ↔ ( ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ ℕ0 ∨ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ { -∞ } ) ) |
280 |
278 279
|
sylib |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ ℕ0 ∨ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ { -∞ } ) ) |
281 |
|
nn0ge0 |
⊢ ( ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ ℕ0 → 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ) |
282 |
281
|
iftrued |
⊢ ( ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ ℕ0 → if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) = ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ) |
283 |
|
id |
⊢ ( ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ ℕ0 → ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ ℕ0 ) |
284 |
282 283
|
eqeltrd |
⊢ ( ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ ℕ0 → if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ∈ ℕ0 ) |
285 |
|
mnflt0 |
⊢ -∞ < 0 |
286 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
287 |
|
xrltnle |
⊢ ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( -∞ < 0 ↔ ¬ 0 ≤ -∞ ) ) |
288 |
286 262 287
|
mp2an |
⊢ ( -∞ < 0 ↔ ¬ 0 ≤ -∞ ) |
289 |
285 288
|
mpbi |
⊢ ¬ 0 ≤ -∞ |
290 |
|
elsni |
⊢ ( ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ { -∞ } → ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) = -∞ ) |
291 |
290
|
breq2d |
⊢ ( ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ { -∞ } → ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ↔ 0 ≤ -∞ ) ) |
292 |
289 291
|
mtbiri |
⊢ ( ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ { -∞ } → ¬ 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ) |
293 |
292
|
iffalsed |
⊢ ( ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ { -∞ } → if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) = 0 ) |
294 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
295 |
293 294
|
eqeltrdi |
⊢ ( ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ { -∞ } → if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ∈ ℕ0 ) |
296 |
284 295
|
jaoi |
⊢ ( ( ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ ℕ0 ∨ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ { -∞ } ) → if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ∈ ℕ0 ) |
297 |
280 296
|
syl |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ∈ ℕ0 ) |
298 |
297
|
ad2antrr |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ∈ ℕ0 ) |
299 |
|
fznn0 |
⊢ ( if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ∈ ℕ0 → ( 𝑘 ∈ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ↔ ( 𝑘 ∈ ℕ0 ∧ 𝑘 ≤ if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) |
300 |
298 299
|
syl |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → ( 𝑘 ∈ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ↔ ( 𝑘 ∈ ℕ0 ∧ 𝑘 ≤ if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) |
301 |
276 300
|
sylibrd |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ≠ 0 → 𝑘 ∈ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) |
302 |
301
|
necon1bd |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → ( ¬ 𝑘 ∈ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) → ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) = 0 ) ) |
303 |
254 302
|
mpd |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) = 0 ) |
304 |
303
|
oveq1d |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = ( 0 · ( 𝑧 ↑ 𝑘 ) ) ) |
305 |
256 245
|
sylan2 |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → ( 𝑧 ↑ 𝑘 ) ∈ ℂ ) |
306 |
305
|
mul02d |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → ( 0 · ( 𝑧 ↑ 𝑘 ) ) = 0 ) |
307 |
304 306
|
eqtrd |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = 0 ) |
308 |
307
|
an32s |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) ∧ 𝑧 ∈ ℂ ) → ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = 0 ) |
309 |
308
|
mpteq2dva |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → ( 𝑧 ∈ ℂ ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ 0 ) ) |
310 |
|
fconstmpt |
⊢ ( ℂ × { 0 } ) = ( 𝑧 ∈ ℂ ↦ 0 ) |
311 |
|
ringmnd |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ Mnd ) |
312 |
13 311
|
ax-mp |
⊢ ℂfld ∈ Mnd |
313 |
7 21
|
pws0g |
⊢ ( ( ℂfld ∈ Mnd ∧ ℂ ∈ V ) → ( ℂ × { 0 } ) = ( 0g ‘ ( ℂfld ↑s ℂ ) ) ) |
314 |
312 10 313
|
mp2an |
⊢ ( ℂ × { 0 } ) = ( 0g ‘ ( ℂfld ↑s ℂ ) ) |
315 |
310 314
|
eqtr3i |
⊢ ( 𝑧 ∈ ℂ ↦ 0 ) = ( 0g ‘ ( ℂfld ↑s ℂ ) ) |
316 |
309 315
|
eqtrdi |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → ( 𝑧 ∈ ℂ ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) = ( 0g ‘ ( ℂfld ↑s ℂ ) ) ) |
317 |
316 166
|
suppss2 |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑧 ∈ ℂ ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) supp ( 0g ‘ ( ℂfld ↑s ℂ ) ) ) ⊆ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) |
318 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑧 ∈ ℂ ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ ℕ0 ↦ ( 𝑧 ∈ ℂ ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ∧ ( 0g ‘ ( ℂfld ↑s ℂ ) ) ∈ V ) ∧ ( ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ∈ Fin ∧ ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑧 ∈ ℂ ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) supp ( 0g ‘ ( ℂfld ↑s ℂ ) ) ) ⊆ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝑧 ∈ ℂ ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) finSupp ( 0g ‘ ( ℂfld ↑s ℂ ) ) ) |
319 |
251 252 317 318
|
syl12anc |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝑧 ∈ ℂ ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) finSupp ( 0g ‘ ( ℂfld ↑s ℂ ) ) ) |
320 |
7 8 9 242 166 243 247 319
|
pwsgsum |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( ( ℂfld ↑s ℂ ) Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝑧 ∈ ℂ ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) = ( 𝑧 ∈ ℂ ↦ ( ℂfld Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) |
321 |
|
fz0ssnn0 |
⊢ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ⊆ ℕ0 |
322 |
|
resmpt |
⊢ ( ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ⊆ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ↾ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) = ( 𝑘 ∈ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
323 |
321 322
|
ax-mp |
⊢ ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ↾ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) = ( 𝑘 ∈ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
324 |
323
|
oveq2i |
⊢ ( ℂfld Σg ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ↾ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) = ( ℂfld Σg ( 𝑘 ∈ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
325 |
13 14
|
mp1i |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) → ℂfld ∈ CMnd ) |
326 |
165
|
a1i |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) → ℕ0 ∈ V ) |
327 |
246
|
fmpttd |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) → ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) : ℕ0 ⟶ ℂ ) |
328 |
307 326
|
suppss2 |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) supp 0 ) ⊆ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) |
329 |
165
|
mptex |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ∈ V |
330 |
|
funmpt |
⊢ Fun ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
331 |
329 330 210
|
3pm3.2i |
⊢ ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ∧ 0 ∈ V ) |
332 |
331
|
a1i |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ∧ 0 ∈ V ) ) |
333 |
|
fzfid |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) → ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ∈ Fin ) |
334 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ∧ 0 ∈ V ) ∧ ( ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ∈ Fin ∧ ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) supp 0 ) ⊆ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) finSupp 0 ) |
335 |
332 333 328 334
|
syl12anc |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) → ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) finSupp 0 ) |
336 |
8 21 325 326 327 328 335
|
gsumres |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) → ( ℂfld Σg ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ↾ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) = ( ℂfld Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) |
337 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) → 𝑘 ∈ ℕ0 ) |
338 |
337 246
|
sylan2 |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) → ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ∈ ℂ ) |
339 |
333 338
|
gsumfsum |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) → ( ℂfld Σg ( 𝑘 ∈ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) = Σ 𝑘 ∈ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
340 |
324 336 339
|
3eqtr3a |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) → ( ℂfld Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) = Σ 𝑘 ∈ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
341 |
340
|
mpteq2dva |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝑧 ∈ ℂ ↦ ( ℂfld Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
342 |
241 320 341
|
3eqtrd |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐸 ‘ 𝑎 ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
343 |
16
|
adantr |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → 𝑆 ⊆ ℂ ) |
344 |
|
elplyr |
⊢ ( ( 𝑆 ⊆ ℂ ∧ if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ∈ ℕ0 ∧ ( coe1 ‘ 𝑎 ) : ℕ0 ⟶ 𝑆 ) → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ∈ ( Poly ‘ 𝑆 ) ) |
345 |
343 297 179 344
|
syl3anc |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ∈ ( Poly ‘ 𝑆 ) ) |
346 |
342 345
|
eqeltrd |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐸 ‘ 𝑎 ) ∈ ( Poly ‘ 𝑆 ) ) |
347 |
|
eleq1 |
⊢ ( ( 𝐸 ‘ 𝑎 ) = 𝑓 → ( ( 𝐸 ‘ 𝑎 ) ∈ ( Poly ‘ 𝑆 ) ↔ 𝑓 ∈ ( Poly ‘ 𝑆 ) ) ) |
348 |
346 347
|
syl5ibcom |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝐸 ‘ 𝑎 ) = 𝑓 → 𝑓 ∈ ( Poly ‘ 𝑆 ) ) ) |
349 |
348
|
rexlimdva |
⊢ ( 𝑆 ∈ ( SubRing ‘ ℂfld ) → ( ∃ 𝑎 ∈ 𝐴 ( 𝐸 ‘ 𝑎 ) = 𝑓 → 𝑓 ∈ ( Poly ‘ 𝑆 ) ) ) |
350 |
151 349
|
syl5 |
⊢ ( 𝑆 ∈ ( SubRing ‘ ℂfld ) → ( 𝑓 ∈ ( 𝐸 “ 𝐴 ) → 𝑓 ∈ ( Poly ‘ 𝑆 ) ) ) |
351 |
147 350
|
impbid |
⊢ ( 𝑆 ∈ ( SubRing ‘ ℂfld ) → ( 𝑓 ∈ ( Poly ‘ 𝑆 ) ↔ 𝑓 ∈ ( 𝐸 “ 𝐴 ) ) ) |
352 |
351
|
eqrdv |
⊢ ( 𝑆 ∈ ( SubRing ‘ ℂfld ) → ( Poly ‘ 𝑆 ) = ( 𝐸 “ 𝐴 ) ) |