| Step |
Hyp |
Ref |
Expression |
| 1 |
|
plypf1.r |
⊢ 𝑅 = ( ℂfld ↾s 𝑆 ) |
| 2 |
|
plypf1.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 3 |
|
plypf1.a |
⊢ 𝐴 = ( Base ‘ 𝑃 ) |
| 4 |
|
plypf1.e |
⊢ 𝐸 = ( eval1 ‘ ℂfld ) |
| 5 |
|
elply |
⊢ ( 𝑓 ∈ ( Poly ‘ 𝑆 ) ↔ ( 𝑆 ⊆ ℂ ∧ ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) |
| 6 |
5
|
simprbi |
⊢ ( 𝑓 ∈ ( Poly ‘ 𝑆 ) → ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 7 |
|
eqid |
⊢ ( ℂfld ↑s ℂ ) = ( ℂfld ↑s ℂ ) |
| 8 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 9 |
|
eqid |
⊢ ( 0g ‘ ( ℂfld ↑s ℂ ) ) = ( 0g ‘ ( ℂfld ↑s ℂ ) ) |
| 10 |
|
cnex |
⊢ ℂ ∈ V |
| 11 |
10
|
a1i |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → ℂ ∈ V ) |
| 12 |
|
fzfid |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → ( 0 ... 𝑛 ) ∈ Fin ) |
| 13 |
|
cnring |
⊢ ℂfld ∈ Ring |
| 14 |
|
ringcmn |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ CMnd ) |
| 15 |
13 14
|
mp1i |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → ℂfld ∈ CMnd ) |
| 16 |
8
|
subrgss |
⊢ ( 𝑆 ∈ ( SubRing ‘ ℂfld ) → 𝑆 ⊆ ℂ ) |
| 17 |
16
|
ad2antrr |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → 𝑆 ⊆ ℂ ) |
| 18 |
|
elmapi |
⊢ ( 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) → 𝑎 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ) |
| 19 |
18
|
ad2antll |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → 𝑎 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ) |
| 20 |
|
subrgsubg |
⊢ ( 𝑆 ∈ ( SubRing ‘ ℂfld ) → 𝑆 ∈ ( SubGrp ‘ ℂfld ) ) |
| 21 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
| 22 |
21
|
subg0cl |
⊢ ( 𝑆 ∈ ( SubGrp ‘ ℂfld ) → 0 ∈ 𝑆 ) |
| 23 |
20 22
|
syl |
⊢ ( 𝑆 ∈ ( SubRing ‘ ℂfld ) → 0 ∈ 𝑆 ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → 0 ∈ 𝑆 ) |
| 25 |
24
|
snssd |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → { 0 } ⊆ 𝑆 ) |
| 26 |
|
ssequn2 |
⊢ ( { 0 } ⊆ 𝑆 ↔ ( 𝑆 ∪ { 0 } ) = 𝑆 ) |
| 27 |
25 26
|
sylib |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → ( 𝑆 ∪ { 0 } ) = 𝑆 ) |
| 28 |
27
|
feq3d |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → ( 𝑎 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ↔ 𝑎 : ℕ0 ⟶ 𝑆 ) ) |
| 29 |
19 28
|
mpbid |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → 𝑎 : ℕ0 ⟶ 𝑆 ) |
| 30 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑛 ) → 𝑘 ∈ ℕ0 ) |
| 31 |
|
ffvelcdm |
⊢ ( ( 𝑎 : ℕ0 ⟶ 𝑆 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑎 ‘ 𝑘 ) ∈ 𝑆 ) |
| 32 |
29 30 31
|
syl2an |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝑎 ‘ 𝑘 ) ∈ 𝑆 ) |
| 33 |
17 32
|
sseldd |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝑎 ‘ 𝑘 ) ∈ ℂ ) |
| 34 |
33
|
adantrl |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ ( 𝑧 ∈ ℂ ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) ) → ( 𝑎 ‘ 𝑘 ) ∈ ℂ ) |
| 35 |
|
simprl |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ ( 𝑧 ∈ ℂ ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) ) → 𝑧 ∈ ℂ ) |
| 36 |
30
|
ad2antll |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ ( 𝑧 ∈ ℂ ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) ) → 𝑘 ∈ ℕ0 ) |
| 37 |
|
expcl |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑧 ↑ 𝑘 ) ∈ ℂ ) |
| 38 |
35 36 37
|
syl2anc |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ ( 𝑧 ∈ ℂ ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) ) → ( 𝑧 ↑ 𝑘 ) ∈ ℂ ) |
| 39 |
34 38
|
mulcld |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ ( 𝑧 ∈ ℂ ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) ) → ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ∈ ℂ ) |
| 40 |
|
eqid |
⊢ ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( 𝑧 ∈ ℂ ↦ ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) = ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( 𝑧 ∈ ℂ ↦ ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 41 |
10
|
mptex |
⊢ ( 𝑧 ∈ ℂ ↦ ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ∈ V |
| 42 |
41
|
a1i |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝑧 ∈ ℂ ↦ ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ∈ V ) |
| 43 |
|
fvex |
⊢ ( 0g ‘ ( ℂfld ↑s ℂ ) ) ∈ V |
| 44 |
43
|
a1i |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → ( 0g ‘ ( ℂfld ↑s ℂ ) ) ∈ V ) |
| 45 |
40 12 42 44
|
fsuppmptdm |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( 𝑧 ∈ ℂ ↦ ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) finSupp ( 0g ‘ ( ℂfld ↑s ℂ ) ) ) |
| 46 |
7 8 9 11 12 15 39 45
|
pwsgsum |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → ( ( ℂfld ↑s ℂ ) Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( 𝑧 ∈ ℂ ↦ ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) = ( 𝑧 ∈ ℂ ↦ ( ℂfld Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) |
| 47 |
|
fzfid |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑧 ∈ ℂ ) → ( 0 ... 𝑛 ) ∈ Fin ) |
| 48 |
39
|
anassrs |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ∈ ℂ ) |
| 49 |
47 48
|
gsumfsum |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑧 ∈ ℂ ) → ( ℂfld Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) = Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
| 50 |
49
|
mpteq2dva |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → ( 𝑧 ∈ ℂ ↦ ( ℂfld Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 51 |
46 50
|
eqtrd |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → ( ( ℂfld ↑s ℂ ) Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( 𝑧 ∈ ℂ ↦ ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 52 |
7
|
pwsring |
⊢ ( ( ℂfld ∈ Ring ∧ ℂ ∈ V ) → ( ℂfld ↑s ℂ ) ∈ Ring ) |
| 53 |
13 10 52
|
mp2an |
⊢ ( ℂfld ↑s ℂ ) ∈ Ring |
| 54 |
|
ringcmn |
⊢ ( ( ℂfld ↑s ℂ ) ∈ Ring → ( ℂfld ↑s ℂ ) ∈ CMnd ) |
| 55 |
53 54
|
mp1i |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → ( ℂfld ↑s ℂ ) ∈ CMnd ) |
| 56 |
|
cncrng |
⊢ ℂfld ∈ CRing |
| 57 |
|
eqid |
⊢ ( Poly1 ‘ ℂfld ) = ( Poly1 ‘ ℂfld ) |
| 58 |
4 57 7 8
|
evl1rhm |
⊢ ( ℂfld ∈ CRing → 𝐸 ∈ ( ( Poly1 ‘ ℂfld ) RingHom ( ℂfld ↑s ℂ ) ) ) |
| 59 |
56 58
|
ax-mp |
⊢ 𝐸 ∈ ( ( Poly1 ‘ ℂfld ) RingHom ( ℂfld ↑s ℂ ) ) |
| 60 |
57 1 2 3
|
subrgply1 |
⊢ ( 𝑆 ∈ ( SubRing ‘ ℂfld ) → 𝐴 ∈ ( SubRing ‘ ( Poly1 ‘ ℂfld ) ) ) |
| 61 |
60
|
adantr |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → 𝐴 ∈ ( SubRing ‘ ( Poly1 ‘ ℂfld ) ) ) |
| 62 |
|
rhmima |
⊢ ( ( 𝐸 ∈ ( ( Poly1 ‘ ℂfld ) RingHom ( ℂfld ↑s ℂ ) ) ∧ 𝐴 ∈ ( SubRing ‘ ( Poly1 ‘ ℂfld ) ) ) → ( 𝐸 “ 𝐴 ) ∈ ( SubRing ‘ ( ℂfld ↑s ℂ ) ) ) |
| 63 |
59 61 62
|
sylancr |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → ( 𝐸 “ 𝐴 ) ∈ ( SubRing ‘ ( ℂfld ↑s ℂ ) ) ) |
| 64 |
|
subrgsubg |
⊢ ( ( 𝐸 “ 𝐴 ) ∈ ( SubRing ‘ ( ℂfld ↑s ℂ ) ) → ( 𝐸 “ 𝐴 ) ∈ ( SubGrp ‘ ( ℂfld ↑s ℂ ) ) ) |
| 65 |
|
subgsubm |
⊢ ( ( 𝐸 “ 𝐴 ) ∈ ( SubGrp ‘ ( ℂfld ↑s ℂ ) ) → ( 𝐸 “ 𝐴 ) ∈ ( SubMnd ‘ ( ℂfld ↑s ℂ ) ) ) |
| 66 |
63 64 65
|
3syl |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → ( 𝐸 “ 𝐴 ) ∈ ( SubMnd ‘ ( ℂfld ↑s ℂ ) ) ) |
| 67 |
|
eqid |
⊢ ( Base ‘ ( ℂfld ↑s ℂ ) ) = ( Base ‘ ( ℂfld ↑s ℂ ) ) |
| 68 |
13
|
a1i |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ℂfld ∈ Ring ) |
| 69 |
10
|
a1i |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ℂ ∈ V ) |
| 70 |
|
fconst6g |
⊢ ( ( 𝑎 ‘ 𝑘 ) ∈ ℂ → ( ℂ × { ( 𝑎 ‘ 𝑘 ) } ) : ℂ ⟶ ℂ ) |
| 71 |
33 70
|
syl |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ℂ × { ( 𝑎 ‘ 𝑘 ) } ) : ℂ ⟶ ℂ ) |
| 72 |
7 8 67
|
pwselbasb |
⊢ ( ( ℂfld ∈ Ring ∧ ℂ ∈ V ) → ( ( ℂ × { ( 𝑎 ‘ 𝑘 ) } ) ∈ ( Base ‘ ( ℂfld ↑s ℂ ) ) ↔ ( ℂ × { ( 𝑎 ‘ 𝑘 ) } ) : ℂ ⟶ ℂ ) ) |
| 73 |
13 10 72
|
mp2an |
⊢ ( ( ℂ × { ( 𝑎 ‘ 𝑘 ) } ) ∈ ( Base ‘ ( ℂfld ↑s ℂ ) ) ↔ ( ℂ × { ( 𝑎 ‘ 𝑘 ) } ) : ℂ ⟶ ℂ ) |
| 74 |
71 73
|
sylibr |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ℂ × { ( 𝑎 ‘ 𝑘 ) } ) ∈ ( Base ‘ ( ℂfld ↑s ℂ ) ) ) |
| 75 |
38
|
anass1rs |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑧 ∈ ℂ ) → ( 𝑧 ↑ 𝑘 ) ∈ ℂ ) |
| 76 |
75
|
fmpttd |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 𝑘 ) ) : ℂ ⟶ ℂ ) |
| 77 |
7 8 67
|
pwselbasb |
⊢ ( ( ℂfld ∈ Ring ∧ ℂ ∈ V ) → ( ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 𝑘 ) ) ∈ ( Base ‘ ( ℂfld ↑s ℂ ) ) ↔ ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 𝑘 ) ) : ℂ ⟶ ℂ ) ) |
| 78 |
13 10 77
|
mp2an |
⊢ ( ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 𝑘 ) ) ∈ ( Base ‘ ( ℂfld ↑s ℂ ) ) ↔ ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 𝑘 ) ) : ℂ ⟶ ℂ ) |
| 79 |
76 78
|
sylibr |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 𝑘 ) ) ∈ ( Base ‘ ( ℂfld ↑s ℂ ) ) ) |
| 80 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
| 81 |
|
eqid |
⊢ ( .r ‘ ( ℂfld ↑s ℂ ) ) = ( .r ‘ ( ℂfld ↑s ℂ ) ) |
| 82 |
7 67 68 69 74 79 80 81
|
pwsmulrval |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ( ℂ × { ( 𝑎 ‘ 𝑘 ) } ) ( .r ‘ ( ℂfld ↑s ℂ ) ) ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 𝑘 ) ) ) = ( ( ℂ × { ( 𝑎 ‘ 𝑘 ) } ) ∘f · ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 83 |
33
|
adantr |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑧 ∈ ℂ ) → ( 𝑎 ‘ 𝑘 ) ∈ ℂ ) |
| 84 |
|
fconstmpt |
⊢ ( ℂ × { ( 𝑎 ‘ 𝑘 ) } ) = ( 𝑧 ∈ ℂ ↦ ( 𝑎 ‘ 𝑘 ) ) |
| 85 |
84
|
a1i |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ℂ × { ( 𝑎 ‘ 𝑘 ) } ) = ( 𝑧 ∈ ℂ ↦ ( 𝑎 ‘ 𝑘 ) ) ) |
| 86 |
|
eqidd |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 𝑘 ) ) = ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 𝑘 ) ) ) |
| 87 |
69 83 75 85 86
|
offval2 |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ( ℂ × { ( 𝑎 ‘ 𝑘 ) } ) ∘f · ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 88 |
82 87
|
eqtrd |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ( ℂ × { ( 𝑎 ‘ 𝑘 ) } ) ( .r ‘ ( ℂfld ↑s ℂ ) ) ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 89 |
63
|
adantr |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝐸 “ 𝐴 ) ∈ ( SubRing ‘ ( ℂfld ↑s ℂ ) ) ) |
| 90 |
|
eqid |
⊢ ( algSc ‘ ( Poly1 ‘ ℂfld ) ) = ( algSc ‘ ( Poly1 ‘ ℂfld ) ) |
| 91 |
4 57 8 90
|
evl1sca |
⊢ ( ( ℂfld ∈ CRing ∧ ( 𝑎 ‘ 𝑘 ) ∈ ℂ ) → ( 𝐸 ‘ ( ( algSc ‘ ( Poly1 ‘ ℂfld ) ) ‘ ( 𝑎 ‘ 𝑘 ) ) ) = ( ℂ × { ( 𝑎 ‘ 𝑘 ) } ) ) |
| 92 |
56 33 91
|
sylancr |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝐸 ‘ ( ( algSc ‘ ( Poly1 ‘ ℂfld ) ) ‘ ( 𝑎 ‘ 𝑘 ) ) ) = ( ℂ × { ( 𝑎 ‘ 𝑘 ) } ) ) |
| 93 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ ℂfld ) ) = ( Base ‘ ( Poly1 ‘ ℂfld ) ) |
| 94 |
93 67
|
rhmf |
⊢ ( 𝐸 ∈ ( ( Poly1 ‘ ℂfld ) RingHom ( ℂfld ↑s ℂ ) ) → 𝐸 : ( Base ‘ ( Poly1 ‘ ℂfld ) ) ⟶ ( Base ‘ ( ℂfld ↑s ℂ ) ) ) |
| 95 |
59 94
|
ax-mp |
⊢ 𝐸 : ( Base ‘ ( Poly1 ‘ ℂfld ) ) ⟶ ( Base ‘ ( ℂfld ↑s ℂ ) ) |
| 96 |
|
ffn |
⊢ ( 𝐸 : ( Base ‘ ( Poly1 ‘ ℂfld ) ) ⟶ ( Base ‘ ( ℂfld ↑s ℂ ) ) → 𝐸 Fn ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) |
| 97 |
95 96
|
mp1i |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → 𝐸 Fn ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) |
| 98 |
93
|
subrgss |
⊢ ( 𝐴 ∈ ( SubRing ‘ ( Poly1 ‘ ℂfld ) ) → 𝐴 ⊆ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) |
| 99 |
60 98
|
syl |
⊢ ( 𝑆 ∈ ( SubRing ‘ ℂfld ) → 𝐴 ⊆ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) |
| 100 |
99
|
ad2antrr |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → 𝐴 ⊆ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) |
| 101 |
|
simpll |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → 𝑆 ∈ ( SubRing ‘ ℂfld ) ) |
| 102 |
57 90 1 2 101 3 8 33
|
subrg1asclcl |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ( ( algSc ‘ ( Poly1 ‘ ℂfld ) ) ‘ ( 𝑎 ‘ 𝑘 ) ) ∈ 𝐴 ↔ ( 𝑎 ‘ 𝑘 ) ∈ 𝑆 ) ) |
| 103 |
32 102
|
mpbird |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ( algSc ‘ ( Poly1 ‘ ℂfld ) ) ‘ ( 𝑎 ‘ 𝑘 ) ) ∈ 𝐴 ) |
| 104 |
|
fnfvima |
⊢ ( ( 𝐸 Fn ( Base ‘ ( Poly1 ‘ ℂfld ) ) ∧ 𝐴 ⊆ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ∧ ( ( algSc ‘ ( Poly1 ‘ ℂfld ) ) ‘ ( 𝑎 ‘ 𝑘 ) ) ∈ 𝐴 ) → ( 𝐸 ‘ ( ( algSc ‘ ( Poly1 ‘ ℂfld ) ) ‘ ( 𝑎 ‘ 𝑘 ) ) ) ∈ ( 𝐸 “ 𝐴 ) ) |
| 105 |
97 100 103 104
|
syl3anc |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝐸 ‘ ( ( algSc ‘ ( Poly1 ‘ ℂfld ) ) ‘ ( 𝑎 ‘ 𝑘 ) ) ) ∈ ( 𝐸 “ 𝐴 ) ) |
| 106 |
92 105
|
eqeltrrd |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ℂ × { ( 𝑎 ‘ 𝑘 ) } ) ∈ ( 𝐸 “ 𝐴 ) ) |
| 107 |
67
|
subrgss |
⊢ ( ( 𝐸 “ 𝐴 ) ∈ ( SubRing ‘ ( ℂfld ↑s ℂ ) ) → ( 𝐸 “ 𝐴 ) ⊆ ( Base ‘ ( ℂfld ↑s ℂ ) ) ) |
| 108 |
89 107
|
syl |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝐸 “ 𝐴 ) ⊆ ( Base ‘ ( ℂfld ↑s ℂ ) ) ) |
| 109 |
60
|
ad2antrr |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → 𝐴 ∈ ( SubRing ‘ ( Poly1 ‘ ℂfld ) ) ) |
| 110 |
|
eqid |
⊢ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) = ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) |
| 111 |
110
|
subrgsubm |
⊢ ( 𝐴 ∈ ( SubRing ‘ ( Poly1 ‘ ℂfld ) ) → 𝐴 ∈ ( SubMnd ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ) |
| 112 |
109 111
|
syl |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → 𝐴 ∈ ( SubMnd ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ) |
| 113 |
30
|
adantl |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → 𝑘 ∈ ℕ0 ) |
| 114 |
|
eqid |
⊢ ( var1 ‘ ℂfld ) = ( var1 ‘ ℂfld ) |
| 115 |
114 101 1 2 3
|
subrgvr1cl |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( var1 ‘ ℂfld ) ∈ 𝐴 ) |
| 116 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) = ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) |
| 117 |
116
|
submmulgcl |
⊢ ( ( 𝐴 ∈ ( SubMnd ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ∧ 𝑘 ∈ ℕ0 ∧ ( var1 ‘ ℂfld ) ∈ 𝐴 ) → ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ∈ 𝐴 ) |
| 118 |
112 113 115 117
|
syl3anc |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ∈ 𝐴 ) |
| 119 |
|
fnfvima |
⊢ ( ( 𝐸 Fn ( Base ‘ ( Poly1 ‘ ℂfld ) ) ∧ 𝐴 ⊆ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ∧ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ∈ 𝐴 ) → ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ∈ ( 𝐸 “ 𝐴 ) ) |
| 120 |
97 100 118 119
|
syl3anc |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ∈ ( 𝐸 “ 𝐴 ) ) |
| 121 |
108 120
|
sseldd |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ∈ ( Base ‘ ( ℂfld ↑s ℂ ) ) ) |
| 122 |
7 8 67 68 69 121
|
pwselbas |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) : ℂ ⟶ ℂ ) |
| 123 |
122
|
feqmptd |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) = ( 𝑧 ∈ ℂ ↦ ( ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ‘ 𝑧 ) ) ) |
| 124 |
56
|
a1i |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑧 ∈ ℂ ) → ℂfld ∈ CRing ) |
| 125 |
|
simpr |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑧 ∈ ℂ ) → 𝑧 ∈ ℂ ) |
| 126 |
4 114 8 57 93 124 125
|
evl1vard |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑧 ∈ ℂ ) → ( ( var1 ‘ ℂfld ) ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ∧ ( ( 𝐸 ‘ ( var1 ‘ ℂfld ) ) ‘ 𝑧 ) = 𝑧 ) ) |
| 127 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ ℂfld ) ) = ( .g ‘ ( mulGrp ‘ ℂfld ) ) |
| 128 |
113
|
adantr |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑧 ∈ ℂ ) → 𝑘 ∈ ℕ0 ) |
| 129 |
4 57 8 93 124 125 126 116 127 128
|
evl1expd |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑧 ∈ ℂ ) → ( ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ∧ ( ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ‘ 𝑧 ) = ( 𝑘 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑧 ) ) ) |
| 130 |
129
|
simprd |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑧 ∈ ℂ ) → ( ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ‘ 𝑧 ) = ( 𝑘 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑧 ) ) |
| 131 |
|
cnfldexp |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑧 ) = ( 𝑧 ↑ 𝑘 ) ) |
| 132 |
125 128 131
|
syl2anc |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑧 ∈ ℂ ) → ( 𝑘 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑧 ) = ( 𝑧 ↑ 𝑘 ) ) |
| 133 |
130 132
|
eqtrd |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑧 ∈ ℂ ) → ( ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ‘ 𝑧 ) = ( 𝑧 ↑ 𝑘 ) ) |
| 134 |
133
|
mpteq2dva |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝑧 ∈ ℂ ↦ ( ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ‘ 𝑧 ) ) = ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 𝑘 ) ) ) |
| 135 |
123 134
|
eqtrd |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) = ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 𝑘 ) ) ) |
| 136 |
135 120
|
eqeltrrd |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 𝑘 ) ) ∈ ( 𝐸 “ 𝐴 ) ) |
| 137 |
81
|
subrgmcl |
⊢ ( ( ( 𝐸 “ 𝐴 ) ∈ ( SubRing ‘ ( ℂfld ↑s ℂ ) ) ∧ ( ℂ × { ( 𝑎 ‘ 𝑘 ) } ) ∈ ( 𝐸 “ 𝐴 ) ∧ ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 𝑘 ) ) ∈ ( 𝐸 “ 𝐴 ) ) → ( ( ℂ × { ( 𝑎 ‘ 𝑘 ) } ) ( .r ‘ ( ℂfld ↑s ℂ ) ) ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 𝑘 ) ) ) ∈ ( 𝐸 “ 𝐴 ) ) |
| 138 |
89 106 136 137
|
syl3anc |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ( ℂ × { ( 𝑎 ‘ 𝑘 ) } ) ( .r ‘ ( ℂfld ↑s ℂ ) ) ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 𝑘 ) ) ) ∈ ( 𝐸 “ 𝐴 ) ) |
| 139 |
88 138
|
eqeltrrd |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝑧 ∈ ℂ ↦ ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ∈ ( 𝐸 “ 𝐴 ) ) |
| 140 |
139
|
fmpttd |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( 𝑧 ∈ ℂ ↦ ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) : ( 0 ... 𝑛 ) ⟶ ( 𝐸 “ 𝐴 ) ) |
| 141 |
40 12 139 44
|
fsuppmptdm |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( 𝑧 ∈ ℂ ↦ ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) finSupp ( 0g ‘ ( ℂfld ↑s ℂ ) ) ) |
| 142 |
9 55 12 66 140 141
|
gsumsubmcl |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → ( ( ℂfld ↑s ℂ ) Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( 𝑧 ∈ ℂ ↦ ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ∈ ( 𝐸 “ 𝐴 ) ) |
| 143 |
51 142
|
eqeltrrd |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ∈ ( 𝐸 “ 𝐴 ) ) |
| 144 |
|
eleq1 |
⊢ ( 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) → ( 𝑓 ∈ ( 𝐸 “ 𝐴 ) ↔ ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ∈ ( 𝐸 “ 𝐴 ) ) ) |
| 145 |
143 144
|
syl5ibrcom |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → ( 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) → 𝑓 ∈ ( 𝐸 “ 𝐴 ) ) ) |
| 146 |
145
|
rexlimdvva |
⊢ ( 𝑆 ∈ ( SubRing ‘ ℂfld ) → ( ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) → 𝑓 ∈ ( 𝐸 “ 𝐴 ) ) ) |
| 147 |
6 146
|
syl5 |
⊢ ( 𝑆 ∈ ( SubRing ‘ ℂfld ) → ( 𝑓 ∈ ( Poly ‘ 𝑆 ) → 𝑓 ∈ ( 𝐸 “ 𝐴 ) ) ) |
| 148 |
|
ffun |
⊢ ( 𝐸 : ( Base ‘ ( Poly1 ‘ ℂfld ) ) ⟶ ( Base ‘ ( ℂfld ↑s ℂ ) ) → Fun 𝐸 ) |
| 149 |
95 148
|
ax-mp |
⊢ Fun 𝐸 |
| 150 |
|
fvelima |
⊢ ( ( Fun 𝐸 ∧ 𝑓 ∈ ( 𝐸 “ 𝐴 ) ) → ∃ 𝑎 ∈ 𝐴 ( 𝐸 ‘ 𝑎 ) = 𝑓 ) |
| 151 |
149 150
|
mpan |
⊢ ( 𝑓 ∈ ( 𝐸 “ 𝐴 ) → ∃ 𝑎 ∈ 𝐴 ( 𝐸 ‘ 𝑎 ) = 𝑓 ) |
| 152 |
99
|
sselda |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) |
| 153 |
|
eqid |
⊢ ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) = ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) |
| 154 |
|
eqid |
⊢ ( coe1 ‘ 𝑎 ) = ( coe1 ‘ 𝑎 ) |
| 155 |
57 114 93 153 110 116 154
|
ply1coe |
⊢ ( ( ℂfld ∈ Ring ∧ 𝑎 ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) → 𝑎 = ( ( Poly1 ‘ ℂfld ) Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ) ) |
| 156 |
13 152 155
|
sylancr |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → 𝑎 = ( ( Poly1 ‘ ℂfld ) Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ) ) |
| 157 |
156
|
fveq2d |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐸 ‘ 𝑎 ) = ( 𝐸 ‘ ( ( Poly1 ‘ ℂfld ) Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ) ) ) |
| 158 |
|
eqid |
⊢ ( 0g ‘ ( Poly1 ‘ ℂfld ) ) = ( 0g ‘ ( Poly1 ‘ ℂfld ) ) |
| 159 |
57
|
ply1ring |
⊢ ( ℂfld ∈ Ring → ( Poly1 ‘ ℂfld ) ∈ Ring ) |
| 160 |
13 159
|
ax-mp |
⊢ ( Poly1 ‘ ℂfld ) ∈ Ring |
| 161 |
|
ringcmn |
⊢ ( ( Poly1 ‘ ℂfld ) ∈ Ring → ( Poly1 ‘ ℂfld ) ∈ CMnd ) |
| 162 |
160 161
|
mp1i |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( Poly1 ‘ ℂfld ) ∈ CMnd ) |
| 163 |
|
ringmnd |
⊢ ( ( ℂfld ↑s ℂ ) ∈ Ring → ( ℂfld ↑s ℂ ) ∈ Mnd ) |
| 164 |
53 163
|
mp1i |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( ℂfld ↑s ℂ ) ∈ Mnd ) |
| 165 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 166 |
165
|
a1i |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ℕ0 ∈ V ) |
| 167 |
|
rhmghm |
⊢ ( 𝐸 ∈ ( ( Poly1 ‘ ℂfld ) RingHom ( ℂfld ↑s ℂ ) ) → 𝐸 ∈ ( ( Poly1 ‘ ℂfld ) GrpHom ( ℂfld ↑s ℂ ) ) ) |
| 168 |
59 167
|
ax-mp |
⊢ 𝐸 ∈ ( ( Poly1 ‘ ℂfld ) GrpHom ( ℂfld ↑s ℂ ) ) |
| 169 |
|
ghmmhm |
⊢ ( 𝐸 ∈ ( ( Poly1 ‘ ℂfld ) GrpHom ( ℂfld ↑s ℂ ) ) → 𝐸 ∈ ( ( Poly1 ‘ ℂfld ) MndHom ( ℂfld ↑s ℂ ) ) ) |
| 170 |
168 169
|
mp1i |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → 𝐸 ∈ ( ( Poly1 ‘ ℂfld ) MndHom ( ℂfld ↑s ℂ ) ) ) |
| 171 |
57
|
ply1lmod |
⊢ ( ℂfld ∈ Ring → ( Poly1 ‘ ℂfld ) ∈ LMod ) |
| 172 |
13 171
|
mp1i |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) → ( Poly1 ‘ ℂfld ) ∈ LMod ) |
| 173 |
16
|
ad2antrr |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑆 ⊆ ℂ ) |
| 174 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 175 |
154 3 2 174
|
coe1f |
⊢ ( 𝑎 ∈ 𝐴 → ( coe1 ‘ 𝑎 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
| 176 |
1
|
subrgbas |
⊢ ( 𝑆 ∈ ( SubRing ‘ ℂfld ) → 𝑆 = ( Base ‘ 𝑅 ) ) |
| 177 |
176
|
feq3d |
⊢ ( 𝑆 ∈ ( SubRing ‘ ℂfld ) → ( ( coe1 ‘ 𝑎 ) : ℕ0 ⟶ 𝑆 ↔ ( coe1 ‘ 𝑎 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) ) |
| 178 |
175 177
|
imbitrrid |
⊢ ( 𝑆 ∈ ( SubRing ‘ ℂfld ) → ( 𝑎 ∈ 𝐴 → ( coe1 ‘ 𝑎 ) : ℕ0 ⟶ 𝑆 ) ) |
| 179 |
178
|
imp |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( coe1 ‘ 𝑎 ) : ℕ0 ⟶ 𝑆 ) |
| 180 |
179
|
ffvelcdmda |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ∈ 𝑆 ) |
| 181 |
173 180
|
sseldd |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ∈ ℂ ) |
| 182 |
110 93
|
mgpbas |
⊢ ( Base ‘ ( Poly1 ‘ ℂfld ) ) = ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) |
| 183 |
110
|
ringmgp |
⊢ ( ( Poly1 ‘ ℂfld ) ∈ Ring → ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ∈ Mnd ) |
| 184 |
160 183
|
mp1i |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) → ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ∈ Mnd ) |
| 185 |
|
simpr |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
| 186 |
114 57 93
|
vr1cl |
⊢ ( ℂfld ∈ Ring → ( var1 ‘ ℂfld ) ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) |
| 187 |
13 186
|
mp1i |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) → ( var1 ‘ ℂfld ) ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) |
| 188 |
182 116 184 185 187
|
mulgnn0cld |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) |
| 189 |
57
|
ply1sca |
⊢ ( ℂfld ∈ Ring → ℂfld = ( Scalar ‘ ( Poly1 ‘ ℂfld ) ) ) |
| 190 |
13 189
|
ax-mp |
⊢ ℂfld = ( Scalar ‘ ( Poly1 ‘ ℂfld ) ) |
| 191 |
93 190 153 8
|
lmodvscl |
⊢ ( ( ( Poly1 ‘ ℂfld ) ∈ LMod ∧ ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ∈ ℂ ∧ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) → ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) |
| 192 |
172 181 188 191
|
syl3anc |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) |
| 193 |
192
|
fmpttd |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) : ℕ0 ⟶ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) |
| 194 |
165
|
mptex |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ∈ V |
| 195 |
|
funmpt |
⊢ Fun ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) |
| 196 |
|
fvex |
⊢ ( 0g ‘ ( Poly1 ‘ ℂfld ) ) ∈ V |
| 197 |
194 195 196
|
3pm3.2i |
⊢ ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ∧ ( 0g ‘ ( Poly1 ‘ ℂfld ) ) ∈ V ) |
| 198 |
197
|
a1i |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ∧ ( 0g ‘ ( Poly1 ‘ ℂfld ) ) ∈ V ) ) |
| 199 |
154 93 57 21
|
coe1sfi |
⊢ ( 𝑎 ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) → ( coe1 ‘ 𝑎 ) finSupp 0 ) |
| 200 |
152 199
|
syl |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( coe1 ‘ 𝑎 ) finSupp 0 ) |
| 201 |
200
|
fsuppimpd |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( ( coe1 ‘ 𝑎 ) supp 0 ) ∈ Fin ) |
| 202 |
179
|
feqmptd |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( coe1 ‘ 𝑎 ) = ( 𝑘 ∈ ℕ0 ↦ ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ) ) |
| 203 |
202
|
oveq1d |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( ( coe1 ‘ 𝑎 ) supp 0 ) = ( ( 𝑘 ∈ ℕ0 ↦ ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ) supp 0 ) ) |
| 204 |
|
eqimss2 |
⊢ ( ( ( coe1 ‘ 𝑎 ) supp 0 ) = ( ( 𝑘 ∈ ℕ0 ↦ ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ) supp 0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ) supp 0 ) ⊆ ( ( coe1 ‘ 𝑎 ) supp 0 ) ) |
| 205 |
203 204
|
syl |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ) supp 0 ) ⊆ ( ( coe1 ‘ 𝑎 ) supp 0 ) ) |
| 206 |
13 171
|
mp1i |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( Poly1 ‘ ℂfld ) ∈ LMod ) |
| 207 |
93 190 153 21 158
|
lmod0vs |
⊢ ( ( ( Poly1 ‘ ℂfld ) ∈ LMod ∧ 𝑥 ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) → ( 0 ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) 𝑥 ) = ( 0g ‘ ( Poly1 ‘ ℂfld ) ) ) |
| 208 |
206 207
|
sylan |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑥 ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) → ( 0 ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) 𝑥 ) = ( 0g ‘ ( Poly1 ‘ ℂfld ) ) ) |
| 209 |
|
c0ex |
⊢ 0 ∈ V |
| 210 |
209
|
a1i |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → 0 ∈ V ) |
| 211 |
205 208 180 188 210
|
suppssov1 |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) supp ( 0g ‘ ( Poly1 ‘ ℂfld ) ) ) ⊆ ( ( coe1 ‘ 𝑎 ) supp 0 ) ) |
| 212 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ∧ ( 0g ‘ ( Poly1 ‘ ℂfld ) ) ∈ V ) ∧ ( ( ( coe1 ‘ 𝑎 ) supp 0 ) ∈ Fin ∧ ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) supp ( 0g ‘ ( Poly1 ‘ ℂfld ) ) ) ⊆ ( ( coe1 ‘ 𝑎 ) supp 0 ) ) ) → ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) finSupp ( 0g ‘ ( Poly1 ‘ ℂfld ) ) ) |
| 213 |
198 201 211 212
|
syl12anc |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) finSupp ( 0g ‘ ( Poly1 ‘ ℂfld ) ) ) |
| 214 |
93 158 162 164 166 170 193 213
|
gsummhm |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( ( ℂfld ↑s ℂ ) Σg ( 𝐸 ∘ ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ) ) = ( 𝐸 ‘ ( ( Poly1 ‘ ℂfld ) Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ) ) ) |
| 215 |
95
|
a1i |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → 𝐸 : ( Base ‘ ( Poly1 ‘ ℂfld ) ) ⟶ ( Base ‘ ( ℂfld ↑s ℂ ) ) ) |
| 216 |
215 192
|
cofmpt |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐸 ∘ ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( 𝐸 ‘ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ) ) |
| 217 |
13
|
a1i |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) → ℂfld ∈ Ring ) |
| 218 |
10
|
a1i |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) → ℂ ∈ V ) |
| 219 |
95
|
ffvelcdmi |
⊢ ( ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) → ( 𝐸 ‘ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ∈ ( Base ‘ ( ℂfld ↑s ℂ ) ) ) |
| 220 |
192 219
|
syl |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐸 ‘ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ∈ ( Base ‘ ( ℂfld ↑s ℂ ) ) ) |
| 221 |
7 8 67 217 218 220
|
pwselbas |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐸 ‘ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) : ℂ ⟶ ℂ ) |
| 222 |
221
|
feqmptd |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐸 ‘ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) = ( 𝑧 ∈ ℂ ↦ ( ( 𝐸 ‘ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ‘ 𝑧 ) ) ) |
| 223 |
56
|
a1i |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ℂ ) → ℂfld ∈ CRing ) |
| 224 |
|
simpr |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ℂ ) → 𝑧 ∈ ℂ ) |
| 225 |
4 114 8 57 93 223 224
|
evl1vard |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ℂ ) → ( ( var1 ‘ ℂfld ) ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ∧ ( ( 𝐸 ‘ ( var1 ‘ ℂfld ) ) ‘ 𝑧 ) = 𝑧 ) ) |
| 226 |
185
|
adantr |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ℂ ) → 𝑘 ∈ ℕ0 ) |
| 227 |
4 57 8 93 223 224 225 116 127 226
|
evl1expd |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ℂ ) → ( ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ∧ ( ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ‘ 𝑧 ) = ( 𝑘 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑧 ) ) ) |
| 228 |
224 226 131
|
syl2anc |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ℂ ) → ( 𝑘 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑧 ) = ( 𝑧 ↑ 𝑘 ) ) |
| 229 |
228
|
eqeq2d |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ℂ ) → ( ( ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ‘ 𝑧 ) = ( 𝑘 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑧 ) ↔ ( ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ‘ 𝑧 ) = ( 𝑧 ↑ 𝑘 ) ) ) |
| 230 |
229
|
anbi2d |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ℂ ) → ( ( ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ∧ ( ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ‘ 𝑧 ) = ( 𝑘 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑧 ) ) ↔ ( ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ∧ ( ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ‘ 𝑧 ) = ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 231 |
227 230
|
mpbid |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ℂ ) → ( ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ∧ ( ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ‘ 𝑧 ) = ( 𝑧 ↑ 𝑘 ) ) ) |
| 232 |
181
|
adantr |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ℂ ) → ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ∈ ℂ ) |
| 233 |
4 57 8 93 223 224 231 232 153 80
|
evl1vsd |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ℂ ) → ( ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ∧ ( ( 𝐸 ‘ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ‘ 𝑧 ) = ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 234 |
233
|
simprd |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑧 ∈ ℂ ) → ( ( 𝐸 ‘ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ‘ 𝑧 ) = ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
| 235 |
234
|
mpteq2dva |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑧 ∈ ℂ ↦ ( ( 𝐸 ‘ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ‘ 𝑧 ) ) = ( 𝑧 ∈ ℂ ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 236 |
222 235
|
eqtrd |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐸 ‘ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) = ( 𝑧 ∈ ℂ ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 237 |
236
|
mpteq2dva |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝐸 ‘ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( 𝑧 ∈ ℂ ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) |
| 238 |
216 237
|
eqtrd |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐸 ∘ ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( 𝑧 ∈ ℂ ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) |
| 239 |
238
|
oveq2d |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( ( ℂfld ↑s ℂ ) Σg ( 𝐸 ∘ ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ( ·𝑠 ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ) ) = ( ( ℂfld ↑s ℂ ) Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝑧 ∈ ℂ ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) |
| 240 |
157 214 239
|
3eqtr2d |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐸 ‘ 𝑎 ) = ( ( ℂfld ↑s ℂ ) Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝑧 ∈ ℂ ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) |
| 241 |
10
|
a1i |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ℂ ∈ V ) |
| 242 |
13 14
|
mp1i |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ℂfld ∈ CMnd ) |
| 243 |
181
|
adantlr |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ∈ ℂ ) |
| 244 |
37
|
adantll |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑧 ↑ 𝑘 ) ∈ ℂ ) |
| 245 |
243 244
|
mulcld |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ∈ ℂ ) |
| 246 |
245
|
anasss |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ ( 𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) ) → ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ∈ ℂ ) |
| 247 |
165
|
mptex |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( 𝑧 ∈ ℂ ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ∈ V |
| 248 |
|
funmpt |
⊢ Fun ( 𝑘 ∈ ℕ0 ↦ ( 𝑧 ∈ ℂ ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 249 |
247 248 43
|
3pm3.2i |
⊢ ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑧 ∈ ℂ ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ ℕ0 ↦ ( 𝑧 ∈ ℂ ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ∧ ( 0g ‘ ( ℂfld ↑s ℂ ) ) ∈ V ) |
| 250 |
249
|
a1i |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑧 ∈ ℂ ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ ℕ0 ↦ ( 𝑧 ∈ ℂ ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ∧ ( 0g ‘ ( ℂfld ↑s ℂ ) ) ∈ V ) ) |
| 251 |
|
fzfid |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ∈ Fin ) |
| 252 |
|
eldifn |
⊢ ( 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) → ¬ 𝑘 ∈ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) |
| 253 |
252
|
adantl |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → ¬ 𝑘 ∈ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) |
| 254 |
152
|
ad2antrr |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → 𝑎 ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) |
| 255 |
|
eldifi |
⊢ ( 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) → 𝑘 ∈ ℕ0 ) |
| 256 |
255
|
adantl |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → 𝑘 ∈ ℕ0 ) |
| 257 |
|
eqid |
⊢ ( deg1 ‘ ℂfld ) = ( deg1 ‘ ℂfld ) |
| 258 |
257 57 93 21 154
|
deg1ge |
⊢ ( ( 𝑎 ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ∧ 𝑘 ∈ ℕ0 ∧ ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ≠ 0 ) → 𝑘 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ) |
| 259 |
258
|
3expia |
⊢ ( ( 𝑎 ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ) ) |
| 260 |
254 256 259
|
syl2anc |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ) ) |
| 261 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 262 |
257 57 93
|
deg1xrcl |
⊢ ( 𝑎 ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) → ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ ℝ* ) |
| 263 |
152 262
|
syl |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ ℝ* ) |
| 264 |
263
|
ad2antrr |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ ℝ* ) |
| 265 |
|
xrmax2 |
⊢ ( ( 0 ∈ ℝ* ∧ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ ℝ* ) → ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ≤ if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) |
| 266 |
261 264 265
|
sylancr |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ≤ if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) |
| 267 |
256
|
nn0red |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → 𝑘 ∈ ℝ ) |
| 268 |
267
|
rexrd |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → 𝑘 ∈ ℝ* ) |
| 269 |
|
ifcl |
⊢ ( ( ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ ℝ* ∧ 0 ∈ ℝ* ) → if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ∈ ℝ* ) |
| 270 |
264 261 269
|
sylancl |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ∈ ℝ* ) |
| 271 |
|
xrletr |
⊢ ( ( 𝑘 ∈ ℝ* ∧ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ ℝ* ∧ if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ∈ ℝ* ) → ( ( 𝑘 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∧ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ≤ if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) → 𝑘 ≤ if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) |
| 272 |
268 264 270 271
|
syl3anc |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → ( ( 𝑘 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∧ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ≤ if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) → 𝑘 ≤ if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) |
| 273 |
266 272
|
mpan2d |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → ( 𝑘 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) → 𝑘 ≤ if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) |
| 274 |
260 273
|
syld |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) |
| 275 |
274 256
|
jctild |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ≠ 0 → ( 𝑘 ∈ ℕ0 ∧ 𝑘 ≤ if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) |
| 276 |
257 57 93
|
deg1cl |
⊢ ( 𝑎 ∈ ( Base ‘ ( Poly1 ‘ ℂfld ) ) → ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ ( ℕ0 ∪ { -∞ } ) ) |
| 277 |
152 276
|
syl |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ ( ℕ0 ∪ { -∞ } ) ) |
| 278 |
|
elun |
⊢ ( ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ ( ℕ0 ∪ { -∞ } ) ↔ ( ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ ℕ0 ∨ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ { -∞ } ) ) |
| 279 |
277 278
|
sylib |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ ℕ0 ∨ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ { -∞ } ) ) |
| 280 |
|
nn0ge0 |
⊢ ( ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ ℕ0 → 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ) |
| 281 |
280
|
iftrued |
⊢ ( ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ ℕ0 → if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) = ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ) |
| 282 |
|
id |
⊢ ( ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ ℕ0 → ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ ℕ0 ) |
| 283 |
281 282
|
eqeltrd |
⊢ ( ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ ℕ0 → if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ∈ ℕ0 ) |
| 284 |
|
mnflt0 |
⊢ -∞ < 0 |
| 285 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 286 |
|
xrltnle |
⊢ ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( -∞ < 0 ↔ ¬ 0 ≤ -∞ ) ) |
| 287 |
285 261 286
|
mp2an |
⊢ ( -∞ < 0 ↔ ¬ 0 ≤ -∞ ) |
| 288 |
284 287
|
mpbi |
⊢ ¬ 0 ≤ -∞ |
| 289 |
|
elsni |
⊢ ( ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ { -∞ } → ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) = -∞ ) |
| 290 |
289
|
breq2d |
⊢ ( ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ { -∞ } → ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ↔ 0 ≤ -∞ ) ) |
| 291 |
288 290
|
mtbiri |
⊢ ( ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ { -∞ } → ¬ 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ) |
| 292 |
291
|
iffalsed |
⊢ ( ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ { -∞ } → if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) = 0 ) |
| 293 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 294 |
292 293
|
eqeltrdi |
⊢ ( ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ { -∞ } → if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ∈ ℕ0 ) |
| 295 |
283 294
|
jaoi |
⊢ ( ( ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ ℕ0 ∨ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ∈ { -∞ } ) → if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ∈ ℕ0 ) |
| 296 |
279 295
|
syl |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ∈ ℕ0 ) |
| 297 |
296
|
ad2antrr |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ∈ ℕ0 ) |
| 298 |
|
fznn0 |
⊢ ( if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ∈ ℕ0 → ( 𝑘 ∈ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ↔ ( 𝑘 ∈ ℕ0 ∧ 𝑘 ≤ if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) |
| 299 |
297 298
|
syl |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → ( 𝑘 ∈ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ↔ ( 𝑘 ∈ ℕ0 ∧ 𝑘 ≤ if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) |
| 300 |
275 299
|
sylibrd |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ≠ 0 → 𝑘 ∈ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) |
| 301 |
300
|
necon1bd |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → ( ¬ 𝑘 ∈ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) → ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) = 0 ) ) |
| 302 |
253 301
|
mpd |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) = 0 ) |
| 303 |
302
|
oveq1d |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = ( 0 · ( 𝑧 ↑ 𝑘 ) ) ) |
| 304 |
255 244
|
sylan2 |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → ( 𝑧 ↑ 𝑘 ) ∈ ℂ ) |
| 305 |
304
|
mul02d |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → ( 0 · ( 𝑧 ↑ 𝑘 ) ) = 0 ) |
| 306 |
303 305
|
eqtrd |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = 0 ) |
| 307 |
306
|
an32s |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) ∧ 𝑧 ∈ ℂ ) → ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = 0 ) |
| 308 |
307
|
mpteq2dva |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → ( 𝑧 ∈ ℂ ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ 0 ) ) |
| 309 |
|
fconstmpt |
⊢ ( ℂ × { 0 } ) = ( 𝑧 ∈ ℂ ↦ 0 ) |
| 310 |
|
ringmnd |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ Mnd ) |
| 311 |
13 310
|
ax-mp |
⊢ ℂfld ∈ Mnd |
| 312 |
7 21
|
pws0g |
⊢ ( ( ℂfld ∈ Mnd ∧ ℂ ∈ V ) → ( ℂ × { 0 } ) = ( 0g ‘ ( ℂfld ↑s ℂ ) ) ) |
| 313 |
311 10 312
|
mp2an |
⊢ ( ℂ × { 0 } ) = ( 0g ‘ ( ℂfld ↑s ℂ ) ) |
| 314 |
309 313
|
eqtr3i |
⊢ ( 𝑧 ∈ ℂ ↦ 0 ) = ( 0g ‘ ( ℂfld ↑s ℂ ) ) |
| 315 |
308 314
|
eqtrdi |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑘 ∈ ( ℕ0 ∖ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → ( 𝑧 ∈ ℂ ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) = ( 0g ‘ ( ℂfld ↑s ℂ ) ) ) |
| 316 |
315 166
|
suppss2 |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑧 ∈ ℂ ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) supp ( 0g ‘ ( ℂfld ↑s ℂ ) ) ) ⊆ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) |
| 317 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑧 ∈ ℂ ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ ℕ0 ↦ ( 𝑧 ∈ ℂ ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ∧ ( 0g ‘ ( ℂfld ↑s ℂ ) ) ∈ V ) ∧ ( ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ∈ Fin ∧ ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑧 ∈ ℂ ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) supp ( 0g ‘ ( ℂfld ↑s ℂ ) ) ) ⊆ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝑧 ∈ ℂ ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) finSupp ( 0g ‘ ( ℂfld ↑s ℂ ) ) ) |
| 318 |
250 251 316 317
|
syl12anc |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝑧 ∈ ℂ ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) finSupp ( 0g ‘ ( ℂfld ↑s ℂ ) ) ) |
| 319 |
7 8 9 241 166 242 246 318
|
pwsgsum |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( ( ℂfld ↑s ℂ ) Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝑧 ∈ ℂ ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) = ( 𝑧 ∈ ℂ ↦ ( ℂfld Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) |
| 320 |
|
fz0ssnn0 |
⊢ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ⊆ ℕ0 |
| 321 |
|
resmpt |
⊢ ( ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ⊆ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ↾ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) = ( 𝑘 ∈ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 322 |
320 321
|
ax-mp |
⊢ ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ↾ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) = ( 𝑘 ∈ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
| 323 |
322
|
oveq2i |
⊢ ( ℂfld Σg ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ↾ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) = ( ℂfld Σg ( 𝑘 ∈ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 324 |
13 14
|
mp1i |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) → ℂfld ∈ CMnd ) |
| 325 |
165
|
a1i |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) → ℕ0 ∈ V ) |
| 326 |
245
|
fmpttd |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) → ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) : ℕ0 ⟶ ℂ ) |
| 327 |
306 325
|
suppss2 |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) supp 0 ) ⊆ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) |
| 328 |
165
|
mptex |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ∈ V |
| 329 |
|
funmpt |
⊢ Fun ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
| 330 |
328 329 209
|
3pm3.2i |
⊢ ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ∧ 0 ∈ V ) |
| 331 |
330
|
a1i |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ∧ 0 ∈ V ) ) |
| 332 |
|
fzfid |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) → ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ∈ Fin ) |
| 333 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ∧ 0 ∈ V ) ∧ ( ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ∈ Fin ∧ ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) supp 0 ) ⊆ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) → ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) finSupp 0 ) |
| 334 |
331 332 327 333
|
syl12anc |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) → ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) finSupp 0 ) |
| 335 |
8 21 324 325 326 327 334
|
gsumres |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) → ( ℂfld Σg ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ↾ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) ) = ( ℂfld Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) |
| 336 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) → 𝑘 ∈ ℕ0 ) |
| 337 |
336 245
|
sylan2 |
⊢ ( ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ) → ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ∈ ℂ ) |
| 338 |
332 337
|
gsumfsum |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) → ( ℂfld Σg ( 𝑘 ∈ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) = Σ 𝑘 ∈ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
| 339 |
323 335 338
|
3eqtr3a |
⊢ ( ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑧 ∈ ℂ ) → ( ℂfld Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) = Σ 𝑘 ∈ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
| 340 |
339
|
mpteq2dva |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝑧 ∈ ℂ ↦ ( ℂfld Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 341 |
240 319 340
|
3eqtrd |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐸 ‘ 𝑎 ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 342 |
16
|
adantr |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → 𝑆 ⊆ ℂ ) |
| 343 |
|
elplyr |
⊢ ( ( 𝑆 ⊆ ℂ ∧ if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ∈ ℕ0 ∧ ( coe1 ‘ 𝑎 ) : ℕ0 ⟶ 𝑆 ) → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ∈ ( Poly ‘ 𝑆 ) ) |
| 344 |
342 296 179 343
|
syl3anc |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... if ( 0 ≤ ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) , 0 ) ) ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ∈ ( Poly ‘ 𝑆 ) ) |
| 345 |
341 344
|
eqeltrd |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐸 ‘ 𝑎 ) ∈ ( Poly ‘ 𝑆 ) ) |
| 346 |
|
eleq1 |
⊢ ( ( 𝐸 ‘ 𝑎 ) = 𝑓 → ( ( 𝐸 ‘ 𝑎 ) ∈ ( Poly ‘ 𝑆 ) ↔ 𝑓 ∈ ( Poly ‘ 𝑆 ) ) ) |
| 347 |
345 346
|
syl5ibcom |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝐸 ‘ 𝑎 ) = 𝑓 → 𝑓 ∈ ( Poly ‘ 𝑆 ) ) ) |
| 348 |
347
|
rexlimdva |
⊢ ( 𝑆 ∈ ( SubRing ‘ ℂfld ) → ( ∃ 𝑎 ∈ 𝐴 ( 𝐸 ‘ 𝑎 ) = 𝑓 → 𝑓 ∈ ( Poly ‘ 𝑆 ) ) ) |
| 349 |
151 348
|
syl5 |
⊢ ( 𝑆 ∈ ( SubRing ‘ ℂfld ) → ( 𝑓 ∈ ( 𝐸 “ 𝐴 ) → 𝑓 ∈ ( Poly ‘ 𝑆 ) ) ) |
| 350 |
147 349
|
impbid |
⊢ ( 𝑆 ∈ ( SubRing ‘ ℂfld ) → ( 𝑓 ∈ ( Poly ‘ 𝑆 ) ↔ 𝑓 ∈ ( 𝐸 “ 𝐴 ) ) ) |
| 351 |
350
|
eqrdv |
⊢ ( 𝑆 ∈ ( SubRing ‘ ℂfld ) → ( Poly ‘ 𝑆 ) = ( 𝐸 “ 𝐴 ) ) |