Metamath Proof Explorer


Theorem advlogexp

Description: The antiderivative of a power of the logarithm. (Set A = 1 and multiply by ( -u 1 ) ^ N x. N ! to get the antiderivative of log ( x ) ^ N itself.) (Contributed by Mario Carneiro, 22-May-2016)

Ref Expression
Assertion advlogexp A+N0dx+xk=0NlogAxkk!dx=x+logAxNN!

Proof

Step Hyp Ref Expression
1 fzfid A+N0x+0NFin
2 rpcn x+x
3 2 adantl A+N0x+x
4 rpdivcl A+x+Ax+
5 4 adantlr A+N0x+Ax+
6 5 relogcld A+N0x+logAx
7 elfznn0 k0Nk0
8 reexpcl logAxk0logAxk
9 6 7 8 syl2an A+N0x+k0NlogAxk
10 7 adantl A+N0x+k0Nk0
11 10 faccld A+N0x+k0Nk!
12 9 11 nndivred A+N0x+k0NlogAxkk!
13 12 recnd A+N0x+k0NlogAxkk!
14 1 3 13 fsummulc2 A+N0x+xk=0NlogAxkk!=k=0NxlogAxkk!
15 simplr A+N0x+N0
16 nn0uz 0=0
17 15 16 eleqtrdi A+N0x+N0
18 3 adantr A+N0x+k0Nx
19 18 13 mulcld A+N0x+k0NxlogAxkk!
20 oveq2 k=0logAxk=logAx0
21 fveq2 k=0k!=0!
22 fac0 0!=1
23 21 22 eqtrdi k=0k!=1
24 20 23 oveq12d k=0logAxkk!=logAx01
25 24 oveq2d k=0xlogAxkk!=xlogAx01
26 17 19 25 fsum1p A+N0x+k=0NxlogAxkk!=xlogAx01+k=0+1NxlogAxkk!
27 6 recnd A+N0x+logAx
28 27 exp0d A+N0x+logAx0=1
29 28 oveq1d A+N0x+logAx01=11
30 1div1e1 11=1
31 29 30 eqtrdi A+N0x+logAx01=1
32 31 oveq2d A+N0x+xlogAx01=x1
33 3 mulridd A+N0x+x1=x
34 32 33 eqtrd A+N0x+xlogAx01=x
35 1zzd A+N0x+1
36 nn0z N0N
37 36 ad2antlr A+N0x+N
38 fz1ssfz0 1N0N
39 38 sseli k1Nk0N
40 39 19 sylan2 A+N0x+k1NxlogAxkk!
41 oveq2 k=j+1logAxk=logAxj+1
42 fveq2 k=j+1k!=j+1!
43 41 42 oveq12d k=j+1logAxkk!=logAxj+1j+1!
44 43 oveq2d k=j+1xlogAxkk!=xlogAxj+1j+1!
45 35 35 37 40 44 fsumshftm A+N0x+k=1NxlogAxkk!=j=11N1xlogAxj+1j+1!
46 0p1e1 0+1=1
47 46 oveq1i 0+1N=1N
48 47 sumeq1i k=0+1NxlogAxkk!=k=1NxlogAxkk!
49 48 a1i A+N0x+k=0+1NxlogAxkk!=k=1NxlogAxkk!
50 1m1e0 11=0
51 50 oveq1i 11..^N=0..^N
52 fzoval N11..^N=11N1
53 37 52 syl A+N0x+11..^N=11N1
54 51 53 eqtr3id A+N0x+0..^N=11N1
55 54 sumeq1d A+N0x+j0..^NxlogAxj+1j+1!=j=11N1xlogAxj+1j+1!
56 45 49 55 3eqtr4d A+N0x+k=0+1NxlogAxkk!=j0..^NxlogAxj+1j+1!
57 34 56 oveq12d A+N0x+xlogAx01+k=0+1NxlogAxkk!=x+j0..^NxlogAxj+1j+1!
58 14 26 57 3eqtrd A+N0x+xk=0NlogAxkk!=x+j0..^NxlogAxj+1j+1!
59 58 mpteq2dva A+N0x+xk=0NlogAxkk!=x+x+j0..^NxlogAxj+1j+1!
60 59 oveq2d A+N0dx+xk=0NlogAxkk!dx=dx+x+j0..^NxlogAxj+1j+1!dx
61 reelprrecn
62 61 a1i A+N0
63 1cnd A+N0x+1
64 recn xx
65 64 adantl A+N0xx
66 1cnd A+N0x1
67 62 dvmptid A+N0dxxdx=x1
68 rpssre +
69 68 a1i A+N0+
70 eqid TopOpenfld=TopOpenfld
71 70 tgioo2 topGenran.=TopOpenfld𝑡
72 ioorp 0+∞=+
73 iooretop 0+∞topGenran.
74 72 73 eqeltrri +topGenran.
75 74 a1i A+N0+topGenran.
76 62 65 66 67 69 71 70 75 dvmptres A+N0dx+xdx=x+1
77 fzofi 0..^NFin
78 77 a1i A+N0x+0..^NFin
79 3 adantr A+N0x+j0..^Nx
80 elfzonn0 j0..^Nj0
81 peano2nn0 j0j+10
82 80 81 syl j0..^Nj+10
83 reexpcl logAxj+10logAxj+1
84 6 82 83 syl2an A+N0x+j0..^NlogAxj+1
85 82 adantl A+N0x+j0..^Nj+10
86 85 faccld A+N0x+j0..^Nj+1!
87 84 86 nndivred A+N0x+j0..^NlogAxj+1j+1!
88 87 recnd A+N0x+j0..^NlogAxj+1j+1!
89 79 88 mulcld A+N0x+j0..^NxlogAxj+1j+1!
90 78 89 fsumcl A+N0x+j0..^NxlogAxj+1j+1!
91 6 15 reexpcld A+N0x+logAxN
92 faccl N0N!
93 92 ad2antlr A+N0x+N!
94 91 93 nndivred A+N0x+logAxNN!
95 94 recnd A+N0x+logAxNN!
96 ax-1cn 1
97 subcl logAxNN!1logAxNN!1
98 95 96 97 sylancl A+N0x+logAxNN!1
99 77 a1i A+N00..^NFin
100 89 an32s A+N0j0..^Nx+xlogAxj+1j+1!
101 100 3impa A+N0j0..^Nx+xlogAxj+1j+1!
102 reexpcl logAxj0logAxj
103 6 80 102 syl2an A+N0x+j0..^NlogAxj
104 80 adantl A+N0x+j0..^Nj0
105 104 faccld A+N0x+j0..^Nj!
106 103 105 nndivred A+N0x+j0..^NlogAxjj!
107 106 recnd A+N0x+j0..^NlogAxjj!
108 88 107 subcld A+N0x+j0..^NlogAxj+1j+1!logAxjj!
109 108 an32s A+N0j0..^Nx+logAxj+1j+1!logAxjj!
110 109 3impa A+N0j0..^Nx+logAxj+1j+1!logAxjj!
111 61 a1i A+N0j0..^N
112 2 adantl A+N0j0..^Nx+x
113 1cnd A+N0j0..^Nx+1
114 76 adantr A+N0j0..^Ndx+xdx=x+1
115 88 an32s A+N0j0..^Nx+logAxj+1j+1!
116 negex logAxjj!xV
117 116 a1i A+N0j0..^Nx+logAxjj!xV
118 cnelprrecn
119 118 a1i A+N0j0..^N
120 27 adantlr A+N0j0..^Nx+logAx
121 negex 1xV
122 121 a1i A+N0j0..^Nx+1xV
123 id yy
124 80 adantl A+N0j0..^Nj0
125 124 81 syl A+N0j0..^Nj+10
126 expcl yj+10yj+1
127 123 125 126 syl2anr A+N0j0..^Nyyj+1
128 125 faccld A+N0j0..^Nj+1!
129 128 nncnd A+N0j0..^Nj+1!
130 129 adantr A+N0j0..^Nyj+1!
131 128 nnne0d A+N0j0..^Nj+1!0
132 131 adantr A+N0j0..^Nyj+1!0
133 127 130 132 divcld A+N0j0..^Nyyj+1j+1!
134 expcl yj0yj
135 123 124 134 syl2anr A+N0j0..^Nyyj
136 124 faccld A+N0j0..^Nj!
137 136 nncnd A+N0j0..^Nj!
138 137 adantr A+N0j0..^Nyj!
139 124 adantr A+N0j0..^Nyj0
140 139 faccld A+N0j0..^Nyj!
141 140 nnne0d A+N0j0..^Nyj!0
142 135 138 141 divcld A+N0j0..^Nyyjj!
143 simplll A+N0j0..^Nx+A+
144 simpr A+N0j0..^Nx+x+
145 143 144 relogdivd A+N0j0..^Nx+logAx=logAlogx
146 145 mpteq2dva A+N0j0..^Nx+logAx=x+logAlogx
147 146 oveq2d A+N0j0..^Ndx+logAxdx=dx+logAlogxdx
148 relogcl A+logA
149 148 ad2antrr A+N0j0..^NlogA
150 149 recnd A+N0j0..^NlogA
151 150 adantr A+N0j0..^Nx+logA
152 0cnd A+N0j0..^Nx+0
153 150 adantr A+N0j0..^NxlogA
154 0cnd A+N0j0..^Nx0
155 111 150 dvmptc A+N0j0..^NdxlogAdx=x0
156 68 a1i A+N0j0..^N+
157 74 a1i A+N0j0..^N+topGenran.
158 111 153 154 155 156 71 70 157 dvmptres A+N0j0..^Ndx+logAdx=x+0
159 144 relogcld A+N0j0..^Nx+logx
160 159 recnd A+N0j0..^Nx+logx
161 144 rpreccld A+N0j0..^Nx+1x+
162 relogf1o log+:+1-1 onto
163 f1of log+:+1-1 ontolog+:+
164 162 163 mp1i A+N0j0..^Nlog+:+
165 164 feqmptd A+N0j0..^Nlog+=x+log+x
166 fvres x+log+x=logx
167 166 mpteq2ia x+log+x=x+logx
168 165 167 eqtrdi A+N0j0..^Nlog+=x+logx
169 168 oveq2d A+N0j0..^NDlog+=dx+logxdx
170 dvrelog Dlog+=x+1x
171 169 170 eqtr3di A+N0j0..^Ndx+logxdx=x+1x
172 111 151 152 158 160 161 171 dvmptsub A+N0j0..^Ndx+logAlogxdx=x+01x
173 147 172 eqtrd A+N0j0..^Ndx+logAxdx=x+01x
174 df-neg 1x=01x
175 174 mpteq2i x+1x=x+01x
176 173 175 eqtr4di A+N0j0..^Ndx+logAxdx=x+1x
177 ovexd A+N0j0..^Nyj+1yj+1-1V
178 nn0p1nn j0j+1
179 124 178 syl A+N0j0..^Nj+1
180 dvexp j+1dyyj+1dy=yj+1yj+1-1
181 179 180 syl A+N0j0..^Ndyyj+1dy=yj+1yj+1-1
182 119 127 177 181 129 131 dvmptdivc A+N0j0..^Ndyyj+1j+1!dy=yj+1yj+1-1j+1!
183 124 nn0cnd A+N0j0..^Nj
184 183 adantr A+N0j0..^Nyj
185 pncan j1j+1-1=j
186 184 96 185 sylancl A+N0j0..^Nyj+1-1=j
187 186 oveq2d A+N0j0..^Nyyj+1-1=yj
188 187 oveq2d A+N0j0..^Nyj+1yj+1-1=j+1yj
189 facp1 j0j+1!=j!j+1
190 139 189 syl A+N0j0..^Nyj+1!=j!j+1
191 peano2cn jj+1
192 184 191 syl A+N0j0..^Nyj+1
193 138 192 mulcomd A+N0j0..^Nyj!j+1=j+1j!
194 190 193 eqtrd A+N0j0..^Nyj+1!=j+1j!
195 188 194 oveq12d A+N0j0..^Nyj+1yj+1-1j+1!=j+1yjj+1j!
196 179 nnne0d A+N0j0..^Nj+10
197 196 adantr A+N0j0..^Nyj+10
198 135 138 192 141 197 divcan5d A+N0j0..^Nyj+1yjj+1j!=yjj!
199 195 198 eqtrd A+N0j0..^Nyj+1yj+1-1j+1!=yjj!
200 199 mpteq2dva A+N0j0..^Nyj+1yj+1-1j+1!=yyjj!
201 182 200 eqtrd A+N0j0..^Ndyyj+1j+1!dy=yyjj!
202 oveq1 y=logAxyj+1=logAxj+1
203 202 oveq1d y=logAxyj+1j+1!=logAxj+1j+1!
204 oveq1 y=logAxyj=logAxj
205 204 oveq1d y=logAxyjj!=logAxjj!
206 111 119 120 122 133 142 176 201 203 205 dvmptco A+N0j0..^Ndx+logAxj+1j+1!dx=x+logAxjj!1x
207 107 an32s A+N0j0..^Nx+logAxjj!
208 161 rpcnd A+N0j0..^Nx+1x
209 207 208 mulneg2d A+N0j0..^Nx+logAxjj!1x=logAxjj!1x
210 rpne0 x+x0
211 210 adantl A+N0j0..^Nx+x0
212 207 112 211 divrecd A+N0j0..^Nx+logAxjj!x=logAxjj!1x
213 212 negeqd A+N0j0..^Nx+logAxjj!x=logAxjj!1x
214 209 213 eqtr4d A+N0j0..^Nx+logAxjj!1x=logAxjj!x
215 214 mpteq2dva A+N0j0..^Nx+logAxjj!1x=x+logAxjj!x
216 206 215 eqtrd A+N0j0..^Ndx+logAxj+1j+1!dx=x+logAxjj!x
217 111 112 113 114 115 117 216 dvmptmul A+N0j0..^Ndx+xlogAxj+1j+1!dx=x+1logAxj+1j+1!+logAxjj!xx
218 88 mullidd A+N0x+j0..^N1logAxj+1j+1!=logAxj+1j+1!
219 simplr A+N0x+j0..^Nx+
220 106 219 rerpdivcld A+N0x+j0..^NlogAxjj!x
221 220 recnd A+N0x+j0..^NlogAxjj!x
222 221 79 mulneg1d A+N0x+j0..^NlogAxjj!xx=logAxjj!xx
223 211 an32s A+N0x+j0..^Nx0
224 107 79 223 divcan1d A+N0x+j0..^NlogAxjj!xx=logAxjj!
225 224 negeqd A+N0x+j0..^NlogAxjj!xx=logAxjj!
226 222 225 eqtrd A+N0x+j0..^NlogAxjj!xx=logAxjj!
227 218 226 oveq12d A+N0x+j0..^N1logAxj+1j+1!+logAxjj!xx=logAxj+1j+1!+logAxjj!
228 88 107 negsubd A+N0x+j0..^NlogAxj+1j+1!+logAxjj!=logAxj+1j+1!logAxjj!
229 227 228 eqtrd A+N0x+j0..^N1logAxj+1j+1!+logAxjj!xx=logAxj+1j+1!logAxjj!
230 229 an32s A+N0j0..^Nx+1logAxj+1j+1!+logAxjj!xx=logAxj+1j+1!logAxjj!
231 230 mpteq2dva A+N0j0..^Nx+1logAxj+1j+1!+logAxjj!xx=x+logAxj+1j+1!logAxjj!
232 217 231 eqtrd A+N0j0..^Ndx+xlogAxj+1j+1!dx=x+logAxj+1j+1!logAxjj!
233 71 70 62 75 99 101 110 232 dvmptfsum A+N0dx+j0..^NxlogAxj+1j+1!dx=x+j0..^NlogAxj+1j+1!logAxjj!
234 oveq2 k=jlogAxk=logAxj
235 fveq2 k=jk!=j!
236 234 235 oveq12d k=jlogAxkk!=logAxjj!
237 oveq2 k=NlogAxk=logAxN
238 fveq2 k=Nk!=N!
239 237 238 oveq12d k=NlogAxkk!=logAxNN!
240 236 43 24 239 17 13 telfsumo2 A+N0x+j0..^NlogAxj+1j+1!logAxjj!=logAxNN!logAx01
241 31 oveq2d A+N0x+logAxNN!logAx01=logAxNN!1
242 240 241 eqtrd A+N0x+j0..^NlogAxj+1j+1!logAxjj!=logAxNN!1
243 242 mpteq2dva A+N0x+j0..^NlogAxj+1j+1!logAxjj!=x+logAxNN!1
244 233 243 eqtrd A+N0dx+j0..^NxlogAxj+1j+1!dx=x+logAxNN!1
245 62 3 63 76 90 98 244 dvmptadd A+N0dx+x+j0..^NxlogAxj+1j+1!dx=x+1+logAxNN!-1
246 pncan3 1logAxNN!1+logAxNN!-1=logAxNN!
247 96 95 246 sylancr A+N0x+1+logAxNN!-1=logAxNN!
248 247 mpteq2dva A+N0x+1+logAxNN!-1=x+logAxNN!
249 60 245 248 3eqtrd A+N0dx+xk=0NlogAxkk!dx=x+logAxNN!