Metamath Proof Explorer


Theorem axdc4lem

Description: Lemma for axdc4 . (Contributed by Mario Carneiro, 31-Jan-2013) (Revised by Mario Carneiro, 16-Nov-2013)

Ref Expression
Hypotheses axdc4lem.1 AV
axdc4lem.2 G=nω,xAsucn×nFx
Assertion axdc4lem CAF:ω×A𝒫Agg:ωAg=CkωgsuckkFgk

Proof

Step Hyp Ref Expression
1 axdc4lem.1 AV
2 axdc4lem.2 G=nω,xAsucn×nFx
3 peano1 ω
4 opelxpi ωCACω×A
5 3 4 mpan CACω×A
6 simp2 F:ω×A𝒫AnωxAnω
7 fovcdm F:ω×A𝒫AnωxAnFx𝒫A
8 peano2 nωsucnω
9 8 snssd nωsucnω
10 eldifi nFx𝒫AnFx𝒫A
11 1 elpw2 nFx𝒫AnFxA
12 xpss12 sucnωnFxAsucn×nFxω×A
13 11 12 sylan2b sucnωnFx𝒫Asucn×nFxω×A
14 9 10 13 syl2an nωnFx𝒫Asucn×nFxω×A
15 snex sucnV
16 ovex nFxV
17 15 16 xpex sucn×nFxV
18 17 elpw sucn×nFx𝒫ω×Asucn×nFxω×A
19 14 18 sylibr nωnFx𝒫Asucn×nFx𝒫ω×A
20 6 7 19 syl2anc F:ω×A𝒫AnωxAsucn×nFx𝒫ω×A
21 eldifn nFx𝒫A¬nFx
22 16 elsn nFxnFx=
23 22 necon3bbii ¬nFxnFx
24 vex nV
25 24 sucex sucnV
26 25 snnz sucn
27 xpnz sucnnFxsucn×nFx
28 27 biimpi sucnnFxsucn×nFx
29 26 28 mpan nFxsucn×nFx
30 23 29 sylbi ¬nFxsucn×nFx
31 17 elsn sucn×nFxsucn×nFx=
32 31 necon3bbii ¬sucn×nFxsucn×nFx
33 30 32 sylibr ¬nFx¬sucn×nFx
34 7 21 33 3syl F:ω×A𝒫AnωxA¬sucn×nFx
35 20 34 eldifd F:ω×A𝒫AnωxAsucn×nFx𝒫ω×A
36 35 3expib F:ω×A𝒫AnωxAsucn×nFx𝒫ω×A
37 36 ralrimivv F:ω×A𝒫AnωxAsucn×nFx𝒫ω×A
38 2 fmpo nωxAsucn×nFx𝒫ω×AG:ω×A𝒫ω×A
39 37 38 sylib F:ω×A𝒫AG:ω×A𝒫ω×A
40 dcomex ωV
41 40 1 xpex ω×AV
42 41 axdc3 Cω×AG:ω×A𝒫ω×Ahh:ωω×Ah=CkωhsuckGhk
43 5 39 42 syl2an CAF:ω×A𝒫Ahh:ωω×Ah=CkωhsuckGhk
44 2ndcof h:ωω×A2ndh:ωA
45 44 3ad2ant1 h:ωω×Ah=CkωhsuckGhk2ndh:ωA
46 45 adantl CAh:ωω×Ah=CkωhsuckGhk2ndh:ωA
47 fex2 2ndh:ωAωVAV2ndhV
48 40 1 47 mp3an23 2ndh:ωA2ndhV
49 46 48 syl CAh:ωω×Ah=CkωhsuckGhk2ndhV
50 fvco3 h:ωω×Aω2ndh=2ndh
51 3 50 mpan2 h:ωω×A2ndh=2ndh
52 51 3ad2ant1 h:ωω×Ah=CkωhsuckGhk2ndh=2ndh
53 fveq2 h=C2ndh=2ndC
54 53 3ad2ant2 h:ωω×Ah=CkωhsuckGhk2ndh=2ndC
55 52 54 eqtrd h:ωω×Ah=CkωhsuckGhk2ndh=2ndC
56 op2ndg ωCA2ndC=C
57 3 56 mpan CA2ndC=C
58 55 57 sylan9eqr CAh:ωω×Ah=CkωhsuckGhk2ndh=C
59 nfv kCA
60 nfv kh:ωω×A
61 nfv kh=C
62 nfra1 kkωhsuckGhk
63 60 61 62 nf3an kh:ωω×Ah=CkωhsuckGhk
64 59 63 nfan kCAh:ωω×Ah=CkωhsuckGhk
65 fveq2 m=hm=h
66 opeq1 m=mz=z
67 65 66 eqeq12d m=hm=mzh=z
68 67 exbidv m=zhm=mzzh=z
69 fveq2 m=ihm=hi
70 opeq1 m=imz=iz
71 69 70 eqeq12d m=ihm=mzhi=iz
72 71 exbidv m=izhm=mzzhi=iz
73 fveq2 m=sucihm=hsuci
74 opeq1 m=sucimz=suciz
75 73 74 eqeq12d m=sucihm=mzhsuci=suciz
76 75 exbidv m=sucizhm=mzzhsuci=suciz
77 opeq2 z=Cz=C
78 77 eqeq2d z=Ch=zh=C
79 78 spcegv CAh=Czh=z
80 79 imp CAh=Czh=z
81 80 3ad2antr2 CAh:ωω×Ah=CkωhsuckGhkzh=z
82 fveq2 hi=izGhi=Giz
83 df-ov iGz=Giz
84 82 83 eqtr4di hi=izGhi=iGz
85 84 adantl h:ωω×Aiωhi=izGhi=iGz
86 simplr h:ωω×Aiωhi=iziω
87 ffvelcdm h:ωω×Aiωhiω×A
88 eleq1 hi=izhiω×Aizω×A
89 opelxp2 izω×AzA
90 88 89 syl6bi hi=izhiω×AzA
91 87 90 mpan9 h:ωω×Aiωhi=izzA
92 suceq n=isucn=suci
93 92 sneqd n=isucn=suci
94 oveq1 n=inFx=iFx
95 93 94 xpeq12d n=isucn×nFx=suci×iFx
96 oveq2 x=ziFx=iFz
97 96 xpeq2d x=zsuci×iFx=suci×iFz
98 snex suciV
99 ovex iFzV
100 98 99 xpex suci×iFzV
101 95 97 2 100 ovmpo iωzAiGz=suci×iFz
102 86 91 101 syl2anc h:ωω×Aiωhi=iziGz=suci×iFz
103 85 102 eqtrd h:ωω×Aiωhi=izGhi=suci×iFz
104 suceq k=isuck=suci
105 104 fveq2d k=ihsuck=hsuci
106 2fveq3 k=iGhk=Ghi
107 105 106 eleq12d k=ihsuckGhkhsuciGhi
108 107 rspcv iωkωhsuckGhkhsuciGhi
109 108 ad2antlr h:ωω×Aiωhi=izkωhsuckGhkhsuciGhi
110 eleq2 Ghi=suci×iFzhsuciGhihsucisuci×iFz
111 elxp hsucisuci×iFzsthsuci=stssucitiFz
112 velsn ssucis=suci
113 opeq1 s=sucist=sucit
114 112 113 sylbi ssucist=sucit
115 114 eqeq2d ssucihsuci=sthsuci=sucit
116 115 biimpac hsuci=stssucihsuci=sucit
117 116 adantrr hsuci=stssucitiFzhsuci=sucit
118 117 eximi thsuci=stssucitiFzthsuci=sucit
119 118 exlimiv sthsuci=stssucitiFzthsuci=sucit
120 111 119 sylbi hsucisuci×iFzthsuci=sucit
121 110 120 syl6bi Ghi=suci×iFzhsuciGhithsuci=sucit
122 103 109 121 sylsyld h:ωω×Aiωhi=izkωhsuckGhkthsuci=sucit
123 122 expcom hi=izh:ωω×AiωkωhsuckGhkthsuci=sucit
124 123 exlimiv zhi=izh:ωω×AiωkωhsuckGhkthsuci=sucit
125 124 com3l h:ωω×AiωkωhsuckGhkzhi=izthsuci=sucit
126 opeq2 t=zsucit=suciz
127 126 eqeq2d t=zhsuci=sucithsuci=suciz
128 127 cbvexvw thsuci=sucitzhsuci=suciz
129 125 128 syl8ib h:ωω×AiωkωhsuckGhkzhi=izzhsuci=suciz
130 129 impancom h:ωω×AkωhsuckGhkiωzhi=izzhsuci=suciz
131 130 3adant2 h:ωω×Ah=CkωhsuckGhkiωzhi=izzhsuci=suciz
132 131 adantl CAh:ωω×Ah=CkωhsuckGhkiωzhi=izzhsuci=suciz
133 132 com12 iωCAh:ωω×Ah=CkωhsuckGhkzhi=izzhsuci=suciz
134 68 72 76 81 133 finds2 mωCAh:ωω×Ah=CkωhsuckGhkzhm=mz
135 134 com12 CAh:ωω×Ah=CkωhsuckGhkmωzhm=mz
136 135 ralrimiv CAh:ωω×Ah=CkωhsuckGhkmωzhm=mz
137 fveq2 m=khm=hk
138 opeq1 m=kmz=kz
139 137 138 eqeq12d m=khm=mzhk=kz
140 139 exbidv m=kzhm=mzzhk=kz
141 140 rspccv mωzhm=mzkωzhk=kz
142 136 141 syl CAh:ωω×Ah=CkωhsuckGhkkωzhk=kz
143 142 3impia CAh:ωω×Ah=CkωhsuckGhkkωzhk=kz
144 simp21 CAh:ωω×Ah=CkωhsuckGhkkωh:ωω×A
145 simp3 CAh:ωω×Ah=CkωhsuckGhkkωkω
146 rspa kωhsuckGhkkωhsuckGhk
147 146 3ad2antl3 h:ωω×Ah=CkωhsuckGhkkωhsuckGhk
148 147 3adant1 CAh:ωω×Ah=CkωhsuckGhkkωhsuckGhk
149 simpl hk=kzh:ωω×Akωhk=kz
150 149 fveq2d hk=kzh:ωω×AkωGhk=Gkz
151 simprr hk=kzh:ωω×Akωkω
152 eleq1 hk=kzhkω×Akzω×A
153 opelxp2 kzω×AzA
154 152 153 syl6bi hk=kzhkω×AzA
155 ffvelcdm h:ωω×Akωhkω×A
156 154 155 impel hk=kzh:ωω×AkωzA
157 df-ov kGz=Gkz
158 suceq n=ksucn=suck
159 158 sneqd n=ksucn=suck
160 oveq1 n=knFx=kFx
161 159 160 xpeq12d n=ksucn×nFx=suck×kFx
162 oveq2 x=zkFx=kFz
163 162 xpeq2d x=zsuck×kFx=suck×kFz
164 snex suckV
165 ovex kFzV
166 164 165 xpex suck×kFzV
167 161 163 2 166 ovmpo kωzAkGz=suck×kFz
168 157 167 eqtr3id kωzAGkz=suck×kFz
169 151 156 168 syl2anc hk=kzh:ωω×AkωGkz=suck×kFz
170 150 169 eqtrd hk=kzh:ωω×AkωGhk=suck×kFz
171 170 eleq2d hk=kzh:ωω×AkωhsuckGhkhsucksuck×kFz
172 elxp hsucksuck×kFzsthsuck=stssucktkFz
173 peano2 kωsuckω
174 fvco3 h:ωω×Asuckω2ndhsuck=2ndhsuck
175 173 174 sylan2 h:ωω×Akω2ndhsuck=2ndhsuck
176 175 adantl hsuck=sthk=kzh:ωω×Akω2ndhsuck=2ndhsuck
177 simpll hsuck=sthk=kzh:ωω×Akωhsuck=st
178 177 fveq2d hsuck=sthk=kzh:ωω×Akω2ndhsuck=2ndst
179 176 178 eqtrd hsuck=sthk=kzh:ωω×Akω2ndhsuck=2ndst
180 vex sV
181 vex tV
182 180 181 op2nd 2ndst=t
183 179 182 eqtrdi hsuck=sthk=kzh:ωω×Akω2ndhsuck=t
184 fvco3 h:ωω×Akω2ndhk=2ndhk
185 184 adantl hsuck=sthk=kzh:ωω×Akω2ndhk=2ndhk
186 simplr hsuck=sthk=kzh:ωω×Akωhk=kz
187 186 fveq2d hsuck=sthk=kzh:ωω×Akω2ndhk=2ndkz
188 185 187 eqtrd hsuck=sthk=kzh:ωω×Akω2ndhk=2ndkz
189 vex kV
190 vex zV
191 189 190 op2nd 2ndkz=z
192 188 191 eqtrdi hsuck=sthk=kzh:ωω×Akω2ndhk=z
193 192 oveq2d hsuck=sthk=kzh:ωω×AkωkF2ndhk=kFz
194 183 193 eleq12d hsuck=sthk=kzh:ωω×Akω2ndhsuckkF2ndhktkFz
195 194 biimprcd tkFzhsuck=sthk=kzh:ωω×Akω2ndhsuckkF2ndhk
196 195 exp4c tkFzhsuck=sthk=kzh:ωω×Akω2ndhsuckkF2ndhk
197 196 adantl ssucktkFzhsuck=sthk=kzh:ωω×Akω2ndhsuckkF2ndhk
198 197 impcom hsuck=stssucktkFzhk=kzh:ωω×Akω2ndhsuckkF2ndhk
199 198 exlimivv sthsuck=stssucktkFzhk=kzh:ωω×Akω2ndhsuckkF2ndhk
200 172 199 sylbi hsucksuck×kFzhk=kzh:ωω×Akω2ndhsuckkF2ndhk
201 200 com3l hk=kzh:ωω×Akωhsucksuck×kFz2ndhsuckkF2ndhk
202 201 imp hk=kzh:ωω×Akωhsucksuck×kFz2ndhsuckkF2ndhk
203 171 202 sylbid hk=kzh:ωω×AkωhsuckGhk2ndhsuckkF2ndhk
204 203 ex hk=kzh:ωω×AkωhsuckGhk2ndhsuckkF2ndhk
205 204 exlimiv zhk=kzh:ωω×AkωhsuckGhk2ndhsuckkF2ndhk
206 205 3imp zhk=kzh:ωω×AkωhsuckGhk2ndhsuckkF2ndhk
207 143 144 145 148 206 syl121anc CAh:ωω×Ah=CkωhsuckGhkkω2ndhsuckkF2ndhk
208 207 3expia CAh:ωω×Ah=CkωhsuckGhkkω2ndhsuckkF2ndhk
209 64 208 ralrimi CAh:ωω×Ah=CkωhsuckGhkkω2ndhsuckkF2ndhk
210 46 58 209 3jca CAh:ωω×Ah=CkωhsuckGhk2ndh:ωA2ndh=Ckω2ndhsuckkF2ndhk
211 feq1 g=2ndhg:ωA2ndh:ωA
212 fveq1 g=2ndhg=2ndh
213 212 eqeq1d g=2ndhg=C2ndh=C
214 fveq1 g=2ndhgsuck=2ndhsuck
215 fveq1 g=2ndhgk=2ndhk
216 215 oveq2d g=2ndhkFgk=kF2ndhk
217 214 216 eleq12d g=2ndhgsuckkFgk2ndhsuckkF2ndhk
218 217 ralbidv g=2ndhkωgsuckkFgkkω2ndhsuckkF2ndhk
219 211 213 218 3anbi123d g=2ndhg:ωAg=CkωgsuckkFgk2ndh:ωA2ndh=Ckω2ndhsuckkF2ndhk
220 49 210 219 spcedv CAh:ωω×Ah=CkωhsuckGhkgg:ωAg=CkωgsuckkFgk
221 220 ex CAh:ωω×Ah=CkωhsuckGhkgg:ωAg=CkωgsuckkFgk
222 221 exlimdv CAhh:ωω×Ah=CkωhsuckGhkgg:ωAg=CkωgsuckkFgk
223 222 adantr CAF:ω×A𝒫Ahh:ωω×Ah=CkωhsuckGhkgg:ωAg=CkωgsuckkFgk
224 43 223 mpd CAF:ω×A𝒫Agg:ωAg=CkωgsuckkFgk