Metamath Proof Explorer


Theorem cvmlift3lem6

Description: Lemma for cvmlift3 . (Contributed by Mario Carneiro, 9-Jul-2015)

Ref Expression
Hypotheses cvmlift3.b B=C
cvmlift3.y Y=K
cvmlift3.f φFCCovMapJ
cvmlift3.k φKSConn
cvmlift3.l φKN-Locally PConn
cvmlift3.o φOY
cvmlift3.g φGKCnJ
cvmlift3.p φPB
cvmlift3.e φFP=GO
cvmlift3.h H=xYιzB|fIICnKf0=Of1=xιgIICnC|Fg=Gfg0=P1=z
cvmlift3lem7.s S=kJs𝒫C|s=F-1kcsdsccd=FcC𝑡cHomeoJ𝑡k
cvmlift3lem7.1 φGXA
cvmlift3lem7.2 φTSA
cvmlift3lem7.3 φMG-1A
cvmlift3lem7.w W=ιbT|HXb
cvmlift3lem6.x φXM
cvmlift3lem6.z φZM
cvmlift3lem6.q φQIICnK
cvmlift3lem6.r R=ιgIICnC|Fg=GQg0=P
cvmlift3lem6.1 φQ0=OQ1=XR1=HX
cvmlift3lem6.n φNIICnK𝑡M
cvmlift3lem6.2 φN0=XN1=Z
cvmlift3lem6.i I=ιgIICnC|Fg=GNg0=HX
Assertion cvmlift3lem6 φHZW

Proof

Step Hyp Ref Expression
1 cvmlift3.b B=C
2 cvmlift3.y Y=K
3 cvmlift3.f φFCCovMapJ
4 cvmlift3.k φKSConn
5 cvmlift3.l φKN-Locally PConn
6 cvmlift3.o φOY
7 cvmlift3.g φGKCnJ
8 cvmlift3.p φPB
9 cvmlift3.e φFP=GO
10 cvmlift3.h H=xYιzB|fIICnKf0=Of1=xιgIICnC|Fg=Gfg0=P1=z
11 cvmlift3lem7.s S=kJs𝒫C|s=F-1kcsdsccd=FcC𝑡cHomeoJ𝑡k
12 cvmlift3lem7.1 φGXA
13 cvmlift3lem7.2 φTSA
14 cvmlift3lem7.3 φMG-1A
15 cvmlift3lem7.w W=ιbT|HXb
16 cvmlift3lem6.x φXM
17 cvmlift3lem6.z φZM
18 cvmlift3lem6.q φQIICnK
19 cvmlift3lem6.r R=ιgIICnC|Fg=GQg0=P
20 cvmlift3lem6.1 φQ0=OQ1=XR1=HX
21 cvmlift3lem6.n φNIICnK𝑡M
22 cvmlift3lem6.2 φN0=XN1=Z
23 cvmlift3lem6.i I=ιgIICnC|Fg=GNg0=HX
24 sconntop KSConnKTop
25 4 24 syl φKTop
26 cnrest2r KTopIICnK𝑡MIICnK
27 25 26 syl φIICnK𝑡MIICnK
28 27 21 sseldd φNIICnK
29 20 simp2d φQ1=X
30 22 simpld φN0=X
31 29 30 eqtr4d φQ1=N0
32 18 28 31 pcocn φQ*𝑝KNIICnK
33 18 28 pco0 φQ*𝑝KN0=Q0
34 20 simp1d φQ0=O
35 33 34 eqtrd φQ*𝑝KN0=O
36 18 28 pco1 φQ*𝑝KN1=N1
37 22 simprd φN1=Z
38 36 37 eqtrd φQ*𝑝KN1=Z
39 cnco QIICnKGKCnJGQIICnJ
40 18 7 39 syl2anc φGQIICnJ
41 34 fveq2d φGQ0=GO
42 iiuni 01=II
43 42 2 cnf QIICnKQ:01Y
44 18 43 syl φQ:01Y
45 0elunit 001
46 fvco3 Q:01Y001GQ0=GQ0
47 44 45 46 sylancl φGQ0=GQ0
48 41 47 9 3eqtr4rd φFP=GQ0
49 1 19 3 40 8 48 cvmliftiota φRIICnCFR=GQR0=P
50 49 simp2d φFR=GQ
51 cnco NIICnKGKCnJGNIICnJ
52 28 7 51 syl2anc φGNIICnJ
53 1 2 3 4 5 6 7 8 9 10 cvmlift3lem3 φH:YB
54 cnvimass G-1AdomG
55 eqid J=J
56 2 55 cnf GKCnJG:YJ
57 7 56 syl φG:YJ
58 54 57 fssdm φG-1AY
59 14 58 sstrd φMY
60 59 16 sseldd φXY
61 53 60 ffvelcdmd φHXB
62 30 fveq2d φGN0=GX
63 42 2 cnf NIICnKN:01Y
64 28 63 syl φN:01Y
65 fvco3 N:01Y001GN0=GN0
66 64 45 65 sylancl φGN0=GN0
67 fvco3 H:YBXYFHX=FHX
68 53 60 67 syl2anc φFHX=FHX
69 1 2 3 4 5 6 7 8 9 10 cvmlift3lem5 φFH=G
70 69 fveq1d φFHX=GX
71 68 70 eqtr3d φFHX=GX
72 62 66 71 3eqtr4rd φFHX=GN0
73 1 23 3 52 61 72 cvmliftiota φIIICnCFI=GNI0=HX
74 73 simp2d φFI=GN
75 50 74 oveq12d φFR*𝑝JFI=GQ*𝑝JGN
76 49 simp1d φRIICnC
77 73 simp1d φIIICnC
78 20 simp3d φR1=HX
79 73 simp3d φI0=HX
80 78 79 eqtr4d φR1=I0
81 cvmcn FCCovMapJFCCnJ
82 3 81 syl φFCCnJ
83 76 77 80 82 copco φFR*𝑝CI=FR*𝑝JFI
84 18 28 31 7 copco φGQ*𝑝KN=GQ*𝑝JGN
85 75 83 84 3eqtr4d φFR*𝑝CI=GQ*𝑝KN
86 76 77 pco0 φR*𝑝CI0=R0
87 49 simp3d φR0=P
88 86 87 eqtrd φR*𝑝CI0=P
89 76 77 80 pcocn φR*𝑝CIIICnC
90 cnco Q*𝑝KNIICnKGKCnJGQ*𝑝KNIICnJ
91 32 7 90 syl2anc φGQ*𝑝KNIICnJ
92 35 fveq2d φGQ*𝑝KN0=GO
93 42 2 cnf Q*𝑝KNIICnKQ*𝑝KN:01Y
94 32 93 syl φQ*𝑝KN:01Y
95 fvco3 Q*𝑝KN:01Y001GQ*𝑝KN0=GQ*𝑝KN0
96 94 45 95 sylancl φGQ*𝑝KN0=GQ*𝑝KN0
97 92 96 9 3eqtr4rd φFP=GQ*𝑝KN0
98 1 cvmlift FCCovMapJGQ*𝑝KNIICnJPBFP=GQ*𝑝KN0∃!gIICnCFg=GQ*𝑝KNg0=P
99 3 91 8 97 98 syl22anc φ∃!gIICnCFg=GQ*𝑝KNg0=P
100 coeq2 g=R*𝑝CIFg=FR*𝑝CI
101 100 eqeq1d g=R*𝑝CIFg=GQ*𝑝KNFR*𝑝CI=GQ*𝑝KN
102 fveq1 g=R*𝑝CIg0=R*𝑝CI0
103 102 eqeq1d g=R*𝑝CIg0=PR*𝑝CI0=P
104 101 103 anbi12d g=R*𝑝CIFg=GQ*𝑝KNg0=PFR*𝑝CI=GQ*𝑝KNR*𝑝CI0=P
105 104 riota2 R*𝑝CIIICnC∃!gIICnCFg=GQ*𝑝KNg0=PFR*𝑝CI=GQ*𝑝KNR*𝑝CI0=PιgIICnC|Fg=GQ*𝑝KNg0=P=R*𝑝CI
106 89 99 105 syl2anc φFR*𝑝CI=GQ*𝑝KNR*𝑝CI0=PιgIICnC|Fg=GQ*𝑝KNg0=P=R*𝑝CI
107 85 88 106 mpbi2and φιgIICnC|Fg=GQ*𝑝KNg0=P=R*𝑝CI
108 107 fveq1d φιgIICnC|Fg=GQ*𝑝KNg0=P1=R*𝑝CI1
109 76 77 pco1 φR*𝑝CI1=I1
110 108 109 eqtrd φιgIICnC|Fg=GQ*𝑝KNg0=P1=I1
111 fveq1 f=Q*𝑝KNf0=Q*𝑝KN0
112 111 eqeq1d f=Q*𝑝KNf0=OQ*𝑝KN0=O
113 fveq1 f=Q*𝑝KNf1=Q*𝑝KN1
114 113 eqeq1d f=Q*𝑝KNf1=ZQ*𝑝KN1=Z
115 coeq2 f=Q*𝑝KNGf=GQ*𝑝KN
116 115 eqeq2d f=Q*𝑝KNFg=GfFg=GQ*𝑝KN
117 116 anbi1d f=Q*𝑝KNFg=Gfg0=PFg=GQ*𝑝KNg0=P
118 117 riotabidv f=Q*𝑝KNιgIICnC|Fg=Gfg0=P=ιgIICnC|Fg=GQ*𝑝KNg0=P
119 118 fveq1d f=Q*𝑝KNιgIICnC|Fg=Gfg0=P1=ιgIICnC|Fg=GQ*𝑝KNg0=P1
120 119 eqeq1d f=Q*𝑝KNιgIICnC|Fg=Gfg0=P1=I1ιgIICnC|Fg=GQ*𝑝KNg0=P1=I1
121 112 114 120 3anbi123d f=Q*𝑝KNf0=Of1=ZιgIICnC|Fg=Gfg0=P1=I1Q*𝑝KN0=OQ*𝑝KN1=ZιgIICnC|Fg=GQ*𝑝KNg0=P1=I1
122 121 rspcev Q*𝑝KNIICnKQ*𝑝KN0=OQ*𝑝KN1=ZιgIICnC|Fg=GQ*𝑝KNg0=P1=I1fIICnKf0=Of1=ZιgIICnC|Fg=Gfg0=P1=I1
123 32 35 38 110 122 syl13anc φfIICnKf0=Of1=ZιgIICnC|Fg=Gfg0=P1=I1
124 59 17 sseldd φZY
125 1 2 3 4 5 6 7 8 9 10 cvmlift3lem4 φZYHZ=I1fIICnKf0=Of1=ZιgIICnC|Fg=Gfg0=P1=I1
126 124 125 mpdan φHZ=I1fIICnKf0=Of1=ZιgIICnC|Fg=Gfg0=P1=I1
127 123 126 mpbird φHZ=I1
128 iiconn IIConn
129 128 a1i φIIConn
130 cvmtop1 FCCovMapJCTop
131 3 130 syl φCTop
132 1 toptopon CTopCTopOnB
133 131 132 sylib φCTopOnB
134 74 rneqd φranFI=ranGN
135 rnco2 ranFI=FranI
136 rnco2 ranGN=GranN
137 134 135 136 3eqtr3g φFranI=GranN
138 iitopon IITopOn01
139 138 a1i φIITopOn01
140 2 toptopon KTopKTopOnY
141 25 140 sylib φKTopOnY
142 resttopon KTopOnYMYK𝑡MTopOnM
143 141 59 142 syl2anc φK𝑡MTopOnM
144 cnf2 IITopOn01K𝑡MTopOnMNIICnK𝑡MN:01M
145 139 143 21 144 syl3anc φN:01M
146 145 frnd φranNM
147 146 14 sstrd φranNG-1A
148 57 ffund φFunG
149 147 54 sstrdi φranNdomG
150 funimass3 FunGranNdomGGranNAranNG-1A
151 148 149 150 syl2anc φGranNAranNG-1A
152 147 151 mpbird φGranNA
153 137 152 eqsstrd φFranIA
154 1 55 cnf FCCnJF:BJ
155 82 154 syl φF:BJ
156 155 ffund φFunF
157 42 1 cnf IIICnCI:01B
158 77 157 syl φI:01B
159 158 frnd φranIB
160 155 fdmd φdomF=B
161 159 160 sseqtrrd φranIdomF
162 funimass3 FunFranIdomFFranIAranIF-1A
163 156 161 162 syl2anc φFranIAranIF-1A
164 153 163 mpbid φranIF-1A
165 cnvimass F-1AdomF
166 165 155 fssdm φF-1AB
167 cnrest2 CTopOnBranIF-1AF-1ABIIICnCIIICnC𝑡F-1A
168 133 164 166 167 syl3anc φIIICnCIIICnC𝑡F-1A
169 77 168 mpbid φIIICnC𝑡F-1A
170 11 cvmsss TSATC
171 13 170 syl φTC
172 71 12 eqeltrd φFHXA
173 11 1 15 cvmsiota FCCovMapJTSAHXBFHXAWTHXW
174 3 13 61 172 173 syl13anc φWTHXW
175 174 simpld φWT
176 171 175 sseldd φWC
177 elssuni WTWT
178 175 177 syl φWT
179 11 cvmsuni TSAT=F-1A
180 13 179 syl φT=F-1A
181 178 180 sseqtrd φWF-1A
182 11 cvmsrcl TSAAJ
183 13 182 syl φAJ
184 cnima FCCnJAJF-1AC
185 82 183 184 syl2anc φF-1AC
186 restopn2 CTopF-1ACWC𝑡F-1AWCWF-1A
187 131 185 186 syl2anc φWC𝑡F-1AWCWF-1A
188 176 181 187 mpbir2and φWC𝑡F-1A
189 11 cvmscld FCCovMapJTSAWTWClsdC𝑡F-1A
190 3 13 175 189 syl3anc φWClsdC𝑡F-1A
191 45 a1i φ001
192 174 simprd φHXW
193 79 192 eqeltrd φI0W
194 42 129 169 188 190 191 193 conncn φI:01W
195 1elunit 101
196 ffvelcdm I:01W101I1W
197 194 195 196 sylancl φI1W
198 127 197 eqeltrd φHZW