Metamath Proof Explorer


Theorem dchrisum0lem1b

Description: Lemma for dchrisum0lem1 . (Contributed by Mario Carneiro, 7-Jun-2016)

Ref Expression
Hypotheses rpvmasum.z Z = /N
rpvmasum.l L = ℤRHom Z
rpvmasum.a φ N
rpvmasum2.g G = DChr N
rpvmasum2.d D = Base G
rpvmasum2.1 1 ˙ = 0 G
rpvmasum2.w W = y D 1 ˙ | m y L m m = 0
dchrisum0.b φ X W
dchrisum0lem1.f F = a X L a a
dchrisum0.c φ C 0 +∞
dchrisum0.s φ seq 1 + F S
dchrisum0.1 φ y 1 +∞ seq 1 + F y S C y
Assertion dchrisum0lem1b φ x + d 1 x m = x + 1 x 2 d X L m m 2 C x

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z = /N
2 rpvmasum.l L = ℤRHom Z
3 rpvmasum.a φ N
4 rpvmasum2.g G = DChr N
5 rpvmasum2.d D = Base G
6 rpvmasum2.1 1 ˙ = 0 G
7 rpvmasum2.w W = y D 1 ˙ | m y L m m = 0
8 dchrisum0.b φ X W
9 dchrisum0lem1.f F = a X L a a
10 dchrisum0.c φ C 0 +∞
11 dchrisum0.s φ seq 1 + F S
12 dchrisum0.1 φ y 1 +∞ seq 1 + F y S C y
13 fzfid φ x + d 1 x x + 1 x 2 d Fin
14 ssun2 x + 1 x 2 d 1 x x + 1 x 2 d
15 simpr φ x + x +
16 15 rprege0d φ x + x 0 x
17 flge0nn0 x 0 x x 0
18 16 17 syl φ x + x 0
19 nn0p1nn x 0 x + 1
20 18 19 syl φ x + x + 1
21 20 adantr φ x + d 1 x x + 1
22 nnuz = 1
23 21 22 eleqtrdi φ x + d 1 x x + 1 1
24 dchrisum0lem1a φ x + d 1 x x x 2 d x 2 d x
25 24 simprd φ x + d 1 x x 2 d x
26 fzsplit2 x + 1 1 x 2 d x 1 x 2 d = 1 x x + 1 x 2 d
27 23 25 26 syl2anc φ x + d 1 x 1 x 2 d = 1 x x + 1 x 2 d
28 14 27 sseqtrrid φ x + d 1 x x + 1 x 2 d 1 x 2 d
29 28 sselda φ x + d 1 x m x + 1 x 2 d m 1 x 2 d
30 7 ssrab3 W D 1 ˙
31 30 8 sseldi φ X D 1 ˙
32 31 eldifad φ X D
33 32 ad3antrrr φ x + d 1 x m 1 x 2 d X D
34 elfzelz m 1 x 2 d m
35 34 adantl φ x + d 1 x m 1 x 2 d m
36 4 1 5 2 33 35 dchrzrhcl φ x + d 1 x m 1 x 2 d X L m
37 elfznn m 1 x 2 d m
38 37 adantl φ x + d 1 x m 1 x 2 d m
39 38 nnrpd φ x + d 1 x m 1 x 2 d m +
40 39 rpsqrtcld φ x + d 1 x m 1 x 2 d m +
41 40 rpcnd φ x + d 1 x m 1 x 2 d m
42 40 rpne0d φ x + d 1 x m 1 x 2 d m 0
43 36 41 42 divcld φ x + d 1 x m 1 x 2 d X L m m
44 29 43 syldan φ x + d 1 x m x + 1 x 2 d X L m m
45 13 44 fsumcl φ x + d 1 x m = x + 1 x 2 d X L m m
46 45 abscld φ x + d 1 x m = x + 1 x 2 d X L m m
47 1zzd φ 1
48 32 adantr φ m X D
49 nnz m m
50 49 adantl φ m m
51 4 1 5 2 48 50 dchrzrhcl φ m X L m
52 nnrp m m +
53 52 adantl φ m m +
54 53 rpsqrtcld φ m m +
55 54 rpcnd φ m m
56 54 rpne0d φ m m 0
57 51 55 56 divcld φ m X L m m
58 2fveq3 a = m X L a = X L m
59 fveq2 a = m a = m
60 58 59 oveq12d a = m X L a a = X L m m
61 60 cbvmptv a X L a a = m X L m m
62 9 61 eqtri F = m X L m m
63 57 62 fmptd φ F :
64 63 ffvelrnda φ m F m
65 22 47 64 serf φ seq 1 + F :
66 65 ad2antrr φ x + d 1 x seq 1 + F :
67 15 rpregt0d φ x + x 0 < x
68 67 adantr φ x + d 1 x x 0 < x
69 68 simpld φ x + d 1 x x
70 1red φ x + d 1 x 1
71 elfznn d 1 x d
72 71 adantl φ x + d 1 x d
73 72 nnred φ x + d 1 x d
74 72 nnge1d φ x + d 1 x 1 d
75 15 rpred φ x + x
76 fznnfl x d 1 x d d x
77 75 76 syl φ x + d 1 x d d x
78 77 simplbda φ x + d 1 x d x
79 70 73 69 74 78 letrd φ x + d 1 x 1 x
80 flge1nn x 1 x x
81 69 79 80 syl2anc φ x + d 1 x x
82 eluznn x x 2 d x x 2 d
83 81 25 82 syl2anc φ x + d 1 x x 2 d
84 66 83 ffvelrnd φ x + d 1 x seq 1 + F x 2 d
85 climcl seq 1 + F S S
86 11 85 syl φ S
87 86 ad2antrr φ x + d 1 x S
88 84 87 subcld φ x + d 1 x seq 1 + F x 2 d S
89 88 abscld φ x + d 1 x seq 1 + F x 2 d S
90 66 81 ffvelrnd φ x + d 1 x seq 1 + F x
91 87 90 subcld φ x + d 1 x S seq 1 + F x
92 91 abscld φ x + d 1 x S seq 1 + F x
93 89 92 readdcld φ x + d 1 x seq 1 + F x 2 d S + S seq 1 + F x
94 2re 2
95 elrege0 C 0 +∞ C 0 C
96 10 95 sylib φ C 0 C
97 96 simpld φ C
98 remulcl 2 C 2 C
99 94 97 98 sylancr φ 2 C
100 99 adantr φ x + 2 C
101 15 rpsqrtcld φ x + x +
102 100 101 rerpdivcld φ x + 2 C x
103 102 adantr φ x + d 1 x 2 C x
104 ssun1 1 x 1 x x + 1 x 2 d
105 104 27 sseqtrrid φ x + d 1 x 1 x 1 x 2 d
106 105 sselda φ x + d 1 x m 1 x m 1 x 2 d
107 ovex X L a a V
108 60 9 107 fvmpt3i m F m = X L m m
109 38 108 syl φ x + d 1 x m 1 x 2 d F m = X L m m
110 106 109 syldan φ x + d 1 x m 1 x F m = X L m m
111 81 22 eleqtrdi φ x + d 1 x x 1
112 106 43 syldan φ x + d 1 x m 1 x X L m m
113 110 111 112 fsumser φ x + d 1 x m = 1 x X L m m = seq 1 + F x
114 113 90 eqeltrd φ x + d 1 x m = 1 x X L m m
115 114 45 pncan2d φ x + d 1 x m = 1 x X L m m + m = x + 1 x 2 d X L m m - m = 1 x X L m m = m = x + 1 x 2 d X L m m
116 reflcl x x
117 69 116 syl φ x + d 1 x x
118 117 ltp1d φ x + d 1 x x < x + 1
119 fzdisj x < x + 1 1 x x + 1 x 2 d =
120 118 119 syl φ x + d 1 x 1 x x + 1 x 2 d =
121 fzfid φ x + d 1 x 1 x 2 d Fin
122 120 27 121 43 fsumsplit φ x + d 1 x m = 1 x 2 d X L m m = m = 1 x X L m m + m = x + 1 x 2 d X L m m
123 83 22 eleqtrdi φ x + d 1 x x 2 d 1
124 109 123 43 fsumser φ x + d 1 x m = 1 x 2 d X L m m = seq 1 + F x 2 d
125 122 124 eqtr3d φ x + d 1 x m = 1 x X L m m + m = x + 1 x 2 d X L m m = seq 1 + F x 2 d
126 125 113 oveq12d φ x + d 1 x m = 1 x X L m m + m = x + 1 x 2 d X L m m - m = 1 x X L m m = seq 1 + F x 2 d seq 1 + F x
127 115 126 eqtr3d φ x + d 1 x m = x + 1 x 2 d X L m m = seq 1 + F x 2 d seq 1 + F x
128 127 fveq2d φ x + d 1 x m = x + 1 x 2 d X L m m = seq 1 + F x 2 d seq 1 + F x
129 84 90 87 abs3difd φ x + d 1 x seq 1 + F x 2 d seq 1 + F x seq 1 + F x 2 d S + S seq 1 + F x
130 128 129 eqbrtrd φ x + d 1 x m = x + 1 x 2 d X L m m seq 1 + F x 2 d S + S seq 1 + F x
131 97 ad2antrr φ x + d 1 x C
132 simplr φ x + d 1 x x +
133 132 rpsqrtcld φ x + d 1 x x +
134 131 133 rerpdivcld φ x + d 1 x C x
135 2z 2
136 rpexpcl x + 2 x 2 +
137 15 135 136 sylancl φ x + x 2 +
138 137 adantr φ x + d 1 x x 2 +
139 72 nnrpd φ x + d 1 x d +
140 138 139 rpdivcld φ x + d 1 x x 2 d +
141 140 rpsqrtcld φ x + d 1 x x 2 d +
142 131 141 rerpdivcld φ x + d 1 x C x 2 d
143 2fveq3 y = x 2 d seq 1 + F y = seq 1 + F x 2 d
144 143 fvoveq1d y = x 2 d seq 1 + F y S = seq 1 + F x 2 d S
145 fveq2 y = x 2 d y = x 2 d
146 145 oveq2d y = x 2 d C y = C x 2 d
147 144 146 breq12d y = x 2 d seq 1 + F y S C y seq 1 + F x 2 d S C x 2 d
148 12 ad2antrr φ x + d 1 x y 1 +∞ seq 1 + F y S C y
149 137 rpred φ x + x 2
150 nndivre x 2 d x 2 d
151 149 71 150 syl2an φ x + d 1 x x 2 d
152 24 simpld φ x + d 1 x x x 2 d
153 70 69 151 79 152 letrd φ x + d 1 x 1 x 2 d
154 1re 1
155 elicopnf 1 x 2 d 1 +∞ x 2 d 1 x 2 d
156 154 155 ax-mp x 2 d 1 +∞ x 2 d 1 x 2 d
157 151 153 156 sylanbrc φ x + d 1 x x 2 d 1 +∞
158 147 148 157 rspcdva φ x + d 1 x seq 1 + F x 2 d S C x 2 d
159 133 rpregt0d φ x + d 1 x x 0 < x
160 141 rpregt0d φ x + d 1 x x 2 d 0 < x 2 d
161 96 ad2antrr φ x + d 1 x C 0 C
162 132 rprege0d φ x + d 1 x x 0 x
163 140 rprege0d φ x + d 1 x x 2 d 0 x 2 d
164 sqrtle x 0 x x 2 d 0 x 2 d x x 2 d x x 2 d
165 162 163 164 syl2anc φ x + d 1 x x x 2 d x x 2 d
166 152 165 mpbid φ x + d 1 x x x 2 d
167 lediv2a x 0 < x x 2 d 0 < x 2 d C 0 C x x 2 d C x 2 d C x
168 159 160 161 166 167 syl31anc φ x + d 1 x C x 2 d C x
169 89 142 134 158 168 letrd φ x + d 1 x seq 1 + F x 2 d S C x
170 87 90 abssubd φ x + d 1 x S seq 1 + F x = seq 1 + F x S
171 2fveq3 y = x seq 1 + F y = seq 1 + F x
172 171 fvoveq1d y = x seq 1 + F y S = seq 1 + F x S
173 fveq2 y = x y = x
174 173 oveq2d y = x C y = C x
175 172 174 breq12d y = x seq 1 + F y S C y seq 1 + F x S C x
176 elicopnf 1 x 1 +∞ x 1 x
177 154 176 ax-mp x 1 +∞ x 1 x
178 69 79 177 sylanbrc φ x + d 1 x x 1 +∞
179 175 148 178 rspcdva φ x + d 1 x seq 1 + F x S C x
180 170 179 eqbrtrd φ x + d 1 x S seq 1 + F x C x
181 89 92 134 134 169 180 le2addd φ x + d 1 x seq 1 + F x 2 d S + S seq 1 + F x C x + C x
182 2cnd φ x + d 1 x 2
183 97 adantr φ x + C
184 183 recnd φ x + C
185 184 adantr φ x + d 1 x C
186 101 rpcnne0d φ x + x x 0
187 186 adantr φ x + d 1 x x x 0
188 divass 2 C x x 0 2 C x = 2 C x
189 182 185 187 188 syl3anc φ x + d 1 x 2 C x = 2 C x
190 134 recnd φ x + d 1 x C x
191 190 2timesd φ x + d 1 x 2 C x = C x + C x
192 189 191 eqtrd φ x + d 1 x 2 C x = C x + C x
193 181 192 breqtrrd φ x + d 1 x seq 1 + F x 2 d S + S seq 1 + F x 2 C x
194 46 93 103 130 193 letrd φ x + d 1 x m = x + 1 x 2 d X L m m 2 C x