Metamath Proof Explorer


Theorem dchrisum0lem1b

Description: Lemma for dchrisum0lem1 . (Contributed by Mario Carneiro, 7-Jun-2016)

Ref Expression
Hypotheses rpvmasum.z Z=/N
rpvmasum.l L=ℤRHomZ
rpvmasum.a φN
rpvmasum2.g G=DChrN
rpvmasum2.d D=BaseG
rpvmasum2.1 1˙=0G
rpvmasum2.w W=yD1˙|myLmm=0
dchrisum0.b φXW
dchrisum0lem1.f F=aXLaa
dchrisum0.c φC0+∞
dchrisum0.s φseq1+FS
dchrisum0.1 φy1+∞seq1+FySCy
Assertion dchrisum0lem1b φx+d1xm=x+1x2dXLmm2Cx

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z=/N
2 rpvmasum.l L=ℤRHomZ
3 rpvmasum.a φN
4 rpvmasum2.g G=DChrN
5 rpvmasum2.d D=BaseG
6 rpvmasum2.1 1˙=0G
7 rpvmasum2.w W=yD1˙|myLmm=0
8 dchrisum0.b φXW
9 dchrisum0lem1.f F=aXLaa
10 dchrisum0.c φC0+∞
11 dchrisum0.s φseq1+FS
12 dchrisum0.1 φy1+∞seq1+FySCy
13 fzfid φx+d1xx+1x2dFin
14 ssun2 x+1x2d1xx+1x2d
15 simpr φx+x+
16 15 rprege0d φx+x0x
17 flge0nn0 x0xx0
18 16 17 syl φx+x0
19 nn0p1nn x0x+1
20 18 19 syl φx+x+1
21 20 adantr φx+d1xx+1
22 nnuz =1
23 21 22 eleqtrdi φx+d1xx+11
24 dchrisum0lem1a φx+d1xxx2dx2dx
25 24 simprd φx+d1xx2dx
26 fzsplit2 x+11x2dx1x2d=1xx+1x2d
27 23 25 26 syl2anc φx+d1x1x2d=1xx+1x2d
28 14 27 sseqtrrid φx+d1xx+1x2d1x2d
29 28 sselda φx+d1xmx+1x2dm1x2d
30 7 ssrab3 WD1˙
31 30 8 sselid φXD1˙
32 31 eldifad φXD
33 32 ad3antrrr φx+d1xm1x2dXD
34 elfzelz m1x2dm
35 34 adantl φx+d1xm1x2dm
36 4 1 5 2 33 35 dchrzrhcl φx+d1xm1x2dXLm
37 elfznn m1x2dm
38 37 adantl φx+d1xm1x2dm
39 38 nnrpd φx+d1xm1x2dm+
40 39 rpsqrtcld φx+d1xm1x2dm+
41 40 rpcnd φx+d1xm1x2dm
42 40 rpne0d φx+d1xm1x2dm0
43 36 41 42 divcld φx+d1xm1x2dXLmm
44 29 43 syldan φx+d1xmx+1x2dXLmm
45 13 44 fsumcl φx+d1xm=x+1x2dXLmm
46 45 abscld φx+d1xm=x+1x2dXLmm
47 1zzd φ1
48 32 adantr φmXD
49 nnz mm
50 49 adantl φmm
51 4 1 5 2 48 50 dchrzrhcl φmXLm
52 nnrp mm+
53 52 adantl φmm+
54 53 rpsqrtcld φmm+
55 54 rpcnd φmm
56 54 rpne0d φmm0
57 51 55 56 divcld φmXLmm
58 2fveq3 a=mXLa=XLm
59 fveq2 a=ma=m
60 58 59 oveq12d a=mXLaa=XLmm
61 60 cbvmptv aXLaa=mXLmm
62 9 61 eqtri F=mXLmm
63 57 62 fmptd φF:
64 63 ffvelcdmda φmFm
65 22 47 64 serf φseq1+F:
66 65 ad2antrr φx+d1xseq1+F:
67 15 rpregt0d φx+x0<x
68 67 adantr φx+d1xx0<x
69 68 simpld φx+d1xx
70 1red φx+d1x1
71 elfznn d1xd
72 71 adantl φx+d1xd
73 72 nnred φx+d1xd
74 72 nnge1d φx+d1x1d
75 15 rpred φx+x
76 fznnfl xd1xddx
77 75 76 syl φx+d1xddx
78 77 simplbda φx+d1xdx
79 70 73 69 74 78 letrd φx+d1x1x
80 flge1nn x1xx
81 69 79 80 syl2anc φx+d1xx
82 eluznn xx2dxx2d
83 81 25 82 syl2anc φx+d1xx2d
84 66 83 ffvelcdmd φx+d1xseq1+Fx2d
85 climcl seq1+FSS
86 11 85 syl φS
87 86 ad2antrr φx+d1xS
88 84 87 subcld φx+d1xseq1+Fx2dS
89 88 abscld φx+d1xseq1+Fx2dS
90 66 81 ffvelcdmd φx+d1xseq1+Fx
91 87 90 subcld φx+d1xSseq1+Fx
92 91 abscld φx+d1xSseq1+Fx
93 89 92 readdcld φx+d1xseq1+Fx2dS+Sseq1+Fx
94 2re 2
95 elrege0 C0+∞C0C
96 10 95 sylib φC0C
97 96 simpld φC
98 remulcl 2C2C
99 94 97 98 sylancr φ2C
100 99 adantr φx+2C
101 15 rpsqrtcld φx+x+
102 100 101 rerpdivcld φx+2Cx
103 102 adantr φx+d1x2Cx
104 ssun1 1x1xx+1x2d
105 104 27 sseqtrrid φx+d1x1x1x2d
106 105 sselda φx+d1xm1xm1x2d
107 ovex XLaaV
108 60 9 107 fvmpt3i mFm=XLmm
109 38 108 syl φx+d1xm1x2dFm=XLmm
110 106 109 syldan φx+d1xm1xFm=XLmm
111 81 22 eleqtrdi φx+d1xx1
112 106 43 syldan φx+d1xm1xXLmm
113 110 111 112 fsumser φx+d1xm=1xXLmm=seq1+Fx
114 113 90 eqeltrd φx+d1xm=1xXLmm
115 114 45 pncan2d φx+d1xm=1xXLmm+m=x+1x2dXLmm-m=1xXLmm=m=x+1x2dXLmm
116 reflcl xx
117 69 116 syl φx+d1xx
118 117 ltp1d φx+d1xx<x+1
119 fzdisj x<x+11xx+1x2d=
120 118 119 syl φx+d1x1xx+1x2d=
121 fzfid φx+d1x1x2dFin
122 120 27 121 43 fsumsplit φx+d1xm=1x2dXLmm=m=1xXLmm+m=x+1x2dXLmm
123 83 22 eleqtrdi φx+d1xx2d1
124 109 123 43 fsumser φx+d1xm=1x2dXLmm=seq1+Fx2d
125 122 124 eqtr3d φx+d1xm=1xXLmm+m=x+1x2dXLmm=seq1+Fx2d
126 125 113 oveq12d φx+d1xm=1xXLmm+m=x+1x2dXLmm-m=1xXLmm=seq1+Fx2dseq1+Fx
127 115 126 eqtr3d φx+d1xm=x+1x2dXLmm=seq1+Fx2dseq1+Fx
128 127 fveq2d φx+d1xm=x+1x2dXLmm=seq1+Fx2dseq1+Fx
129 84 90 87 abs3difd φx+d1xseq1+Fx2dseq1+Fxseq1+Fx2dS+Sseq1+Fx
130 128 129 eqbrtrd φx+d1xm=x+1x2dXLmmseq1+Fx2dS+Sseq1+Fx
131 97 ad2antrr φx+d1xC
132 simplr φx+d1xx+
133 132 rpsqrtcld φx+d1xx+
134 131 133 rerpdivcld φx+d1xCx
135 2z 2
136 rpexpcl x+2x2+
137 15 135 136 sylancl φx+x2+
138 137 adantr φx+d1xx2+
139 72 nnrpd φx+d1xd+
140 138 139 rpdivcld φx+d1xx2d+
141 140 rpsqrtcld φx+d1xx2d+
142 131 141 rerpdivcld φx+d1xCx2d
143 2fveq3 y=x2dseq1+Fy=seq1+Fx2d
144 143 fvoveq1d y=x2dseq1+FyS=seq1+Fx2dS
145 fveq2 y=x2dy=x2d
146 145 oveq2d y=x2dCy=Cx2d
147 144 146 breq12d y=x2dseq1+FySCyseq1+Fx2dSCx2d
148 12 ad2antrr φx+d1xy1+∞seq1+FySCy
149 137 rpred φx+x2
150 nndivre x2dx2d
151 149 71 150 syl2an φx+d1xx2d
152 24 simpld φx+d1xxx2d
153 70 69 151 79 152 letrd φx+d1x1x2d
154 1re 1
155 elicopnf 1x2d1+∞x2d1x2d
156 154 155 ax-mp x2d1+∞x2d1x2d
157 151 153 156 sylanbrc φx+d1xx2d1+∞
158 147 148 157 rspcdva φx+d1xseq1+Fx2dSCx2d
159 133 rpregt0d φx+d1xx0<x
160 141 rpregt0d φx+d1xx2d0<x2d
161 96 ad2antrr φx+d1xC0C
162 132 rprege0d φx+d1xx0x
163 140 rprege0d φx+d1xx2d0x2d
164 sqrtle x0xx2d0x2dxx2dxx2d
165 162 163 164 syl2anc φx+d1xxx2dxx2d
166 152 165 mpbid φx+d1xxx2d
167 lediv2a x0<xx2d0<x2dC0Cxx2dCx2dCx
168 159 160 161 166 167 syl31anc φx+d1xCx2dCx
169 89 142 134 158 168 letrd φx+d1xseq1+Fx2dSCx
170 87 90 abssubd φx+d1xSseq1+Fx=seq1+FxS
171 2fveq3 y=xseq1+Fy=seq1+Fx
172 171 fvoveq1d y=xseq1+FyS=seq1+FxS
173 fveq2 y=xy=x
174 173 oveq2d y=xCy=Cx
175 172 174 breq12d y=xseq1+FySCyseq1+FxSCx
176 elicopnf 1x1+∞x1x
177 154 176 ax-mp x1+∞x1x
178 69 79 177 sylanbrc φx+d1xx1+∞
179 175 148 178 rspcdva φx+d1xseq1+FxSCx
180 170 179 eqbrtrd φx+d1xSseq1+FxCx
181 89 92 134 134 169 180 le2addd φx+d1xseq1+Fx2dS+Sseq1+FxCx+Cx
182 2cnd φx+d1x2
183 97 adantr φx+C
184 183 recnd φx+C
185 184 adantr φx+d1xC
186 101 rpcnne0d φx+xx0
187 186 adantr φx+d1xxx0
188 divass 2Cxx02Cx=2Cx
189 182 185 187 188 syl3anc φx+d1x2Cx=2Cx
190 134 recnd φx+d1xCx
191 190 2timesd φx+d1x2Cx=Cx+Cx
192 189 191 eqtrd φx+d1x2Cx=Cx+Cx
193 181 192 breqtrrd φx+d1xseq1+Fx2dS+Sseq1+Fx2Cx
194 46 93 103 130 193 letrd φx+d1xm=x+1x2dXLmm2Cx