Metamath Proof Explorer


Theorem dcubic

Description: Solutions to the depressed cubic, a special case of cubic . (The definitions of M , N , G , T here differ from mcubic by scale factors of -u 9 , 5 4 , 5 4 and -u 2 7 respectively, to simplify the algebra and presentation.) (Contributed by Mario Carneiro, 26-Apr-2015)

Ref Expression
Hypotheses dcubic.c φP
dcubic.d φQ
dcubic.x φX
dcubic.t φT
dcubic.3 φT3=GN
dcubic.g φG
dcubic.2 φG2=N2+M3
dcubic.m φM=P3
dcubic.n φN=Q2
dcubic.0 φT0
Assertion dcubic φX3+PX+Q=0rr3=1X=rTMrT

Proof

Step Hyp Ref Expression
1 dcubic.c φP
2 dcubic.d φQ
3 dcubic.x φX
4 dcubic.t φT
5 dcubic.3 φT3=GN
6 dcubic.g φG
7 dcubic.2 φG2=N2+M3
8 dcubic.m φM=P3
9 dcubic.n φN=Q2
10 dcubic.0 φT0
11 10 adantr φX3+PX+Q=0T0
12 4 adantr φX3+PX+Q=0T
13 3z 3
14 expne0i TT03T30
15 13 14 mp3an3 TT0T30
16 15 ex TT0T30
17 12 16 syl φX3+PX+Q=0T0T30
18 5 ad2antrr φX3+PX+Q=0X=0X2+4 M=0T3=GN
19 6 ad2antrr φX3+PX+Q=0X=0X2+4 M=0G
20 7 ad2antrr φX3+PX+Q=0X=0X2+4 M=0G2=N2+M3
21 9 ad2antrr φX3+PX+Q=0X=0X2+4 M=0N=Q2
22 simprl φX3+PX+Q=0X=0X2+4 M=0X=0
23 22 oveq2d φX3+PX+Q=0X=0X2+4 M=0PX=P0
24 1 ad2antrr φX3+PX+Q=0X=0X2+4 M=0P
25 24 mul01d φX3+PX+Q=0X=0X2+4 M=0P0=0
26 23 25 eqtrd φX3+PX+Q=0X=0X2+4 M=0PX=0
27 26 oveq1d φX3+PX+Q=0X=0X2+4 M=0PX+Q=0+Q
28 22 oveq1d φX3+PX+Q=0X=0X2+4 M=0X3=03
29 3nn 3
30 0exp 303=0
31 29 30 ax-mp 03=0
32 28 31 eqtrdi φX3+PX+Q=0X=0X2+4 M=0X3=0
33 32 oveq1d φX3+PX+Q=0X=0X2+4 M=0X3+PX+Q=0+PX+Q
34 simplr φX3+PX+Q=0X=0X2+4 M=0X3+PX+Q=0
35 0cnd φX3+PX+Q=0X=0X2+4 M=00
36 26 35 eqeltrd φX3+PX+Q=0X=0X2+4 M=0PX
37 2 ad2antrr φX3+PX+Q=0X=0X2+4 M=0Q
38 36 37 addcld φX3+PX+Q=0X=0X2+4 M=0PX+Q
39 38 addlidd φX3+PX+Q=0X=0X2+4 M=00+PX+Q=PX+Q
40 33 34 39 3eqtr3rd φX3+PX+Q=0X=0X2+4 M=0PX+Q=0
41 37 addlidd φX3+PX+Q=0X=0X2+4 M=00+Q=Q
42 27 40 41 3eqtr3rd φX3+PX+Q=0X=0X2+4 M=0Q=0
43 42 oveq1d φX3+PX+Q=0X=0X2+4 M=0Q2=02
44 2cn 2
45 2ne0 20
46 44 45 div0i 02=0
47 43 46 eqtrdi φX3+PX+Q=0X=0X2+4 M=0Q2=0
48 21 47 eqtrd φX3+PX+Q=0X=0X2+4 M=0N=0
49 48 sq0id φX3+PX+Q=0X=0X2+4 M=0N2=0
50 3cn 3
51 50 a1i φ3
52 3ne0 30
53 52 a1i φ30
54 1 51 53 divcld φP3
55 8 54 eqeltrd φM
56 55 ad2antrr φX3+PX+Q=0X=0X2+4 M=0M
57 4cn 4
58 57 a1i φX3+PX+Q=0X=0X2+4 M=04
59 4ne0 40
60 59 a1i φX3+PX+Q=0X=0X2+4 M=040
61 22 sq0id φX3+PX+Q=0X=0X2+4 M=0X2=0
62 61 oveq1d φX3+PX+Q=0X=0X2+4 M=0X2+4 M=0+4 M
63 3 sqcld φX2
64 mulcl 4M4 M
65 57 55 64 sylancr φ4 M
66 63 65 addcld φX2+4 M
67 66 ad2antrr φX3+PX+Q=0X=0X2+4 M=0X2+4 M
68 simprr φX3+PX+Q=0X=0X2+4 M=0X2+4 M=0
69 67 68 sqr00d φX3+PX+Q=0X=0X2+4 M=0X2+4 M=0
70 65 ad2antrr φX3+PX+Q=0X=0X2+4 M=04 M
71 70 addlidd φX3+PX+Q=0X=0X2+4 M=00+4 M=4 M
72 62 69 71 3eqtr3rd φX3+PX+Q=0X=0X2+4 M=04 M=0
73 57 mul01i 40=0
74 72 73 eqtr4di φX3+PX+Q=0X=0X2+4 M=04 M=40
75 56 35 58 60 74 mulcanad φX3+PX+Q=0X=0X2+4 M=0M=0
76 75 oveq1d φX3+PX+Q=0X=0X2+4 M=0M3=03
77 76 31 eqtrdi φX3+PX+Q=0X=0X2+4 M=0M3=0
78 49 77 oveq12d φX3+PX+Q=0X=0X2+4 M=0N2+M3=0+0
79 00id 0+0=0
80 78 79 eqtrdi φX3+PX+Q=0X=0X2+4 M=0N2+M3=0
81 20 80 eqtrd φX3+PX+Q=0X=0X2+4 M=0G2=0
82 19 81 sqeq0d φX3+PX+Q=0X=0X2+4 M=0G=0
83 82 48 oveq12d φX3+PX+Q=0X=0X2+4 M=0GN=00
84 0m0e0 00=0
85 83 84 eqtrdi φX3+PX+Q=0X=0X2+4 M=0GN=0
86 18 85 eqtrd φX3+PX+Q=0X=0X2+4 M=0T3=0
87 86 ex φX3+PX+Q=0X=0X2+4 M=0T3=0
88 87 necon3ad φX3+PX+Q=0T30¬X=0X2+4 M=0
89 17 88 syld φX3+PX+Q=0T0¬X=0X2+4 M=0
90 11 89 mpd φX3+PX+Q=0¬X=0X2+4 M=0
91 oveq12 X+X2+4 M2=0XX2+4 M2=0X+X2+4 M2+XX2+4 M2=0+0
92 91 79 eqtrdi X+X2+4 M2=0XX2+4 M2=0X+X2+4 M2+XX2+4 M2=0
93 oveq12 X+X2+4 M2=0XX2+4 M2=0X+X2+4 M2XX2+4 M2=00
94 93 84 eqtrdi X+X2+4 M2=0XX2+4 M2=0X+X2+4 M2XX2+4 M2=0
95 92 94 jca X+X2+4 M2=0XX2+4 M2=0X+X2+4 M2+XX2+4 M2=0X+X2+4 M2XX2+4 M2=0
96 66 sqrtcld φX2+4 M
97 halfaddsub XX2+4 MX+X2+4 M2+XX2+4 M2=XX+X2+4 M2XX2+4 M2=X2+4 M
98 3 96 97 syl2anc φX+X2+4 M2+XX2+4 M2=XX+X2+4 M2XX2+4 M2=X2+4 M
99 98 simpld φX+X2+4 M2+XX2+4 M2=X
100 99 eqeq1d φX+X2+4 M2+XX2+4 M2=0X=0
101 98 simprd φX+X2+4 M2XX2+4 M2=X2+4 M
102 101 eqeq1d φX+X2+4 M2XX2+4 M2=0X2+4 M=0
103 100 102 anbi12d φX+X2+4 M2+XX2+4 M2=0X+X2+4 M2XX2+4 M2=0X=0X2+4 M=0
104 95 103 imbitrid φX+X2+4 M2=0XX2+4 M2=0X=0X2+4 M=0
105 104 con3d φ¬X=0X2+4 M=0¬X+X2+4 M2=0XX2+4 M2=0
106 eldifi u0u
107 106 adantl φu0u
108 55 adantr φu0M
109 eldifsni u0u0
110 109 adantl φu0u0
111 108 107 110 divcld φu0Mu
112 3 adantr φu0X
113 107 111 112 subaddd φu0uMu=XMu+X=u
114 eqcom X=uMuuMu=X
115 eqcom u=Mu+XMu+X=u
116 113 114 115 3bitr4g φu0X=uMuu=Mu+X
117 107 sqcld φu0u2
118 112 107 mulcld φu0Xu
119 118 108 addcld φu0Xu+M
120 117 119 subeq0ad φu0u2Xu+M=0u2=Xu+M
121 107 sqvald φu0u2=uu
122 111 112 107 adddird φu0Mu+Xu=Muu+Xu
123 108 107 110 divcan1d φu0Muu=M
124 123 oveq1d φu0Muu+Xu=M+Xu
125 108 118 addcomd φu0M+Xu=Xu+M
126 122 124 125 3eqtrrd φu0Xu+M=Mu+Xu
127 121 126 eqeq12d φu0u2=Xu+Muu=Mu+Xu
128 111 112 addcld φu0Mu+X
129 107 128 107 110 mulcan2d φu0uu=Mu+Xuu=Mu+X
130 120 127 129 3bitrd φu0u2Xu+M=0u=Mu+X
131 1cnd φu01
132 ax-1ne0 10
133 132 a1i φu010
134 3 negcld φX
135 134 adantr φu0X
136 55 negcld φM
137 136 adantr φu0M
138 sqneg XX2=X2
139 112 138 syl φu0X2=X2
140 137 mullidd φu01- M=M
141 140 oveq2d φu041- M=4- M
142 mulneg2 4M4- M=4 M
143 57 108 142 sylancr φu04- M=4 M
144 141 143 eqtrd φu041- M=4 M
145 139 144 oveq12d φu0X241- M=X24 M
146 63 adantr φu0X2
147 65 adantr φu04 M
148 146 147 subnegd φu0X24 M=X2+4 M
149 145 148 eqtr2d φu0X2+4 M=X241- M
150 131 133 135 137 107 149 quad φu01u2+Xu+- M=0u=-X+X2+4 M21u=-X-X2+4 M21
151 117 mullidd φu01u2=u2
152 112 107 mulneg1d φu0Xu=Xu
153 152 oveq1d φu0Xu+- M=-Xu+- M
154 118 108 negdid φu0Xu+M=-Xu+- M
155 153 154 eqtr4d φu0Xu+- M=Xu+M
156 151 155 oveq12d φu01u2+Xu+- M=u2+Xu+M
157 117 119 negsubd φu0u2+Xu+M=u2Xu+M
158 156 157 eqtrd φu01u2+Xu+- M=u2Xu+M
159 158 eqeq1d φu01u2+Xu+- M=0u2Xu+M=0
160 112 negnegd φu0X=X
161 160 oveq1d φu0-X+X2+4 M=X+X2+4 M
162 2t1e2 21=2
163 162 a1i φu021=2
164 161 163 oveq12d φu0-X+X2+4 M21=X+X2+4 M2
165 164 eqeq2d φu0u=-X+X2+4 M21u=X+X2+4 M2
166 160 oveq1d φu0-X-X2+4 M=XX2+4 M
167 166 163 oveq12d φu0-X-X2+4 M21=XX2+4 M2
168 167 eqeq2d φu0u=-X-X2+4 M21u=XX2+4 M2
169 165 168 orbi12d φu0u=-X+X2+4 M21u=-X-X2+4 M21u=X+X2+4 M2u=XX2+4 M2
170 150 159 169 3bitr3d φu0u2Xu+M=0u=X+X2+4 M2u=XX2+4 M2
171 116 130 170 3bitr2d φu0X=uMuu=X+X2+4 M2u=XX2+4 M2
172 171 rexbidva φu0X=uMuu0u=X+X2+4 M2u=XX2+4 M2
173 r19.43 u0u=X+X2+4 M2u=XX2+4 M2u0u=X+X2+4 M2u0u=XX2+4 M2
174 172 173 bitrdi φu0X=uMuu0u=X+X2+4 M2u0u=XX2+4 M2
175 risset X+X2+4 M20u0u=X+X2+4 M2
176 3 96 addcld φX+X2+4 M
177 176 halfcld φX+X2+4 M2
178 eldifsn X+X2+4 M20X+X2+4 M2X+X2+4 M20
179 178 baib X+X2+4 M2X+X2+4 M20X+X2+4 M20
180 177 179 syl φX+X2+4 M20X+X2+4 M20
181 175 180 bitr3id φu0u=X+X2+4 M2X+X2+4 M20
182 risset XX2+4 M20u0u=XX2+4 M2
183 3 96 subcld φXX2+4 M
184 183 halfcld φXX2+4 M2
185 eldifsn XX2+4 M20XX2+4 M2XX2+4 M20
186 185 baib XX2+4 M2XX2+4 M20XX2+4 M20
187 184 186 syl φXX2+4 M20XX2+4 M20
188 182 187 bitr3id φu0u=XX2+4 M2XX2+4 M20
189 181 188 orbi12d φu0u=X+X2+4 M2u0u=XX2+4 M2X+X2+4 M20XX2+4 M20
190 neorian X+X2+4 M20XX2+4 M20¬X+X2+4 M2=0XX2+4 M2=0
191 189 190 bitrdi φu0u=X+X2+4 M2u0u=XX2+4 M2¬X+X2+4 M2=0XX2+4 M2=0
192 174 191 bitrd φu0X=uMu¬X+X2+4 M2=0XX2+4 M2=0
193 105 192 sylibrd φ¬X=0X2+4 M=0u0X=uMu
194 193 imp φ¬X=0X2+4 M=0u0X=uMu
195 90 194 syldan φX3+PX+Q=0u0X=uMu
196 1 ad2antrr φX3+PX+Q=0u0X=uMuP
197 2 ad2antrr φX3+PX+Q=0u0X=uMuQ
198 3 ad2antrr φX3+PX+Q=0u0X=uMuX
199 4 ad2antrr φX3+PX+Q=0u0X=uMuT
200 5 ad2antrr φX3+PX+Q=0u0X=uMuT3=GN
201 6 ad2antrr φX3+PX+Q=0u0X=uMuG
202 7 ad2antrr φX3+PX+Q=0u0X=uMuG2=N2+M3
203 8 ad2antrr φX3+PX+Q=0u0X=uMuM=P3
204 9 ad2antrr φX3+PX+Q=0u0X=uMuN=Q2
205 10 ad2antrr φX3+PX+Q=0u0X=uMuT0
206 106 ad2antrl φX3+PX+Q=0u0X=uMuu
207 109 ad2antrl φX3+PX+Q=0u0X=uMuu0
208 simprr φX3+PX+Q=0u0X=uMuX=uMu
209 simplr φX3+PX+Q=0u0X=uMuX3+PX+Q=0
210 196 197 198 199 200 201 202 203 204 205 206 207 208 209 dcubic2 φX3+PX+Q=0u0X=uMurr3=1X=rTMrT
211 195 210 rexlimddv φX3+PX+Q=0rr3=1X=rTMrT
212 211 ex φX3+PX+Q=0rr3=1X=rTMrT
213 1 ad2antrr φrr3=1X=rTMrTP
214 2 ad2antrr φrr3=1X=rTMrTQ
215 3 ad2antrr φrr3=1X=rTMrTX
216 simplr φrr3=1X=rTMrTr
217 4 ad2antrr φrr3=1X=rTMrTT
218 216 217 mulcld φrr3=1X=rTMrTrT
219 3nn0 30
220 219 a1i φrr3=1X=rTMrT30
221 216 217 220 mulexpd φrr3=1X=rTMrTrT3=r3T3
222 simprl φrr3=1X=rTMrTr3=1
223 222 oveq1d φrr3=1X=rTMrTr3T3=1T3
224 expcl T30T3
225 4 219 224 sylancl φT3
226 225 mullidd φ1T3=T3
227 226 5 eqtrd φ1T3=GN
228 227 ad2antrr φrr3=1X=rTMrT1T3=GN
229 221 223 228 3eqtrd φrr3=1X=rTMrTrT3=GN
230 6 ad2antrr φrr3=1X=rTMrTG
231 7 ad2antrr φrr3=1X=rTMrTG2=N2+M3
232 8 ad2antrr φrr3=1X=rTMrTM=P3
233 9 ad2antrr φrr3=1X=rTMrTN=Q2
234 132 a1i φrr3=1X=rTMrT10
235 222 234 eqnetrd φrr3=1X=rTMrTr30
236 oveq1 r=0r3=03
237 236 31 eqtrdi r=0r3=0
238 237 necon3i r30r0
239 235 238 syl φrr3=1X=rTMrTr0
240 10 ad2antrr φrr3=1X=rTMrTT0
241 216 217 239 240 mulne0d φrr3=1X=rTMrTrT0
242 simprr φrr3=1X=rTMrTX=rTMrT
243 213 214 215 218 229 230 231 232 233 241 242 dcubic1 φrr3=1X=rTMrTX3+PX+Q=0
244 243 rexlimdva2 φrr3=1X=rTMrTX3+PX+Q=0
245 212 244 impbid φX3+PX+Q=0rr3=1X=rTMrT