Metamath Proof Explorer


Theorem dirkertrigeqlem3

Description: Trigonometric equality lemma for the Dirichlet Kernel trigonometric equality. Here we handle the case for an angle that's an odd multiple of _pi . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses dirkertrigeqlem3.n φN
dirkertrigeqlem3.k φK
dirkertrigeqlem3.a A=2K+1π
Assertion dirkertrigeqlem3 φ12+n=1NcosnAπ=sinN+12A2πsinA2

Proof

Step Hyp Ref Expression
1 dirkertrigeqlem3.n φN
2 dirkertrigeqlem3.k φK
3 dirkertrigeqlem3.a A=2K+1π
4 3 a1i φn1NA=2K+1π
5 4 oveq2d φn1NnA=n2K+1π
6 elfzelz n1Nn
7 6 zcnd n1Nn
8 7 adantl φn1Nn
9 2cnd φn1N2
10 2 zcnd φK
11 10 adantr φn1NK
12 9 11 mulcld φn1N2K
13 1cnd φn1N1
14 12 13 addcld φn1N2K+1
15 picn π
16 15 a1i φn1Nπ
17 14 16 mulcld φn1N2K+1π
18 8 17 mulcomd φn1Nn2K+1π=2K+1πn
19 14 16 8 mulassd φn1N2K+1πn=2K+1πn
20 16 8 mulcld φn1Nπn
21 12 13 20 adddird φn1N2K+1πn=2Kπn+1πn
22 12 20 mulcld φn1N2Kπn
23 13 20 mulcld φn1N1πn
24 22 23 addcomd φn1N2Kπn+1πn=1πn+2Kπn
25 15 a1i n1Nπ
26 25 7 mulcld n1Nπn
27 26 mullidd n1N1πn=πn
28 27 adantl φn1N1πn=πn
29 9 11 16 8 mul4d φn1N2Kπn=2πKn
30 9 16 mulcld φn1N2π
31 11 8 mulcld φn1NKn
32 30 31 mulcomd φn1N2πKn=Kn2π
33 29 32 eqtrd φn1N2Kπn=Kn2π
34 28 33 oveq12d φn1N1πn+2Kπn=πn+Kn2π
35 24 34 eqtrd φn1N2Kπn+1πn=πn+Kn2π
36 19 21 35 3eqtrd φn1N2K+1πn=πn+Kn2π
37 5 18 36 3eqtrd φn1NnA=πn+Kn2π
38 37 fveq2d φn1NcosnA=cosπn+Kn2π
39 2 adantr φn1NK
40 6 adantl φn1Nn
41 39 40 zmulcld φn1NKn
42 cosper πnKncosπn+Kn2π=cosπn
43 20 41 42 syl2anc φn1Ncosπn+Kn2π=cosπn
44 38 43 eqtrd φn1NcosnA=cosπn
45 44 sumeq2dv φn=1NcosnA=n=1Ncosπn
46 45 oveq2d φ12+n=1NcosnA=12+n=1Ncosπn
47 46 oveq1d φ12+n=1NcosnAπ=12+n=1Ncosπnπ
48 47 adantr φNmod2=012+n=1NcosnAπ=12+n=1Ncosπnπ
49 1 nncnd φN
50 2cnd φ2
51 2ne0 20
52 51 a1i φ20
53 49 50 52 divcan2d φ2N2=N
54 53 eqcomd φN=2N2
55 54 oveq2d φ1N=12N2
56 55 sumeq1d φn=1Ncosπn=n=12N2cosπn
57 56 adantr φNmod2=0n=1Ncosπn=n=12N2cosπn
58 15 a1i n12N2π
59 elfzelz n12N2n
60 59 zcnd n12N2n
61 58 60 mulcomd n12N2πn=nπ
62 61 fveq2d n12N2cosπn=cosnπ
63 62 rgen n12N2cosπn=cosnπ
64 63 a1i φNmod2=0n12N2cosπn=cosnπ
65 64 sumeq2d φNmod2=0n=12N2cosπn=n=12N2cosnπ
66 simpr φNmod2=0Nmod2=0
67 1 nnred φN
68 67 adantr φNmod2=0N
69 2rp 2+
70 mod0 N2+Nmod2=0N2
71 68 69 70 sylancl φNmod2=0Nmod2=0N2
72 66 71 mpbid φNmod2=0N2
73 2re 2
74 73 a1i φ2
75 1 nngt0d φ0<N
76 2pos 0<2
77 76 a1i φ0<2
78 67 74 75 77 divgt0d φ0<N2
79 78 adantr φNmod2=00<N2
80 elnnz N2N20<N2
81 72 79 80 sylanbrc φNmod2=0N2
82 dirkertrigeqlem1 N2n=12N2cosnπ=0
83 81 82 syl φNmod2=0n=12N2cosnπ=0
84 57 65 83 3eqtrd φNmod2=0n=1Ncosπn=0
85 84 oveq2d φNmod2=012+n=1Ncosπn=12+0
86 halfcn 12
87 86 addridi 12+0=12
88 85 87 eqtrdi φNmod2=012+n=1Ncosπn=12
89 88 oveq1d φNmod2=012+n=1Ncosπnπ=12π
90 ax-1cn 1
91 2cnne0 220
92 pire π
93 pipos 0<π
94 92 93 gt0ne0ii π0
95 15 94 pm3.2i ππ0
96 divdiv1 1220ππ012π=12π
97 90 91 95 96 mp3an 12π=12π
98 97 a1i φNmod2=012π=12π
99 48 89 98 3eqtrd φNmod2=012+n=1NcosnAπ=12π
100 3 oveq2i N+12A=N+122K+1π
101 100 a1i φN+12A=N+122K+1π
102 86 a1i φ12
103 49 102 addcld φN+12
104 50 10 mulcld φ2K
105 peano2cn 2K2K+1
106 104 105 syl φ2K+1
107 15 a1i φπ
108 103 106 107 mulassd φN+122K+1π=N+122K+1π
109 1cnd φ1
110 49 102 104 109 muladdd φN+122K+1=N2K+112+ N1+2K12
111 49 50 10 mul12d φN2K=2NK
112 102 mullidd φ112=12
113 111 112 oveq12d φN2K+112=2NK+12
114 49 mulridd φ N1=N
115 50 10 mulcomd φ2K=K2
116 115 oveq1d φ2K12=K212
117 10 50 102 mulassd φK212=K212
118 2cn 2
119 118 51 recidi 212=1
120 119 oveq2i K212=K1
121 10 mulridd φK1=K
122 120 121 eqtrid φK212=K
123 116 117 122 3eqtrd φ2K12=K
124 114 123 oveq12d φ N1+2K12=N+K
125 113 124 oveq12d φN2K+112+ N1+2K12=2NK+12+N+K
126 49 10 mulcld φNK
127 50 126 mulcld φ2NK
128 49 10 addcld φN+K
129 127 102 128 addassd φ2NK+12+N+K=2NK+12+N+K
130 110 125 129 3eqtrd φN+122K+1=2NK+12+N+K
131 102 128 addcld φ12+N+K
132 127 131 addcomd φ2NK+12+N+K=12+N+K+2NK
133 50 126 mulcomd φ2NK=NK2
134 133 oveq2d φ12+N+K+2NK=12+N+K+NK2
135 130 132 134 3eqtrd φN+122K+1=12+N+K+NK2
136 135 oveq1d φN+122K+1π=12+N+K+NK2π
137 126 50 mulcld φNK2
138 131 137 107 adddird φ12+N+K+NK2π=12+N+Kπ+NK2π
139 126 50 107 mulassd φNK2π=NK2π
140 139 oveq2d φ12+N+Kπ+NK2π=12+N+Kπ+NK2π
141 136 138 140 3eqtrd φN+122K+1π=12+N+Kπ+NK2π
142 101 108 141 3eqtr2d φN+12A=12+N+Kπ+NK2π
143 142 fveq2d φsinN+12A=sin12+N+Kπ+NK2π
144 131 107 mulcld φ12+N+Kπ
145 1 nnzd φN
146 145 2 zmulcld φNK
147 sinper 12+N+KπNKsin12+N+Kπ+NK2π=sin12+N+Kπ
148 144 146 147 syl2anc φsin12+N+Kπ+NK2π=sin12+N+Kπ
149 102 128 addcomd φ12+N+K=N+K+12
150 49 10 102 addassd φN+K+12=N+K+12
151 10 102 addcld φK+12
152 49 151 addcomd φN+K+12=K+12+N
153 149 150 152 3eqtrd φ12+N+K=K+12+N
154 153 oveq1d φ12+N+Kπ=K+12+Nπ
155 154 fveq2d φsin12+N+Kπ=sinK+12+Nπ
156 143 148 155 3eqtrd φsinN+12A=sinK+12+Nπ
157 3 a1i φA=2K+1π
158 157 oveq1d φA2=2K+1π2
159 106 107 50 52 div23d φ2K+1π2=2K+12π
160 104 109 50 52 divdird φ2K+12=2K2+12
161 10 50 52 divcan3d φ2K2=K
162 161 oveq1d φ2K2+12=K+12
163 160 162 eqtrd φ2K+12=K+12
164 163 oveq1d φ2K+12π=K+12π
165 158 159 164 3eqtrd φA2=K+12π
166 165 fveq2d φsinA2=sinK+12π
167 166 oveq2d φ2πsinA2=2πsinK+12π
168 156 167 oveq12d φsinN+12A2πsinA2=sinK+12+Nπ2πsinK+12π
169 168 adantr φNmod2=0sinN+12A2πsinA2=sinK+12+Nπ2πsinK+12π
170 151 49 107 adddird φK+12+Nπ=K+12π+Nπ
171 170 fveq2d φsinK+12+Nπ=sinK+12π+Nπ
172 171 oveq1d φsinK+12+Nπ2πsinK+12π=sinK+12π+Nπ2πsinK+12π
173 172 adantr φNmod2=0sinK+12+Nπ2πsinK+12π=sinK+12π+Nπ2πsinK+12π
174 49 halfcld φN2
175 50 174 mulcomd φ2N2=N22
176 53 175 eqtr3d φN=N22
177 176 oveq1d φNπ=N22π
178 174 50 107 mulassd φN22π=N22π
179 177 178 eqtrd φNπ=N22π
180 179 oveq2d φK+12π+Nπ=K+12π+N22π
181 180 fveq2d φsinK+12π+Nπ=sinK+12π+N22π
182 181 adantr φNmod2=0sinK+12π+Nπ=sinK+12π+N22π
183 10 adantr φNmod2=0K
184 1cnd φNmod2=01
185 184 halfcld φNmod2=012
186 183 185 addcld φNmod2=0K+12
187 15 a1i φNmod2=0π
188 186 187 mulcld φNmod2=0K+12π
189 sinper K+12πN2sinK+12π+N22π=sinK+12π
190 188 72 189 syl2anc φNmod2=0sinK+12π+N22π=sinK+12π
191 182 190 eqtrd φNmod2=0sinK+12π+Nπ=sinK+12π
192 50 107 mulcld φ2π
193 151 107 mulcld φK+12π
194 193 sincld φsinK+12π
195 192 194 mulcomd φ2πsinK+12π=sinK+12π2π
196 195 adantr φNmod2=02πsinK+12π=sinK+12π2π
197 191 196 oveq12d φNmod2=0sinK+12π+Nπ2πsinK+12π=sinK+12πsinK+12π2π
198 94 a1i φπ0
199 151 107 198 divcan4d φK+12ππ=K+12
200 2 zred φK
201 69 a1i φ2+
202 201 rpreccld φ12+
203 200 202 ltaddrpd φK<K+12
204 1red φ1
205 204 rehalfcld φ12
206 halflt1 12<1
207 206 a1i φ12<1
208 205 204 200 207 ltadd2dd φK+12<K+1
209 btwnnz KK<K+12K+12<K+1¬K+12
210 2 203 208 209 syl3anc φ¬K+12
211 199 210 eqneltrd φ¬K+12ππ
212 sineq0 K+12πsinK+12π=0K+12ππ
213 193 212 syl φsinK+12π=0K+12ππ
214 211 213 mtbird φ¬sinK+12π=0
215 214 neqned φsinK+12π0
216 50 107 52 198 mulne0d φ2π0
217 194 194 192 215 216 divdiv1d φsinK+12πsinK+12π2π=sinK+12πsinK+12π2π
218 194 215 dividd φsinK+12πsinK+12π=1
219 218 oveq1d φsinK+12πsinK+12π2π=12π
220 217 219 eqtr3d φsinK+12πsinK+12π2π=12π
221 220 adantr φNmod2=0sinK+12πsinK+12π2π=12π
222 197 221 eqtrd φNmod2=0sinK+12π+Nπ2πsinK+12π=12π
223 169 173 222 3eqtrrd φNmod2=012π=sinN+12A2πsinA2
224 99 223 eqtrd φNmod2=012+n=1NcosnAπ=sinN+12A2πsinA2
225 47 adantr φ¬Nmod2=012+n=1NcosnAπ=12+n=1Ncosπnπ
226 145 adantr φ¬Nmod2=0N
227 simpr φ¬Nmod2=0¬Nmod2=0
228 227 neqned φ¬Nmod2=0Nmod20
229 oddfl NNmod20N=2N2+1
230 226 228 229 syl2anc φ¬Nmod2=0N=2N2+1
231 230 oveq2d φ¬Nmod2=01N=12N2+1
232 231 sumeq1d φ¬Nmod2=0n=1Ncosπn=n=12N2+1cosπn
233 fvoveq1 N=1N2=12
234 halffl 12=0
235 233 234 eqtrdi N=1N2=0
236 235 oveq2d N=12N2=20
237 2t0e0 20=0
238 236 237 eqtrdi N=12N2=0
239 238 oveq1d N=12N2+1=0+1
240 90 addlidi 0+1=1
241 239 240 eqtrdi N=12N2+1=1
242 241 oveq2d N=112N2+1=11
243 242 sumeq1d N=1n=12N2+1cosπn=n=11cosπn
244 1z 1
245 coscl πcosπ
246 15 245 ax-mp cosπ
247 oveq2 n=1πn=π1
248 15 mulridi π1=π
249 247 248 eqtrdi n=1πn=π
250 249 fveq2d n=1cosπn=cosπ
251 250 fsum1 1cosπn=11cosπn=cosπ
252 244 246 251 mp2an n=11cosπn=cosπ
253 252 a1i N=1n=11cosπn=cosπ
254 cospi cosπ=1
255 254 a1i N=1cosπ=1
256 243 253 255 3eqtrd N=1n=12N2+1cosπn=1
257 256 adantl φN=1n=12N2+1cosπn=1
258 2nn 2
259 258 a1i φ¬N=12
260 67 rehalfcld φN2
261 260 flcld φN2
262 261 adantr φ¬N=1N2
263 2div2e1 22=1
264 73 a1i φ¬N=12
265 67 adantr φ¬N=1N
266 69 a1i φ¬N=12+
267 neqne ¬N=1N1
268 nnne1ge2 NN12N
269 1 267 268 syl2an φ¬N=12N
270 264 265 266 269 lediv1dd φ¬N=122N2
271 263 270 eqbrtrrid φ¬N=11N2
272 260 adantr φ¬N=1N2
273 flge N211N21N2
274 272 244 273 sylancl φ¬N=11N21N2
275 271 274 mpbid φ¬N=11N2
276 elnnz1 N2N21N2
277 262 275 276 sylanbrc φ¬N=1N2
278 259 277 nnmulcld φ¬N=12N2
279 nnuz =1
280 278 279 eleqtrdi φ¬N=12N21
281 15 a1i φ¬N=1n12N2+1π
282 elfzelz n12N2+1n
283 282 zcnd n12N2+1n
284 283 adantl φ¬N=1n12N2+1n
285 281 284 mulcld φ¬N=1n12N2+1πn
286 285 coscld φ¬N=1n12N2+1cosπn
287 oveq2 n=2N2+1πn=π2N2+1
288 287 fveq2d n=2N2+1cosπn=cosπ2N2+1
289 280 286 288 fsump1 φ¬N=1n=12N2+1cosπn=n=12N2cosπn+cosπ2N2+1
290 15 a1i n12N2π
291 elfzelz n12N2n
292 291 zcnd n12N2n
293 290 292 mulcomd n12N2πn=nπ
294 293 fveq2d n12N2cosπn=cosnπ
295 294 sumeq2i n=12N2cosπn=n=12N2cosnπ
296 dirkertrigeqlem1 N2n=12N2cosnπ=0
297 277 296 syl φ¬N=1n=12N2cosnπ=0
298 295 297 eqtrid φ¬N=1n=12N2cosπn=0
299 261 zcnd φN2
300 50 299 mulcld φ2N2
301 107 300 109 adddid φπ2N2+1=π2N2+π1
302 107 50 299 mul13d φπ2N2=N22π
303 248 a1i φπ1=π
304 302 303 oveq12d φπ2N2+π1=N22π+π
305 299 192 mulcld φN22π
306 305 107 addcomd φN22π+π=π+N22π
307 301 304 306 3eqtrd φπ2N2+1=π+N22π
308 307 fveq2d φcosπ2N2+1=cosπ+N22π
309 cosper πN2cosπ+N22π=cosπ
310 107 261 309 syl2anc φcosπ+N22π=cosπ
311 254 a1i φcosπ=1
312 308 310 311 3eqtrd φcosπ2N2+1=1
313 312 adantr φ¬N=1cosπ2N2+1=1
314 298 313 oveq12d φ¬N=1n=12N2cosπn+cosπ2N2+1=0+-1
315 neg1cn 1
316 315 addlidi 0+-1=1
317 316 a1i φ¬N=10+-1=1
318 289 314 317 3eqtrd φ¬N=1n=12N2+1cosπn=1
319 257 318 pm2.61dan φn=12N2+1cosπn=1
320 319 adantr φ¬Nmod2=0n=12N2+1cosπn=1
321 232 320 eqtrd φ¬Nmod2=0n=1Ncosπn=1
322 321 oveq2d φ¬Nmod2=012+n=1Ncosπn=12+-1
323 322 oveq1d φ¬Nmod2=012+n=1Ncosπnπ=12+-1π
324 168 172 eqtrd φsinN+12A2πsinA2=sinK+12π+Nπ2πsinK+12π
325 324 adantr φ¬Nmod2=0sinN+12A2πsinA2=sinK+12π+Nπ2πsinK+12π
326 230 oveq1d φ¬Nmod2=0Nπ=2N2+1π
327 300 109 107 adddird φ2N2+1π=2N2π+1π
328 107 mullidd φ1π=π
329 328 oveq2d φ2N2π+1π=2N2π+π
330 300 107 mulcld φ2N2π
331 330 107 addcomd φ2N2π+π=π+2N2π
332 327 329 331 3eqtrd φ2N2+1π=π+2N2π
333 332 adantr φ¬Nmod2=02N2+1π=π+2N2π
334 50 299 mulcomd φ2N2=N22
335 334 oveq1d φ2N2π=N22π
336 299 50 107 mulassd φN22π=N22π
337 335 336 eqtrd φ2N2π=N22π
338 337 oveq2d φπ+2N2π=π+N22π
339 338 adantr φ¬Nmod2=0π+2N2π=π+N22π
340 326 333 339 3eqtrd φ¬Nmod2=0Nπ=π+N22π
341 340 oveq2d φ¬Nmod2=0K+12π+Nπ=K+12π+π+N22π
342 193 adantr φ¬Nmod2=0K+12π
343 15 a1i φ¬Nmod2=0π
344 305 adantr φ¬Nmod2=0N22π
345 342 343 344 addassd φ¬Nmod2=0K+12π+π+N22π=K+12π+π+N22π
346 341 345 eqtr4d φ¬Nmod2=0K+12π+Nπ=K+12π+π+N22π
347 346 fveq2d φ¬Nmod2=0sinK+12π+Nπ=sinK+12π+π+N22π
348 347 oveq1d φ¬Nmod2=0sinK+12π+Nπ2πsinK+12π=sinK+12π+π+N22π2πsinK+12π
349 193 107 addcld φK+12π+π
350 sinper K+12π+πN2sinK+12π+π+N22π=sinK+12π+π
351 349 261 350 syl2anc φsinK+12π+π+N22π=sinK+12π+π
352 sinppi K+12πsinK+12π+π=sinK+12π
353 193 352 syl φsinK+12π+π=sinK+12π
354 351 353 eqtrd φsinK+12π+π+N22π=sinK+12π
355 354 oveq1d φsinK+12π+π+N22π2πsinK+12π=sinK+12π2πsinK+12π
356 195 oveq2d φsinK+12π2πsinK+12π=sinK+12πsinK+12π2π
357 194 194 215 divnegd φsinK+12πsinK+12π=sinK+12πsinK+12π
358 218 negeqd φsinK+12πsinK+12π=1
359 357 358 eqtr3d φsinK+12πsinK+12π=1
360 359 oveq1d φsinK+12πsinK+12π2π=12π
361 194 negcld φsinK+12π
362 361 194 192 215 216 divdiv1d φsinK+12πsinK+12π2π=sinK+12πsinK+12π2π
363 86 90 negsubi 12+-1=121
364 90 86 negsubdi2i 112=121
365 1mhlfehlf 112=12
366 365 negeqi 112=12
367 divneg 122012=12
368 90 118 51 367 mp3an 12=12
369 366 368 eqtri 112=12
370 363 364 369 3eqtr2i 12+-1=12
371 370 oveq1i 12+-1π=12π
372 divdiv1 1220ππ012π=12π
373 315 91 95 372 mp3an 12π=12π
374 371 373 eqtr2i 12π=12+-1π
375 374 a1i φ12π=12+-1π
376 360 362 375 3eqtr3d φsinK+12πsinK+12π2π=12+-1π
377 355 356 376 3eqtrd φsinK+12π+π+N22π2πsinK+12π=12+-1π
378 377 adantr φ¬Nmod2=0sinK+12π+π+N22π2πsinK+12π=12+-1π
379 325 348 378 3eqtrrd φ¬Nmod2=012+-1π=sinN+12A2πsinA2
380 225 323 379 3eqtrd φ¬Nmod2=012+n=1NcosnAπ=sinN+12A2πsinA2
381 224 380 pm2.61dan φ12+n=1NcosnAπ=sinN+12A2πsinA2