Metamath Proof Explorer


Theorem dvcnvlem

Description: Lemma for dvcnvre . (Contributed by Mario Carneiro, 25-Feb-2015) (Revised by Mario Carneiro, 8-Sep-2015)

Ref Expression
Hypotheses dvcnv.j J=TopOpenfld
dvcnv.k K=J𝑡S
dvcnv.s φS
dvcnv.y φYK
dvcnv.f φF:X1-1 ontoY
dvcnv.i φF-1:YcnX
dvcnv.d φdomFS=X
dvcnv.z φ¬0ranFS
dvcnv.c φCX
Assertion dvcnvlem φFCF-1S1FSC

Proof

Step Hyp Ref Expression
1 dvcnv.j J=TopOpenfld
2 dvcnv.k K=J𝑡S
3 dvcnv.s φS
4 dvcnv.y φYK
5 dvcnv.f φF:X1-1 ontoY
6 dvcnv.i φF-1:YcnX
7 dvcnv.d φdomFS=X
8 dvcnv.z φ¬0ranFS
9 dvcnv.c φCX
10 f1of F:X1-1 ontoYF:XY
11 5 10 syl φF:XY
12 11 9 ffvelcdmd φFCY
13 1 cnfldtopon JTopOn
14 recnprss SS
15 3 14 syl φS
16 resttopon JTopOnSJ𝑡STopOnS
17 13 15 16 sylancr φJ𝑡STopOnS
18 2 17 eqeltrid φKTopOnS
19 topontop KTopOnSKTop
20 18 19 syl φKTop
21 isopn3i KTopYKintKY=Y
22 20 4 21 syl2anc φintKY=Y
23 12 22 eleqtrrd φFCintKY
24 f1ocnv F:X1-1 ontoYF-1:Y1-1 ontoX
25 f1of F-1:Y1-1 ontoXF-1:YX
26 5 24 25 3syl φF-1:YX
27 eldifi zYFCzY
28 ffvelcdm F-1:YXzYF-1zX
29 26 27 28 syl2an φzYFCF-1zX
30 29 anim1i φzYFCF-1zCF-1zXF-1zC
31 eldifsn F-1zXCF-1zXF-1zC
32 30 31 sylibr φzYFCF-1zCF-1zXC
33 32 anasss φzYFCF-1zCF-1zXC
34 eldifi yXCyX
35 dvbsss domFSS
36 7 35 eqsstrrdi φXS
37 36 15 sstrd φX
38 37 sselda φyXy
39 34 38 sylan2 φyXCy
40 36 9 sseldd φCS
41 15 40 sseldd φC
42 41 adantr φyXCC
43 39 42 subcld φyXCyC
44 toponss KTopOnSYKYS
45 18 4 44 syl2anc φYS
46 45 15 sstrd φY
47 11 46 fssd φF:X
48 ffvelcdm F:XyXFy
49 47 34 48 syl2an φyXCFy
50 46 12 sseldd φFC
51 50 adantr φyXCFC
52 49 51 subcld φyXCFyFC
53 eldifsni yXCyC
54 53 adantl φyXCyC
55 49 51 subeq0ad φyXCFyFC=0Fy=FC
56 f1of1 F:X1-1 ontoYF:X1-1Y
57 5 56 syl φF:X1-1Y
58 57 adantr φyXCF:X1-1Y
59 34 adantl φyXCyX
60 9 adantr φyXCCX
61 f1fveq F:X1-1YyXCXFy=FCy=C
62 58 59 60 61 syl12anc φyXCFy=FCy=C
63 55 62 bitrd φyXCFyFC=0y=C
64 63 necon3bid φyXCFyFC0yC
65 54 64 mpbird φyXCFyFC0
66 43 52 65 divcld φyXCyCFyFC
67 limcresi F-1limFCF-1YFClimFC
68 26 feqmptd φF-1=zYF-1z
69 68 reseq1d φF-1YFC=zYF-1zYFC
70 difss YFCY
71 resmpt YFCYzYF-1zYFC=zYFCF-1z
72 70 71 ax-mp zYF-1zYFC=zYFCF-1z
73 69 72 eqtrdi φF-1YFC=zYFCF-1z
74 73 oveq1d φF-1YFClimFC=zYFCF-1zlimFC
75 67 74 sseqtrid φF-1limFCzYFCF-1zlimFC
76 f1ocnvfv1 F:X1-1 ontoYCXF-1FC=C
77 5 9 76 syl2anc φF-1FC=C
78 6 12 cnlimci φF-1FCF-1limFC
79 77 78 eqeltrrd φCF-1limFC
80 75 79 sseldd φCzYFCF-1zlimFC
81 47 37 9 dvlem φyXCFyFCyC
82 39 42 54 subne0d φyXCyC0
83 52 43 65 82 divne0d φyXCFyFCyC0
84 eldifsn FyFCyC0FyFCyCFyFCyC0
85 81 83 84 sylanbrc φyXCFyFCyC0
86 85 fmpttd φyXCFyFCyC:XC0
87 difss 0
88 87 a1i φ0
89 eqid J𝑡0=J𝑡0
90 9 7 eleqtrrd φCdomFS
91 dvfg SFS:domFS
92 ffun FS:domFSFunFS
93 funfvbrb FunFSCdomFSCFSFSC
94 3 91 92 93 4syl φCdomFSCFSFSC
95 90 94 mpbid φCFSFSC
96 eqid yXCFyFCyC=yXCFyFCyC
97 2 1 96 15 47 36 eldv φCFSFSCCintKXFSCyXCFyFCyClimC
98 95 97 mpbid φCintKXFSCyXCFyFCyClimC
99 98 simprd φFSCyXCFyFCyClimC
100 resttopon JTopOn0J𝑡0TopOn0
101 13 87 100 mp2an J𝑡0TopOn0
102 101 a1i φJ𝑡0TopOn0
103 13 a1i φJTopOn
104 1cnd φ1
105 102 103 104 cnmptc φx01J𝑡0CnJ
106 102 cnmptid φx0xJ𝑡0CnJ𝑡0
107 1 89 divcn ÷J×tJ𝑡0CnJ
108 107 a1i φ÷J×tJ𝑡0CnJ
109 102 105 106 108 cnmpt12f φx01xJ𝑡0CnJ
110 3 91 syl φFS:domFS
111 7 feq2d φFS:domFSFS:X
112 110 111 mpbid φFS:X
113 112 9 ffvelcdmd φFSC
114 110 ffnd φFSFndomFS
115 fnfvelrn FSFndomFSCdomFSFSCranFS
116 114 90 115 syl2anc φFSCranFS
117 nelne2 FSCranFS¬0ranFSFSC0
118 116 8 117 syl2anc φFSC0
119 eldifsn FSC0FSCFSC0
120 113 118 119 sylanbrc φFSC0
121 101 toponunii 0=J𝑡0
122 121 cncnpi x01xJ𝑡0CnJFSC0x01xJ𝑡0CnPJFSC
123 109 120 122 syl2anc φx01xJ𝑡0CnPJFSC
124 86 88 1 89 99 123 limccnp φx01xFSCx01xyXCFyFCyClimC
125 oveq2 x=FSC1x=1FSC
126 eqid x01x=x01x
127 ovex 1FSCV
128 125 126 127 fvmpt FSC0x01xFSC=1FSC
129 120 128 syl φx01xFSC=1FSC
130 eqidd φyXCFyFCyC=yXCFyFCyC
131 eqidd φx01x=x01x
132 oveq2 x=FyFCyC1x=1FyFCyC
133 85 130 131 132 fmptco φx01xyXCFyFCyC=yXC1FyFCyC
134 52 43 65 82 recdivd φyXC1FyFCyC=yCFyFC
135 134 mpteq2dva φyXC1FyFCyC=yXCyCFyFC
136 133 135 eqtrd φx01xyXCFyFCyC=yXCyCFyFC
137 136 oveq1d φx01xyXCFyFCyClimC=yXCyCFyFClimC
138 124 129 137 3eltr3d φ1FSCyXCyCFyFClimC
139 oveq1 y=F-1zyC=F-1zC
140 fveq2 y=F-1zFy=FF-1z
141 140 oveq1d y=F-1zFyFC=FF-1zFC
142 139 141 oveq12d y=F-1zyCFyFC=F-1zCFF-1zFC
143 eldifsni zYFCzFC
144 143 adantl φzYFCzFC
145 144 necomd φzYFCFCz
146 f1ocnvfvb F:X1-1 ontoYCXzYFC=zF-1z=C
147 5 9 27 146 syl2an3an φzYFCFC=zF-1z=C
148 147 necon3abid φzYFCFCz¬F-1z=C
149 145 148 mpbid φzYFC¬F-1z=C
150 149 pm2.21d φzYFCF-1z=CF-1zCFF-1zFC=1FSC
151 150 impr φzYFCF-1z=CF-1zCFF-1zFC=1FSC
152 33 66 80 138 142 151 limcco φ1FSCzYFCF-1zCFF-1zFClimFC
153 77 eqcomd φC=F-1FC
154 153 adantr φzYFCC=F-1FC
155 154 oveq2d φzYFCF-1zC=F-1zF-1FC
156 f1ocnvfv2 F:X1-1 ontoYzYFF-1z=z
157 5 27 156 syl2an φzYFCFF-1z=z
158 157 oveq1d φzYFCFF-1zFC=zFC
159 155 158 oveq12d φzYFCF-1zCFF-1zFC=F-1zF-1FCzFC
160 159 mpteq2dva φzYFCF-1zCFF-1zFC=zYFCF-1zF-1FCzFC
161 160 oveq1d φzYFCF-1zCFF-1zFClimFC=zYFCF-1zF-1FCzFClimFC
162 152 161 eleqtrd φ1FSCzYFCF-1zF-1FCzFClimFC
163 eqid zYFCF-1zF-1FCzFC=zYFCF-1zF-1FCzFC
164 26 37 fssd φF-1:Y
165 2 1 163 15 164 45 eldv φFCF-1S1FSCFCintKY1FSCzYFCF-1zF-1FCzFClimFC
166 23 162 165 mpbir2and φFCF-1S1FSC